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We develop a theory for the collisional dephasing of spectral lines in the binary collision approximation and
in the Markovian (impact) limit of fast collisions. Making use of tetradic and dyadic scattering techniques we
derive expressions for the line broadening which are nonperturbative in the potentials of interaction. We
present some numerical applications corresponding to vibrational dephasing in liquids which show that for
high temperatures, large masses, and short range interactions the nonperturbative corrections may be quite
significant and may change the predictions of the binary collision models as to the variation of the dephasing

rate with these parameters.

I. INTRODUCTION

Binary collision models are frequently used in the
description of broadening of spectral lines.'™® Numer-
ous experimental and theoretical works have been done
on the problem of pressure broadening of spectral lines
at low pressures, where the binary collision assump-
tion is the most appropriate. In recent years binary
collision models were also applied to the broadening of
vibrational lines inthe liquid phase. ®™'® Experimental
data of this type exist mainly from coherent Raman
techniques. ®"?®

The basic molecular model for line broadening (de-
phasing) consists of a two-level system coupled to a bath
which does not interact directly with the radiation field
and which induces the line broadening. The common
theoretical treatments of vibrational dephasing in lig-
uids®!'~18 are perturbative in the system-bath interac-
tion. It is our purpose in this paper to derive approxi-
mate expressions for, dephasing rates which are non-
perturbative and to apply them to the problem of vibra-
tional dephasing. In Sec. II we present the necessary
formal expressions for collisional dephasing. In Sec.
IIT we consider colinear models and make use of methods
of tetradic and dyadic scattering theory to derive simple
nonperturbative expressions for the dephasing rates.
Finally, in Sec. IV we make specific application to vi-
brational dephasing and present some numerical exam-
ples.

Il. THE LINE SHAPE FUNCTION

We consider a two-~level molecular system |a) and
| ) which is coupled to a thermal bath. Within the binary
collision model'™ we assume that the two-level system
is fixed at the center of a macroscopic sphere with vol-
ume Q. The bath consists of N perturber atoms which
interact with the two-level system but not with each
other. The total Hamiltonian for the system +bath is
given by
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H=|a)[E,+ H Qp){a| + | ) |E,+ H(Qp)I(b| , (1)

where

N 2 a2
H,.(QB)=Z; [-Eﬁﬁf&wc,(q},)], iza,b. @)

Here Q5={Q,} is the collection of bath coordinates, E,
and E, are the energies of the two levels, M is the re-
duced mass of the system and a bath molecule, and
G,(Q,) and G,(Q,) are the adiabatic potentials of interac-
tion of a bath molecule with the system. In our model
Hamiltonian [Egs. (1) and (2)] we have excluded T, pro-
cesses (relaxation of population) in the system which are
usually not important for vibrational line shapes in lig-
uids. %1% The eigenstates of H, and H,, i.e., | a) and

i B), respectively, are given by products of single-par-
ticle states:

l a)= H I a,) (3a)

1&=I11s) (3b)
with eigenvalues

Eq=) Eq, (4a)

Eg= ) Ey, - (4b)

Each | o,) and | 8,) is assumed to be normalized in our
spherical box so that

(al @) =64,00 » (5a)
(BB =858 - (5b)

The exact solution for the absorption line shape of the
system defined by the Hamiltonian H is given by?

I(A)=foad'rexp[- iAT— -gg('r)] +c.c , (8)
where
gN=a Y Pa)|(a|B|?[1 - expliwo )] (7)
o,B
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is the line-broadening function and
A=w; +E,~E, (8)

is the detuning of the incident light frequency (w;) from
the two-level frequency. Also,

""Ba=EB—Eu ’

and P(a) is the canonical distribution of a states
P(a)=exp(~ E,,/kT)/Z exp(~E,./kT) . (9)
al

In Egs. (7)-(9) and from now on, la)=la,) and |18)=|8,)
are single particle bath states and for convenience in the
notation we omit the subscript v. It should be noted that
the sum in Eq. (7) is 0(1/Q) sothat g(7) is 0(1) and in the
thermodynamic limit (N—~w, Q= , N/Q finite), (N/Q).
g(7) is simply proportional to the number density of
perturbers N/§2. In the Markovian (impact) limit the
collisions are assumed to be fast (relative to the line
broadening). In this case it is convenient to rewrite
2(7) in the form?%;

glr)=g'(0) 7+ deTl(T—Tl)g"(Tl) s (10)
0
where
g”(-r)sd;f§=ﬂ gP(aH(alB){zwﬁaexp(iw,ar) , (11)
and g'(7)=dg/dT. '

