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We present a method for evaluating the distribution of products in chemical reactions which proceed by
complex formation. The method consists of separating the degrees of freedom into strong modes, which
are correlated directly with the reaction dynamics and weak modes. We then treat the dynamics of the
strong modes explicitly and perform a statistical averaging over the weak degrees of freedom. Our final
result [Eq. (5)] for the distribution of products is in the form of a product of three matrices whose sizes
are determined by the number of relevant strong modes. The first matrix accounts for the preparation of
the complex, the second for the energy redistribution within the complex, and the third for the
dissociation of the complex. As one possible course of procedure we evaluate the first and third matrices
by applying a normal coordinate transformation of the strong modes from reactants to complex and then
to products and then use Franck-Condon factors between the strong states of the complex and fragments
(reactants and products); the second matrix is evaluated using a step ladder model. We then apply the
formulation to the system F + C,H, for which deviations from statistical behavior were observed.
Nonstatistical behavior may occur in our model from two distinct sources: (1) the Franck—Condon factors
which are associated with the dynamics and (2) the finite energy redistribution rate within the complex
(relative to the dissociation rate). We discuss the influence of these two effects in F+C,H, and conclude

that the first one is dominant in this case.

l. INTRODUCTION

The dynamics of reactions of small molecules may be
studied by one of many available approaches to the solu-
tion of the Schrodinger equation. Thus, exact quantum
calculations of molecular scattering can be performed
for systems of very few atoms and at low energies
(where the number of accessible states is not too large),
whereas semiclassical and classical methods are ap-
propriate for higher energies., Statistical theories, on
the other hand, have been used successfully in the de-
scription of chemical reactions with large molecules
over a range of energies. These theories are based on
the assumption that due to the large number of states
involved in such systems many of the exact dynamical
features are being averaged out; thus, it is possible to
estimate lifetimes of excited species and branching ra-
tios in chemical reactions by assuming a rapid intra-
molecular redistribution of energy and then by simply
counting states (or measuring the available phase space)
without a detailed knowledge about the interactions in-
volved.

Statistical theories are frequently, if not always, ap-
plicable to large molecules, provided that we do not ask
for too detailed information about the outcome of the re-
action. In recent years there have been developed sev-
eral new experimental techniques which may be used to
study the effects of excitation and the intramolecular
energy redistribution rates on the decay of excited mo-
lecular species and on reactivity.!™® Some of these
methods are infrared chemiluminescence,! molecular
beam studies of radiationless processes,2 single vibron-
ic level fluorescence,® and mass spectroscopic studies.?
Such experiments, which provide detailed information
about molecular dynamics, may constitute a critical
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check on the range of applicability of statistical theo-
ries.

In this paper we present a model for the distribution
of the internal states in the products of chemical reac-
tions which proceed via complex formation. We aim to
account for the deviations of these distributions from
purely statistical behavior. Our main physical assump-
tion is that in large molecules there usually are few
“strong” degrees of freedom which participate directly
ang strongly in the reaction dynamics, These are main-
ly the degrees of freedom associated with the bonds be-
ing formed or broken, The remaining “weak” degrees
of freedom are assumed to be weakly correlated to the
dynamics,

In Sec. II, starting with the tetradic T matrix, we de-
scribe the system in terms of a master equation which
results from a statistical averaging over the weak
states, and whose size is determined by the number of
strong states. The final distribution of products is thus
expressed as a product of three matrices of manage-
able size. The first matrix accounts for the formation
of the complex, the second describes intramolecular
energy redistribution among the states of the complex,
whereas the third matrix accounts for the coupling be-
tween the complex and the exit channels.

In Sec. III the matrices for the preparation and decay
of the complex are evaluated with Franck—Condon (FC)
overlap integrals between the fragment and complex
states. Recent work on small molecular systems has
shown that Franck-Condon overlaps of nuclear wave-
functions give a reasonable picture of vibrational and
rotational distributions for reactive collisions.”® We
use here a FC-type approach for the few strong degrees
of freedom and a statistical treatment for the rest. The
other matrix is evaluated with the aid of a parameter 5
which describes the ratio of the rate of intramolecular
energy redistribution within the complex to the dissocia-
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tion rate, We then apply the model to the reaction of

F +ethylene, for which it has been found that the branch-
ing between the vibrational states of the product C,H,F,’
as well as the amount of energy in translation, ® differ
significantly from statistical predictions.

The present formulation provides a convenient ac-
counting for deviations from statistical behavior in
chemical reactions, The simplicity of our method is due
to the relatively small number of strong modes which
are explicitly incorporated in the dynamics. This leads
to a final expression involving relatively small matrices
but which includes the main dynamical features, Non-
statistical effects enter into our formulation via the
dynamics of preparation and decay of the complex (ap-
proximated by Franck-Condon factors), and also via the
intramolecular relaxation rate of the complex which may
be comparable to the dissociation rate.

1. FORMULATION OF THE MASTER EQUATION
Consider the indirect reactive scattering problem
, (1)

where a complex X is formed in the first step and then
decomposes. For this let us introduce the following as-
sumptions: We describe the system in terms of three
electronic states (Fig. 1), where a, ¢, and b refer to
the initial, complex, and final state electronic energy
surfaces, respectively, Even if the original problem is
electronically adiabatic, we can always find a quasi-
adiabatic transformation which defines these three sur-
faces.'® The Hamiltonian, which includes the electronic
and nuclear coordinates, for our system is given by

A+B~[X]-C+D

H+Hy+V | (2)
where
Hy=HS + H + H (3
and
N
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FIG. 1. Schematic of the potential along the reaction coordinate
for reactions which proceed via complex formation, Curves

(a), (b), and (c) refer to the quasiadiabatic surfaces for the re-
actant, product, and complex states, respectively.
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V= Vac + Vbc + Vcc . (4)

Here H{ (i =a, b, c) denotes the zeroth order Hamiltonian
for the ith electronic state, These H) are chosen to our
convenience. V,, and V,, are reactive couplings between
the incoming and outgoing channels, respectively, and
the complex, whereas V_, includes intramolecular cou-
plings in the complex and describes the energy flow
within the complex. If we characterize the complex
with a harmonic basis set, then V,, includes anharmo-
nicities and describes intramolecular relaxations. An-
other possibility is to use a local mode description
which has been proven recently to be successful in the
interpretation of spectra of aromatic molecules, !

We define a few “strong” degrees of freedom which
are directly associated with the dynamics., The remain-
ing weak degrees of freedom are assumed to be only
mildly correlated with the dynamics. The system has
thus three main types of states lia), [A8), and | fy),
where ¢, A, and f refer to the quantum numbers associ-
ated with the strong modes in the a, ¢, and b states,
whereas o, B, and y refer to the weak degrees of free-
dom. The states corresponding to the a, ¢, and b sur-
faces are orthogonal due to the inclusion of the electron-
ic degrees of freedom, In the Appendix we use the te-
tradic formalism of Zwanzig and Fano'*!® for obtaining
a reduced description of a chemical reaction in terms
of few degrees of freedom. The tetradic formalism is
designed to treat the time evolution of the density ma-
trix of a system in a formal way which is analogous to
the ordinary treatment, based on wavefunctions, !>

The main advantage of this formalism is that it en-
ables us to define projection operators and carry out
averagings of the tetradic T matrix 7 on the irrelevant
weak degrees of freedom, This is due to the fact that
the cross sections [Eq. (A10)] are proportional to the
matrix elements of 7 and not to their square. In con-
trast with the ordinary T matrix, if we wish to perform
any averaging we have first to calculate its elements
for all the degrees of freedom, then square, and only
afterwards can we average., Our derivation in the Ap-
pendix includes a dynamical treatment of the strong
modes and a statistical treatment of the weak modes,

We suppose that the correlation time for the interac-
tion between the weak modes (which have only a minor
effect on the dynamics) and the strong modes is short
compared to the lifetimes of the strong states, so that
the weak modes have only an averaged effect, Finally,
if the dephasing times of the complex states are much
shorter than the decay times so that we can neglect any
coherences (off-diagonal elements) and consider only
the populations of states, we arrive at our final expres-
sion for the reactive cross section

Opas & ; TG lu . (5)
iy

Equation (5) describes the scattering event in terms of
three matrices; I',; denotes the preparation of the vari-
ous complex states, G,, describes the intramolecular
relaxation in the complex, and I';, describes the dissoci-
ation into the exit channels.
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Let us now consider each matrix in more detail and
attempt some further approximations. For the quantity

T, we have
Fn=ZB |<fV|Vbc!>\B>IZPB/zB: Ps (6)

where the sum is over all states y, g consistent with
the relation

E=E,+E, =E,+E; , "N

where E is the total energy in the system and p; is the
equilibrium probability of populating the weak state 8 in
the complex. We now assume that the coupling element
is mainly determined by the strong modes, i.e., the
matrix elements (fy|VIx8) are not very sensitive to the
weak quantum numbers y and 3, We thus replace Eq.
(6) by

Tp= <V?x> %;L[’:: = <V?x> ps(E - Ey) , (8)

where (Vf)) is the coupling between f and X averaged
over all the possible weak states, and p;(E — E;) is the
total density of weak states in the products with energy
E-~E,, Similarly, we write

F=(Vi)p,E-E,) . ©

Further, in Eq. (5) we find for the intramolecular
relaxation term

G,, ="+ +T /)L (10)

The term I'*” is due to anharmonicities in the complex
[V, terms in Eq, (4)] which cause vibrational relaxation
among the complex states, whereas I'* and I denote
coupling between the complex states due to the reactive
interactions in the 7 and f channels, V,. and V,,, respec-
tively, From Eq. (A15) we see that since the diagonal
terms A=y are of second order in the reactive interac-
tion (V,,, V,.), whereas the offdiagonal terms are of
fourth order, it is thus reasonable to write

i, =5, Zr‘mam Z (V2 py(E-E) (11)

and

rf, =5, ; (Vi) (E-E,) . (12)
Finally, we note that Eq. (5) is formally equivalent to
writing a Pauli master equation for the population of the
states of the reaction complex in the following way. For
all x write

dP.

7}=Zu: rwp, - (0f+r)) P, - Iy, (13)
The steady state solution is given by

(P),,=GT, , (14)
so that the rate of formation of product states is

dP

—(7t1=; Ffl(Ph)ss=rfGri ’ (15)

which is identical to Eq. (5). The present formulation,

2009

as detailed in the Appendix, however, enables us to state
the approximations made in writing Eq. (15) for our sys-
tem,

111, MODEL CALCULATIONS AND APPLICATION
TO F+C,H,

To use the formalism of the last section we need to
evaluate the elements of the matrices I'; and I'; and G.
We now proceed in the following steps.