The Markovian limit is obtained mathematically by as-
suming that g(7) (on a coarse-grained time scale) is lin-
ear in 7, i.e. 254

N N - , -
5g('r)- ° [g'(o) T+ T_/; dr, g (Tl)]E(I‘+zA) 7.(12)
Upon substitution of Eq. (11) in Eq. (12) we get

I‘=NRef“d'rEP(at)l(atl[‘:‘)|2 Wiy expliwg, )
0 a8

) ﬂN;P(a)KaIB)‘z"’:a 8(wsq) (13a)
and
E=-ig £(0)
+N1m [ a7 3 Pa)] (] 8|2 uh explivaar) =0 o

The line shape in the Markovian limit is obtained by
substitution of Eq. (12) with Eq. (13) in Eq. (8), which
results in the Lorentzian line shape

a)= ??.Trfa R (14)

where T is the dephasing width given by Eq. (13a).

It is clear from Eqs. (1), (2), and (6) that G, - G, is
the perturbation responsible for the line broadening. In
fact, when G, =G, we have

g(1)=0 (15)

and

(A)=275(4) . (16)

It is therefore convenient to partition # [Egs. (1)and (2)]
as follows:

H=H,+ Y HQ,) , (17a)

H,=HP +\V , (17b)
where

et 9

1[G @) |Uaal s 1o, e

Hy=|a)E{a| + | b) E,(b] , (17d)
and

v=67(Q,)(|a){a| - |b)(b]), (17e)
where

G’(Qu) = [Ga(Qv) + GD(QV)]/Z (lsa)
and )

G(Q,)=[G,(Q,) - G,@,)]/2 . (18b)

Here X is a smallness parameter introduced for book-
keeping purposes and at the end we set A=1. Using this
partitioning we note that Eq. (13a), which is the exact
expression for the dephasing rate I', is infinite order in
A. This may be clearly seen by a perturbative expansion
of | @) in terms of | 8) by using 2\G" as the perturbation,
The common treatments of dephasing in liquids are all
perturbative in . "% In order to obtain useful nonper-
turbative expressions for I' we shall make use of two
alternative expressions. The first is the expression of
Fano®5+2! obtained using tetradic scattering theory in
Liouville space, i.e. (to lowest order in bath density),

T==ImND_ (7 |7 (w) | 7Y Py) - (19)
rr!
where 7 (w) is the tetradic T matrix
1
T = _— 1,

(w)=v+0 o-L.-L (20)
w.,=E,-E,;, and L,, L,, and T are the tetradic operators
(commutators) corresponding to H,,, H,, and V, respective-
ly, i.e.,

L,=[H, ], etc. (21)

lv) and |y’) are the eigenstates of Hf and they are nor-
malized in the same way as | a) and | 8) [Eq. (5)]. Also,
P(y) is given by Eq. (9) with the change of indexes. The
second form is obtained by writing Eq. (19) in an alter-

native form using the dyadic T matrix,** i.e.,
T'=aN ) PW)|{ay’'| TE,+E))| ay)
o
= (v’ | T(E,+E) | b9)|? 6(wyye) (22)
where
T(E)=V+ Vm V. (23)

Equations (22) and (19) are identical if calculated exact-
ly. However, they may yield quite different results
once approximations are made. This will be shown in
the next section.
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ifl. COLLINEAR EVALUATION OF THE DEPHASING
RATES

Assuming spherically symmetric interaction poten-
tials G, and G,, we have!

[V =]e|tm)
(P06 = T 4e,r) Y0, 0) (24)

where 78¢ are the spherical coordinates in our sphere
of volume , ¢ is the relative translational energy, and
I, m are the angular momentum guantum numbers.