(1) We describe the coupling between the complex
and frasment (reactant or product) manifolds by Franck-
Condon overlaps y of the nuclear quasiadiabatic wave-
functions on each of the surfaces. For this purpose we
perform a normal mode analysis on the reactant, com-
plex, and product species to determine three sets of
normal coordinates,'® For the products and reactants
we carry out the normal mode analysis of each fragment
and treat the relative translational degrees of freedom
as follows: We fix the reactant (product) fragments at
some position and orientation which corresponds to the
saddle point of the exit (entrance) barrier. We then
write the translational coordinate as a one-dimensional
coordinate describing the relative motion of the centers
of mass of the fragments,

(2) We define transformation matrices

Q =CcHQ°-Q%) , k=a,b , (16)

between the sets of coordinates.

In Eq. (16) € is an orthogonal matrix which aligns the
two coordinate systems and Q° is a vector which de-
scribes the displacement of the coordinate systems due
to the change in equilibrium geometry of the molecules
during the course of the collision,

The transformation matrices € are a quantitative mea-
sure of how the various modes mix in the course of a
reaction, As expected intuitively one generally finds
that similar modes transform mainly among themselves,
i.e., the CH stretching coordinates of a reactant species
{ransform almost entirely to the CH coordinates of a
product species, Similarly, heavy atom motion in the
carbon skeleton of an organic reactant tends to transform
to similar motions of that skeleton in the product. The
Q° vectors are a measure of the deformation in the equi-
librium geometry of the molecule, Thus, during the re-
action if the geometry changes near some site in the
molecule, the coordinates corresponding to motion near
that site will have large @°.

{(3) We next separate the coordinates of the system
into a few strong coordinates and the rest (weak). In
general, only a few normal coordinates of the complex
are associated with the bonds being formed or broken
and will project onto either the reactant or product trans-
lational coordinates. These coordinates are taken as the
strong modes since they are most directly associated
with the dynamics of the reaction.

(4) We write the wavefunction for the complex as a
product of harmonic oscillator functions in each of the
normal coordinates and the wavefunctions for the frag-
ments as harmonic oscillator functions times a separable
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translational wavefunction. We further assume that the
(V%) and (V%) are proportional to the square of the
Franck-Condon factors, i.e,,

2
<V?X>ory)\f ’
2
<Viu>cx)/?u. ’

where the FC factors for the strong modes are given by

V= [ a@* [T 0,57 @9

(17)

S
< [Tuop et . (18)
i<
Here the 1’s are the vibrational frequencies of the vari-
ous modes, s is the number of strong modes, and ¥? is
a translational wavefunction for translational energy
equal to €,

(5) To evaluate Eq. (18) we must first write an ap-
propriate form for the translational wavefunction. The
simplest choice for x? is ¢™'/*6(9% — @), where @* is
the position of the curve crossing of the quasiadiabatic
surfaces or alternatively the position of the top of the
entrance or exit barrier (points A and B in Fig. 1). Al-
ternatively, both the quasiadiabatic complex wavefunc-
tion and the product translational wavefunction are highly
oscillatory so that we can perform a saddle point inte-
gration in the translation coordinate., Due to the oscil-
latory nature of the wavefunctions the major contribu-
tion to the integration over the translational coordinate
is localized near the curve crossing.

In either of the above cases the translational integral
is performed by evaluating a function at a single point,
Thus, the analytic evaluation of the FC factors is quite
similar to the evaluation of the ¥,, of R-matrix theory,'®

To evaluate Eq, (18) we rewrite the harmonic oscilla-
tor wavefunctions for the complex and fragment systems
using the generating function form of the Hermite poly-
nomials. Then, with Eq. (18) we transform all the func-
tions to a single set of orthogonal coordinates, This
leaves a multivariate Gaussian integration which can
then be performed by standard techniques.

(6) The last thing necessary to evaluate the coupling
between the fragments and the complex is an expression
for the density of states term p“(E,). We use the Whit-
ten—Rabinovitch approximation!” for the density of vibra-
tional states in the weak modes

p“(E,) =(E, +a<,)s"/[(s -1)! gﬁwi] ’ (19)

where s is the number of weak modes, ¢, is the sum of
the zero point energies of these modes, w; is the fre-
quency of mode i, and a is an empirical parameter de-
pendent on the w;, s, and E_/¢,. This counting of states
neglects conservation of angular momentum, I angular
momentum conservation is an important consideration,
then an improved density expression is available in the
phase space theory of Light!® or other similar theories.

The density of states in the weak modes may be written

in the form

Zvijac, Mukamel, and Ross: Dynamics of reactions

E-Ef

pw(E-Ef)=]0 de p2(€) po(E = Ey =€), (20)

where p,.(#) is the density of translational states with
energy «, i,e.,

Pl =vVu .

The rate of formation of a state A from reactants is
thus given by

Ly =Fi(7:n)a p(E-E,) , (21)

where I'; is a parameter that describes the strength of
the coupling between the quasiadiabatic manifolds. Sim-
ilarly, the rate of decay of a complex state x to a prod-
uct state f is given by

Ly =Tyly 3 p°(E - Ef) .