The rigorous evaluation of T" thus involves a tedious
caleulation® and

Z-»fdep(e)z . (25)
r i,m

A simple colinear approximation to Eq. (19) or (22) may
be obtained by taking only the /=0 term and replacing
Yim by an effective cross section. For the sake of con-
venience we further adopt a §-function normalization for

our wave functions {instead of a box normalization), i.e.,

(')’I 7’> = 6(€ - E') 6”1 6",,,,- (263) ‘
and

ple)=1 . (26b)
We thus have

T=fx, (27
where [using Eq. (19)]

x=-27 Imfdi Ple) ((:;‘T(wab) l b))

= - 27 Im(T 588(wyy) (28)

or equivalently, using Eq. (22),
x=2n2fd<P(()](ai{T(Ed+e)!a€)—(be]T(E,,u)!be)lz

= 20%(| TE(E, +€) - TS(E, +€) | ?) (29)

and the averaging (- - -) is defined by
Ap= ;%—,fde exp(-€¢/kT)A, . (30)

Here x is dimensionless and f has units of frequency.
Since f is proportional to the bath number density N/Q
and to the effective cross section for collision, it may
be interpreted as an effective collision frequency and x
is the dephasing effect of a single collision. We are now
in a position to evaluate x. To thit purpose we use the
following approximations.

A. FOBA (first order Born approximation)

This is the perturbative approach commonly used for
dephasing in liquids. We set T=V. Using Eq. (17e),
we have

(ae| V]ae) =—(be|V]be) =(e|G | €)= G, , (31)
so that we have
x(FOB“’)=37Tz<G§) . (32)

: Vibrational dephasing in liquids

B. FODK (first order dyadic K matrix)

The dyadic T matrix may be written in the form®

T(E)=K-inK6(E-Hy)T , (33)
where K is the K matrix (reaction operator) given by
1
K=v+v(PP g2 ) K. (34)

PP is the principal part, and we write Hy=H,+Hg. The
equivalence of Eqs. (33) and (34) to Eq. (23) may be
easily verified by a simple substitution.

The FODK is given by taking Eq. (34) to first order in
Vv, i.e.,

K=V, (35)
which results in
T(E)=V - inVS(E = Hy)T . (36)
The required matrix elements are
TE(E, +€) =(ae| V| ae) ~ inlae| V]ae) TE(E,+€)  (37)
and similarly for T§(E, +€). Solving Eq. (37) for T
and substituting in Eq. (29), we get

X(FODK) =872 <_~G_;_2__> , (38)
(1+7°G%?

C. FOTK (first order tetradic K matrix)

We may write equations analogous to Eqs. (33) and
(34) by replacing V, T, H,, and K by their tetradic
analogs?®

T=x-irx0{w—-Ly7T , (39)

sc='u+-o(PP,w_Lo)x . (40)
The first order tetradic X is

x=v, {41)
which results in

T(w) =T ~in0d(w — Lo) T(w) . (42)
We need the matrix element

T eban(@ap) = Vabes = M Vzbas T abas(Wab) » (43)

where

vEEEe =(ae| V| ae) —(be| V|be) =26, . (44)

[Nondiagonal matrix elements of the type T so ¢ (ex€’)
are zero.| Solving Eq. (43) for 7, ., and substitution
in Eq. (28) finally results in

G2
(FOTK) _ g2 ) 45
X 8r <1+4w§GE> (45)

D. FOES (first order exponential S matrix)

We write the ordinary S matrix

S=1-27i6(E - H)T (46)
aszz,za
S=exp(id) . (47)
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Upon expansion of Eqs. (46) and (47) in V and comparing
term by term, we get

S=exp[- 2ni6{E ~H) V +0(V®)] . (48)
The FOES is
S=exp[-2mi6(E -Hp) V] . (49)

[The tetradic analog of Eq. (49) will yield the same re-
sult. ] Upon taking matrix elements of Eq. (49), we get
our approximation for x:

(a€|S(E,+¢€) | a€) = exp(- 27iG,) ,
(be|S(E, +¢€)| be) =exp(2miG,) ,

and

x=3 [ de PO tae|S(E, + ] ae) ~(be|S(E, + ) [pO)]2,

(50)
i.e.,

x ‘FOE® = Asin®(27G,)) . (51)