(7) Finally, to evaluate the relaxation matrix G we also
need a model for energy redistribution among the states
of the complex. In our calculations we use the well
known step ladder mechanism for relaxation among
coupled harmonic oscillators, The strength of the cou-
pling between the various states is taken to be constant.
We have assumed that the transition probability from
one strong state A to another A’ vanishes unless A and
A’ differ only in one quantum number

(20a)

(22)

Iy =T"(A=X) =T, p$(E - E,.) alx, \) (23)
where
alx, Zy=a;+1 (23a)

if A;=2;+1 and all the other quantum numbers do not
change,

alx, My=x (23b)

if A;=x; - 1 and all the other quantum numbers do not
change, and A, A')=0 otherwise. The diagonal ele-
ments of the relaxation matrix are given by

(A= 2)== 2 I™(a=1) . (24)

T

In Eq. (23) I,, gives the time scale for the vibrational
relaxation and p2(E - E,.) is the density of final states
in the transition. The matrix describes relaxation of
the strong modes into an equilibrium distribution p§® in
which

p§“=[p‘;’(E—E,L)]/E PY(E ~ Ey) (25)

=
In practice, since we are interested only in product

distributions, we neglect the I'! term in Eq, (10). This
term gives the rate of dissociation of the complex to the

original reactants and probably has only a small effect
on the product distributions.

(8) After evaluating the three matrices I';, I'; and G
we substitute them into Eq. (15) and obtain the final nor-
malized distribution of products

apP dap,
={ =1 z.n
PG T

where the dP, /dt are given by Eq. (15).

(26)
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The reaction to be studied in detail is

F +C,H,~ C,H,F ~ H +C,H,F 27

Experiments on this system have been made by Parson
and Lee® with crossed molecular beams and by Moehl-
mann, Gleaves, Hudgens, and McDonald' with infrared
chemiluminescence techniques, The experimentally ob-
served translational and vibrational energy distributions
for this reaction are not consistent with the predictions
of statistical theories, despite evidence that the complex
has a lifetime of several rotational periods. We analyze
this reaction with the model proposed in this paper, pro-
ceeding with the steps (1)-(8) just discussed. From the
distribution of products [Eq. (26}] we calculate the ener-
gy contents of several product modes and the relative
translational energy distributions of the product frag-
ments, These results are then compared to the avail-
able experimental results, and we point out several rea-
sons for nonstatistical behavior,

For the normal mode analyses we take the results of
Shobatake’s INDO calculation!® for the equilibrium geom-
etry of each molecule and use Badger’s rule® for the
force constants. From the transformation matrices,
which relate all the modes of the complex to the frag-
ments, we find that the initial translational motion of
the fluorine atom approaching the center of mass of ethy-
lene transforms very strongly into the CC and CF
stretching coordinates of fluoroethylene, On the product
side, however, the symmetric and antisymmetric CH,
stretching coordinates transform very strongly into the
product translational motion, namely, hydrogen leaving
vinyl fluoride, Thus, we choose to treat explicitly only
the four modes (CC, CF, symmetric CH,, and antisym-
metric CH, stretches) since these couple strongly to
either the reactant or product manifold of states, The
frequencies of these strong modes are listed in Table I,

For these strong modes we evaluate the FC factors
using Eq. (18). On the reactant side we find that the
FC factors are largest for those states of the complex
with high excitation in the CC and CF stretching modes
and low excitation in the CH modes. Thus, the FC fac-
tors indicate that the initial energy of fluorine~ethylene
relative motion becomes internal excitation of the CC
and CF modes of the complex, On the product side the
CH, stretching modes of fluoroethylene project strongest
onto the product relative translational motion. Conse-
quently, states with high excitation in CH, stretch have
the largest FC factors on the product side.

The calculations were performed at a total energy of
18200 cm™ (52 keal) above the bottom of the complex
well. This is about the average energy at which the ex-
periments were performed. For this total energy 4550
cm™ (13 keal) of energy is available for product vibra-
tional and translational energy.

We evaluated the product vibrational distributions for
several values of the parameter

_Trf"’”dgt

ey T,

(28)

where I'* and I were described in Eqs. (23) and (22),
respectively. For the sake of calculating the branching

2011

TABLE I, Strong modes and frequencies (in em™) for the re-
actant, complex, and product species of the F +ethylene re-
action from the normal mode analysis.

Description Reactants Complex Products
CC stretch 1565 1430 1730
CF stretch 1130 1180
Symmetric
2750 2
CH, stretch & 790
Antisymmetric
281
CHj, stretch 810 2850
CH stretch 2810

between the various vibrational channels only the ratio
r,./r, (and not their absolute values) is important, The
parameter 5 with value equal to zero corresponds to the
limit where vibrational relaxation is infinitely slow on
the time scale of dissociation of the complex, while n
equal to infinity is the limit where relaxation is instan-
taneous on this time scale.

The energy contents of the strong modes are calcu-
lated with the formula
Ey=hw, ) n,P, (29)
n
where P, is the probability that the nth channel is popu-
lated [Eq. (26)] and #; are the number of quanta in the
ith mode for channel n. The product vibrational state

probabilities P, come directly out of the numerical solu-
tion of Eq. (15).