Equations (38), (45), and (51) provide three nonperturba-
tive expressions for dephasing rates. In the perturba-
tive limit G,<< 1 they all reduce to the FOBA result [Eq.
(32)], but otherwise they are different. The difference
arises since these approximations are the results of a
partial resummation of the perturbative series of T with
respect to A, Each resummation includes some of the
terms in the series to infinite order. The evaluation

of the dephasing rate thus reduces to the calculation of
the matrix element G, and performing the thermal aver-
age over €. In the theories of dephasing in liquids it is
common also to use classical mechanics.®!¥!? The
classical limit of G, may be easily obtained using the
WKB approximation for the wave function

@le=_/ nk%) cos[ fQ ) ke(Q')dQ’+41], (52)

where
ko=2M [e - G*(Q)]'/? (53)

is the momentum and @, is the classical turning point.

Substitution of Eq. (52) in Eq. (31) results in the
semiclassical matrix element:

G, = A:..j‘:dQ G,;(EQ) {l+ cos[z Lfke(Q')dQ"f %]} - (54)

In the classical limit we neglect the oscillatory cosine
term in Eq. (54) and get the classical expression for G,:

M GQ)
Ge== fo @@ 5 - (55)
Upon defining the new time variable
Q , 1 .
t=Mj;E dQ 7107’ (56)
we get
i - 1 r .
6=y [ atcteun -5 [atcw (57

where £=0 is the time at the turning point and G"(¢) is
the classical perturbation. We then have

=k [Car [ateeen (58)
0 -0

We have thus shown the equivalence of G? to a classical
correlation function.

IV. APPLICATION TO VIBRATIONAL DEPHASING-
THE EXPONENTIAL REPULSIVE POTENTIAL

We shall now apply the results of Sec. III to the prob-
lem of vibrational dephasing. To that aim we assume
an exponential repulsive interaction between a harmonic
oscillator (the system) and an atom (the collider)!~!

V(Q,R)=Wexp(ygR/L —-Q/L) . (59)

Here R is the oscillator coordinate and @ is the distance
between the perturber C and the center of mass of the
AB oscillator. W and L are parameters characterizing
the interaction and

Yp = —A— (60)
my +mp
In Eq. (59) we assume that the perturber approaches the
B side of the AB oscillator. For the other approach we
should replace yg by ¥4 =1 -¥5. R may be expressed in
terms of the oscillator creation and annihilation opera-
tors as

1 v
R—m({l-kd) s (61)
where
m=—2aMp (62)
M, +my

is the reduced mass of the oscillator. Assuming that
the two relevant states of the oscillator for the line
shape are la)=10) and |5)=11), then w=w,, and we have

G;(@) =W (i|exp(ysR/L)|i)exp(-Q/L) , i=0,1 . (63)
To lowest order in y5/LVY 2mw we thus get

- 1_ 1 -
Gi(@) —W[l +3 m (84,0 + 36“):’.92&13( Q/L).(64)
Substitution of Eq. (64) in Eq. (18) results in

2
I R o (65)

R 1 v
G (@) =- EwmexP(—Q/L) .

The eigenstates of Hp as well as the matrix elements
of exp(-Q/L) were solved by Jackson and Mott, # i. e. ,

“le? = — l( Y )2 2 ’
(e]G)e) = > W-zﬁm—w ML%(e,€’) , (66)
S(e, ¢') = [sinh(27LV 2M€’) sinh(2nLV2Me) ]/ 2
=T sinh[7L(V2Me¢ +V 2Me') |
€ —€
X ST L (B —VTT9)] ©7)
M, the reduced mass of the colliding pair, is

< arme)me (68)

Ma+Mg+Me

S(€, €') is required for the evaluation of the general line
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shape function. In the Markovian limit we need only the
diagonal elements of G7, i.e.,

G.=(e|G|e)=- %:(Z,V%)z‘/ZGMLE' (69)

The FOBA for x may now be evaluated utilizing Eqgs.
(32), (30), and (69) resulting in®

yrossr - Mra g (70)
Lm“w :

It is interesting to note that the quantum result (70) is
identical in this case to the classical resuilt obtained by
substitution of

2
6(0)= -4 ¢ () expl-QU/L]
i (ﬁ%)zsecha [t (71)

in Eq. (58) and performing the integration. We see that,
for this particular choice of the potential [Eq. (59)], the
fully quantum and the semiclassical descriptions of the
colinear binary collision give to second order in V, the
same pure dephasing rate.