The energy contents of the weak modes are somewhat
more complicated to evaluate, since in our stochastic
formulation we have lost all information about popula-
tions of specific modes and only know the total energy
in the weak modes. Consistent with the assumption that
weak mode / participates statistically among all the
weak modes we have

Mmax

E;=hw,y_ P, 2; mp'(E — E, - mhw,) , (30)
n m=|

where m ranges over the possible number of quanta in

mode i (consistent with energy conservation) and p'(E,)

is the density of states at energy E, of the other weak

modes, not counting mode . It can be evaluated in a

similar fashion to p* [Eq. (20)].

The translational energy distribution is given by

_ PY(E = E, = €) pye(e)
P"(ﬁ)— Z’.:Pﬂ pw(E_En)' 9 (31)
where
fde Pyle)=1 (31a)

This is equivalent to assuming a statistical partitioning
of the energy not in the strong modes among the weak
modes and the translational motion as in Eq. (20).

The energy content of several vibrational modes and
the ratios between modes are listed in Table II for sev-
eral values of the parameter ., We see that in the ab-
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TABLE II, Energy content (in em™) and ratios of energy con-
tents of the CC stretch (1730 em™), CF stretch (1180 em™), and
CH bend (900 ¢m™) modes of vinyl fluoride. Shown here are
the results for several values of the parameter 5 as well as

the experimental and statistical results.

Ecy_ Ecc  Ecc

n E%c Eir Ely Ecn Eecn  Ecr
0 865 2306 71 32.9 12.3 0,37
1072 668 2301 93 24,7 7.2 0,29
1! 621 1546 189 8,2 3.3 0.40
107! 391 861 295 2,9 1.3 0.44
10 223 502 362 1,39 0.62 0,44
100 171 392 381 1,08 0.45 0.44
w 142 323 388 0,82 0.36 0,44
Experimental® 0.63 0.18 0,29
Statistical® 0.85 0.53 0,62

From Eq. (29). °Reference 1.

*From Eq, (30).

sence of energy redistribution (=0) most of the energy
goes into the CC and CF modes, This is what would be
expected on intuitive grounds since one can picture that
as the fluorine atom attacks ethylene it sets the heavy
atom chain in motion., Since energy does not filter out
of these initially excited modes due to relaxation, when
the complex finally dissociates the CCF modes are still
excited,

As 7 is increased we see a smooth trend of less ener-
gy going into CCF modes of products. This effect arises
since the relaxation allows energy to transfer from the
initially highly excited CCF modes to the initially less
excited modes., These lower energy CCF modes of the
complex then project onto product modes with less CCF
excitation. As the energy relaxes out of the CCF chain
we also see a corresponding increase in the energy con-
tent of the product bath modes and the CH stretching
modes. We make the very important point that even in
the n -~ limit of instantaneous relaxation in the com-
plex we do not obtain statistical product vibrational dis-

P(E)
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tribution because of our inclusion of the FC factors for
the strong modes.

In comparing our results to the experimental results
of Moehlmann et al, we find best agreement for n=w,
Thus, our calculations indicate that energy becomes sta-
tistically distributed during the lifetime of the fluoro-
ethylene complex, Nonstatistical product distributions
in our interpretation are due to the FC factors which
determine the nature of the coupling between complex
and product states.

The translational energy distribution corresponding
to n =« is shown as curve A in Fig. 2. The shape of
this distribution is quite similar to that given by RRKM-
like theories, although somewhat broader. The average
translational energy for curve A is 3,6 kcal. This is
less than the experimental value of 6.5 kecal (about half
the available final energy), but greater than that pre-
dicted by statistical theories.

In the above analysis we have neglected entirely the
effect of the exit barrier, which is estimated to be 3-4
kecal for this reaction, For translational energies
greater than the height of the barrier E, . the barrier
probably has only a small effect on the results, For
translational energies less than E,,., however, the shape
of the barrier strongly affects the translational wave-
functions since they decay inside the barrier.

For a fixed value of the barrier height we now ex-
amine how thewidth of the barrier affects the FC fac-
tors. To understand the effects of the exit barrier on
the results let us first look at two limiting cases. In
the limit that the barrier is narrow the translational
wavefunction is nearly the same as that in the absence
of a barrier, so that the contribution to the FC factor
of the integration over the translational coordinate is
nearly the same as if we had neglected the barrier, If
the barrier is very wide, the translational wavefunction
decays a great deal before it can appreciably overlap
with the complex wavefunctions, Thus, the FC factors
for low translational energy tend towards zero,

FIG. 2, Relative translational
energy distributions calculated
from model, (A)Distribution
obtained neglecting effects of the
exit barrier [F(e)=1 in Eq.
(34)1. (B) Distribution obtained
assuming no tunneling through
the 4 kecal exit barrier [F(e)
=0(€ — Ep,), where 6 is a step
function]. (C) Distribution ob-
tained using value of b/a=1in
Eq. (34).

o] 2 4 6 8
TRANSLATIONAL ENERGY (kcal)
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In actual cases, of course, the FC factors are ex-
pected to be between the above limits, Suppose that for
E,< E,,. we take the translational wavefunction to be a
delta function at the classical turning point on the dis-
sociative surface, If the repulsive potential is exponen-
tial V=E,me"‘°f, then the energy dependence of the clas-
sical turning point is

1 E
% —-_2 L
ton =g )
If the translational wavefunction on the complex hyper-

surface is decaying as e -ba} , then the contribution to the
FC factor from the translational integration varies as

E b/a
e (i)
lzbar

(32)

(33)

We can incorporate this effect into our formulation by
replacing p,.(¢) in Egs. (31) and (20) by

Perl€) =py(€) Fle) (34)
where
2b/a
F(<)={(‘/Ew) » €< Eoar (342)
1 ] 62Ehara

If we take F(¢) to be zero for € < E,,,, we get the trans-
lational energy distribution shown as curve B in Fig, 2.
This curve has a threshold at 4 kcal, since we assumed
that all the potential energy of the barrier went into
translational energy asymptotically as the fragments
separated. Curve B has the same general shape as
Curve A but (E,) now equals 7.1 kcal, somewhat above
the experimental value.

When we take F(¢) =0 for E, < E,,. the vibrational dis-
tributions are altered as well as the translational dis-
tributions, These distributions for =0 and « are
shown in Table III. In this no tunneling approximation
for treating the exit barrier, agreement with experi-
ment regarding the vibrational distributions, and aver-
age translational energy is somewhat better than the re-
sults shown in Table II,

Neither translation distributions A or B have the same
shape as the experimental curve from the beam results
of Parson and Lee. Taking a reasonable value of b/a
=1in Eq. (33) leads to curve C in Fig. 2, which shows
a closer resemblance to the experimental curve, The
choice of b/a =1 corresponds to the barrier being sym-
metrical such that the slope of the potential surface along
the translational coordinate is the same on both the prod-
uct and complex sides of the saddle point,

TABLE IIl, Energy content and ratio of energy contents using
no tunneling model for the exit barrier [i.e., F(e) =0 for € <Epp
in Eq, 34)1.

EcF Ecc Ecc
7 Ecc Ecr Ecy Ecm Ecy  Ecr
0 550 1372 58 23,7 9.5 0,40
o0 81 212 301 0.7¢ 0,27 0,38
Experimental 0.63 o0.18 0,29

2013

Curve C rises slowly from a zero energy threshold
and has an average translational energy intermediate
between the limiting cases A and B, These curves thus
demonstrate the qualitative influence of tunneling through
the exit barrier on the translational energy distribution.

IV. DISCUSSION

We have developed a method which combines dynami-
cal and stochastic approaches to the analysis of colli-
sions of molecules which lead to reaction through com-
plex formation, Beginning with the tetradic T matrix
we derive a master equation for the product vibrational
distribution of reactions which proceed through a com-
plex. Dynamical considerations suggest a separation
of the degrees of freedom into a set of strong modes,
which participate directly in the reaction and are there-
fore treated explicitly, and weak modes which are
treated statistically, This separation is possible when
motion along the fragment reaction coordinates, which
corresponds to bonds forming and breaking, transforms
into only a few modes of the complex, Because of this
separation, we can reduce the necessary dynamical cal-
culations to manageable size, determined by the number
of strong modes,.

The formation and decay of the complex is described
by FC factors of wavefunctions on the reactant, com-
plex, and product quasiadiabatic surfaces. The well
known step ladder mechanism is used for the vibrational
energy redistribution within the complex. We then in-
troduce a parameter 5 which describes the relative rates
of vibrational energy redistribution among the states of
the complex vs dissociation of the complex into products,

This model allows us to characterize a wide range of
possible systems, from those in which the time scale of
vibrational relaxation is much shorter than the time
scale of dissociation to those in which it is much longer.
In intermediate cases we can see the effects of competi-
tion between the two processes.

Even in the limit of fast relaxation, however, the re-
sults may be different from those predicted by a fully
statistical theory, This is due to the dynamics of the
strong modes as shown by nonstatistical FC factors.

In the case of fluoroethylene the FC factors seem to be
important in determining the vibrational energy ratios,
Many systems, of course, are well described by the
fully statistical expressions, Such statistical behavior
would show up in our results if the FC factors them-
selves were statistical, i,e., if they showed no trends
in magnitude as a function of the quantum numbers.
These types of FC factors might arise if, for a fixed
fragment configuration, the coordinate transformations
were smeared out so that many modes mixed among
themselves, Another possible reason is that the rela-
tive orientation of fragments leading to preparation and
decay of the complex is ill defined, so that the results
should be averaged over many different configurations,
which may then average out the dynamical effects.

Final state interactions may be included in the present
formulation by using the nonreactive quasiadiabatic
wavefunctions on the a and b surfaces of Fig, 1 for the
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evaluationofthe FC factors, Since, however, we can
account for the experimental data using the present
formulation, we find it unnecessary to include these ef-
fects in our calculations. Nonetheless, either a more
detailed knowledge of the potential surface or more com-
prehensive experimental data may make it desirable to
consider those effects.

As a final point we consider qualitative trends of our
predictions for molecular systems similar to fluoro-
ethylene, We first look at the predictions of our model
for the case in which the molecular size increases, all
other things being equal. Thus, consider an analogous
reaction to fluorine plus ethylene which has the same
potential surface features and the same set of strong
modes, but has more weak modes. The only difference
in our equations for the two cases then is in the density
of states terms, since there are more weak modes. We
recall that the available vibrational energy in the com-
plex (52 kcal) is considerably larger than in the products
(13 kcal including translation) and that the density of
states increases strongly with the number of weak
modes. Thus, the relaxation terms will be more
strongly affected than the dissociation terms. Conse-
quently, for the same ratio of v—v to dissociative cou-
pling strengths (i.e., I,./T',) the corresponding value
of n in the case of the larger molecule will be larger
than in the ethylene case. Consequently, for the same
coupling the vibrational distributions will be closer to
the relaxed limit for the larger molecule than for fluoro-
ethylene. This effect is demonstrated in Table IV.