In order to illustrate the significance of our nonper-
turbative expressions for the dimensionless dephasing
rate x we have performed some numerical calculations.
We chose parameters corresponding to several vibra-
tions of cyclohexane which were studied experimentally
recently by Jonas and co-workers® using spontaneous
Raman techniques. We have also calculated x for the
CH stretch of trichloroethane CHsCCl;. The homoge-
neous dephasing rate for this molecule was studied by
Laubereau and Kaiser using picosecond coherent Raman
techniques.® x‘?’ for our four different approximations
i=FOBA, FODK, FOTK, and FOES was evaluated using
Egs. (32}, (38), (45), and (51), respectively, and G, is
given by Eq. (69) (exponential repulsive interaction).
The reduced mass of the colliding pair M is taken to be
one half of the molecular mass. vy is replaced by vy
=y cosf, where 6 is the angle between the “axis” of the
oscillator corresponding to the normal mode considered
and the incident direction of the collider. We then aver-
age the resulting x function over all directions of inci-
dent perturbers, i.e.,

r/2
X= dosind x4, (72)
0
Figures 1(a), 1(b), and 1(c)} present our calculations for
cyclohexane which correspond to three typical normal
modes, namely, a CH stretch (w=2938 cm™), a CH,

bending (w = 1465 cm™!), and a C-C stretch (w =802 cm™).

L, the range of interaction, is given a reasonable value
of 0.20 A.® Values of the force constants ky=mw® are
taken from Ref. 26.

For trichloroethane we have chosen the high frequency
stretching vibration CH (w=2939 cm™) studied experi-
mentally by Laubereau and Kaiser. We present three
sets of curves for three values of the range of interac-
tion L =0.16, 0.20, and 0.24 A [Figs. 2(a), 2(b), and
2(c), respectively].

The effect of the nonperturbative corrections of the

: Vibrational dephasing in liquids

T t
04 -
0.3}
ES
=
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0.2 TK —
0.1 4‘ ( -
150 300 450 600
Temp.(°K)
T T
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0031 ES —
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>
0021 _
0.01 L— ) | -1
150 300 450 600
Temp.(°K)
T 1
0.5 .
BA
0.4+ -
<
0.3
0.2
1 1
150 300 450 600
Temp.(°K)
FIG. 1. The dimensionless dephasing rate x as a function of

temperature for three normal modes of cyclohexane. Each
figure contains the results of the FOBA, FODK, FOTK, and
FOES approximations denoted by BA, DK, TK, and ES, respec-
tively. L=0.20 A, M=42 g. (a) CH stretch, w=2938 cm™!,
kp=4.554x10°% dyne/cm, y=1; (b) CC stretch, w=802 cm™,
kp=4.38x10° dyne/cm, y=1; (¢) CH, bending, w=1465 cm™,
kp=0.49x10° dyne/cm, y=0.5.

FODK, FOTK, and FOES increases as G, [Eq. (69)] in-
creases. We thus expect it to increase with M, kT,

and y and to decrease with L and Vmw. This is clearly
demonstrated in Figs. 1 and 2, which show corrections

of about a factor of 2. We should also bear in mind that
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0.8

06

DK

TK
0.2 -
i ]l
150 300 450 600
Temp.(°K)

i i
150 300 450 600
Temp.{(°K}

04 L T

] |
150 300 450 600
Temp.(°K)

FIG. 2. The dimensionless dephasing rate y as a function of
temperature for the CH stretch of CH,CCly. w=2939 em™,
kp=5,0x10° dyne/cm, M=66.75g, y=1. (a) L=0.16 &; (b)
L=0.20 &; (c) L=0.24 A,

the nonperturbative expressions will exhibit a different
dependence on the various parameters such as mass or
temperature compared to the FOBA expression. Recent
deviations of experimental results from the predictions

of Eq. (70) regarding the mass dependence of x were at-
tributed by Harris and co-workers® to the breakdown of
the binary collision approximation. The present expres-
sions which are within the binary collision approximation
may account for these discrepancies since they exhibit

a dependence on M which is different from Eq. (70).
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