If the coupling ratio I',./I', is independent of energy,
as may well be the case, we can apply similar reason-
ing to predict the trend with increasing total energy.
Thus, since the density of states terms for the complex
are more sensitive to changes in energy than are those
of the products, 7 will increase with energy, Conse-
quently, the relaxed limit will be approached more
quickly as the total energy is increased. This effect has
been noticed in studying the ergodic behavior of two cou-
pled oscillators.® For low energy the system is local-
ized in state space, but as the energy is increased the
distribution of the system among the states is broad-
ened.

It may be of interest to continue this work by investi-
gating the qualitative features of FC factors for typical
systems to determine the types of vibrational distribu-
tions expected, This may include the dependence of the

TABLE 1V, Energy contents and ratios for a system having the
same strong modes as F +ethylene but nine extra weak modes.
Assuming a constant coupling ratio (for the vibrational redis-
tribution and dissociation) 1 is about 43 times larger in this
case than for fluoroethylene. Thus, n=0.43 (4.3) in this table
corresponds to =0, 01 (0.1) in Table II,

Ecp Ece  Ege
7 Ecce Ecr  Ecu Ecn Ecy  Ecr
0 756 2249 69 32.6 11,0 0,34
0,43 221 545 237 2,30 0,93 0.41
4.3 102 245 276 0.89 0,37 0,42
o 67 166 285 0.58 0.24 0,40

Zvijac, Mukamel, and Ross: Dynamics of reactions

FC factors on structural effects such as bond angles and
conjugation of double bonds, as well as masses and fre-
quencies, One might also consider how localized a re-
gion about the reaction site must be treated explicitly,
i.e., the appropriate choice of strong modes. Finally
it may be of interest to apply the formalism to other
processes (e.g., isomerization), where one can make
simplifications due to the possibility of multiple time
scales as was done here,

APPENDIX. DERIVATION OF THE MASTER
EQUATION: TETRADIC FOCRMALISM

The tetradic analogue U of an ordinary operation U is

defined by its action on an ordinary operator A as'®!
U-A=[U, A}, (A1)

which may be written in the form

(ﬁA)ij = ; ﬁii:klAkl

=2 (G| O Ry |AD . (A2)
Rl
Comparison of Eqs. (A1) and (A2) results in
-~ *
Ui = Ui 05— U 8y, (A3)

Formally we can expand any tetradic operator in the
form

U= Z [7)) []tmz (1] .

ijkl

(A4)

Thus, lij)) denotes a “state” in Liouville space, where-
as 1)) {(kl| represents a tetradic operator, The “scalar
product” in this space is defined as

(G| kDY =Tr(|5) G| AN =0,,5;, , (A5)

where i, j, k, and [ belong to a complete orthogonal set.
We thus see that tetradic operators are naturally defined
in terms of four indices. In particular, if U=H (the
Hamiltonian of the system), then U=L (the Liouvillian),
Also, when H is partitioned into Hy+V we have L =L,
+ U where
LOA = [HO’ A] ’
VA =V, Al {(A6)

The tetradic S matrix is defined as the transformation
between the density matrices of the system before and
after the collision, i.e.,

Par{+20) =8, i; 0= =) . (A7)
We introduce the tetradic 7' matrix

T (w)=Uv+VG(w)v , (A8)
where

Glw)=(w=L +ie)? (A9)

U is defined in Eq. (A8) and H=H, +V is the appropriate
partitioning of H for a given scattering problem. We
note the formal analogy of Eqs. {A7)-(A9) with the ordi-
nary (dyadic) formalism, the difference being that each
operator U is now a commutator. Ordinary cross sec-
tions are given by
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0I:va(Ea) =l.‘rbb, aa(o) Fa_l = 2” l Tba(Ea) | 2 O(Eb - Ea) ) (AIO)

where F, is the incoming flux in the la) channel,

We next consider the scattering problem discussed in
Sec, II and define the following tetradic projections:

P,= 2 lia,i'a ") (Ga,i'a’|

ia,

P, = ; Lfv, YW, Y|, (A11)
'y

PC=ZB: In8, uBM (8, n8'l,
Al
uB’

which span our total Liouville space, i.e.,
P,+P,+P, =1 (A12)

We segregate the Liouville space into a space P in-

cluding the complex states and @ =1-P, i.e,,
pP=p,  ,
@=1-P=P,+P, (A13)

We make use of a well known result of scattering theory

to write!® 3

Q7Q=QRQ+QRPGPRQ , (A14)
where

R=0+0Q(w-QLQ)" QU (A15)
and

PGP=(w-Ly- PRP)? | (A16)
and U is the tetradic analogue of V.

|

2015

The first term in Eq, (A14) describes a direct cou-
pling between reactants and products and is assumed to
vanish in our model of a complex reaction, The second
term, however, describes a reaction proceeding via the
complex, We introduce the following approximations:

(1) R is evaluated to second order in v, i.e.,

R=v+0@(w~-L)?Qu. (A17)
(2) We define a Zwanzig projection'?
C=p,Tr, , (A18)
which performs the trace over the weak modes. p, in

Eq. (A18) denotes the density matrix for the weak
states.

The cross section g,. . requires thus the projection
QCTQC. If the correlation time for the interaction be-
tween the weak and strong modes is short compared to
the lifetimes of the strong states, as might be the case
if the density of weak states is large enough, then we
can write!?~*

CQTCQ=CQRPCGPCRQC (A19)

b

and the reactive scattering cross section may be expli-
citly written in the form

015 = 20, (f7, fr|QCTQC |ia, ia))

<<(lb |R(w) | Cd» = E Py [Obd z; U?xkb U:fx(w = €pp— Woa +i77)'1 + 6ac %: U:Z Ugj,(w ~€gpm Wap +i77) *
o []

- Z U?Sfx U?xbﬁ(w =€ — Wqp +i77)-1 - Z Uﬂbo U:g(w = €qq— Waa +i77)-1] ’
'8 ]

where
Uy= (8| V]aa) ,
€4=E,—E, (for the strong modes) , (A22)

W.s=E,—E, (for the weak modes) ,
and
éab, ca™ ((:J — Wgp 6ac 6ba - Rab. cd)-1 .

We invoke our final approximation which amounts to
neglecting the coherences in the complex and considering
only populations, i.e,, we write

°i~fm; éff,n GovunByuu, i (A23)
]

Due to the large number of degrees of freedom involved
we expect to have cancellations in the Ry, and R, .,
terms for X#1’, u+#u’ because of the appearance of

= 2 By G Rusevis (a20)
wu’
where the operators R and G are given by
(A21)

many terms with various phases, In addition, R,,. ..,
which appears in the denominator of G,,.,,,., is expected
to be much larger for A #2’, p#u’ since dephasing times
are expected to be much shorter than the decays of popu-
lations. As a result the dominant contribution to the
sum [Eq. (A23)]comes from the diagonal terms A=’
w=p’, We then have our final expression:

oi-fmZ rf). Ghu Fui ’ (A24)
“
where

Cp=Rypnm

ru£=‘éuu.ﬂ , (A25)
and

Glu =éu,uu .

J. Chem. Phys., Vol. 67, No. 5, 1 September 1977

Downloaded 17 Feb 2003 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



2016 Zvijac, Mukamel, and Ross: Dynamics of reactions

13, G. Moehlmann, J, T. Gleaves, J, W, Hudgens, and J. D,
McDonald, J. Chem. Phys. 60, 2040 (1974).

R, K, Sander, B, Solp, and R, N, Zare, J, Chem. Phys. 64,
1242 (1976).

3M. H, Hui and S, A. Rice, J, Chem, Phys. 61, 833 (1974),

1A, Lee, R, LeRoy, F. Herman, R, Wolfgang, and J. C.
Tully, Chem. Phys. Lett. 12, 569 (1972).

5s. Nordholm and S. A, Rice, J. Chem, Phys. 62, 157 (1974);
W. M. Gelbart, S. A. Rice, and K. F, Freed, J. Chem,
Phys. 57, 4699 (1972); K. G. Kay, J. Chem, Phys, 61, 5205
(1974).

83, D. McDonald and R, A, Marcus, J. Chem. Phys. 65, 2180
(1976).

'G, C. Schatz and J. Ross, J. Chem, Phys. 66, 1021, 1037
(1977).

8M, Berry, Chem. Phys. Lett, 27, 73 (1974).

97, M. Parsonand Y. T. Lee, J. Chem. Phys. 58, 4658 (1972),

YWg, Mukamel and J. Ross, J, Chem, Phys, 86, 3759 (1977);
T. F. George and J. Ross, J, Chem. Phys, 556, 3851 (1971);
T. F. George and J. Ross, Ann, Rev, Phys. Chem, 24, 263

(1973).

UR, L. swofford, M, E. Long, and A, C. Albrecht, J. Chem,
Phys, 65, 179 (1977).

2(a) R, Zwanzig, Lectures in Theovetical Physics {Interscience,
New York, 1960), Vol, 3; (b) U, Fano, Phys, Rev, 131, 259
(1963); (c) A. G. Redfield in Advances in Magnetic Resonance,
edited by J. S, Waugh (Academic, New York, 1965), Vol, I,

37, Ben-Reuven, Adv, Chem, Phys, 88, 235 (1975).

YA, Ben-Reuven and S, Mukamel, J. Phys. A 8, 1313 (1875).

5E, B. Wilson, J. C. Decius, and P. C, Cross, Molecular
Vibrations (McGraw-Hill, New York, 1955).

8p, J, Zvijac and J. Light, Chem, Phys, 21, 411 (1977).

"G, Z. Whitten and B, S, Rabinovitch, J, Chem, Phys. 88,
2466 (1963).

185, C. Light, Discuss, Faraday Soc, 44, 14 (1967).

19, Shobatake, Ph,D. thesis, University of Chicago (1974).

5ee H. S, Johnston, Gas Phase Reaction Rate Theovy (Ronald,
New York, 19686), p. 72 ff,

2K, S, J. Nordholm and S, A, Rice, J. Chem, Phys, 61, 203
(1974).

J. Chem. Phys., Vol. 67, No. 5, 1 September 1977

Downloaded 17 Feb 2003 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



