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Abstract : We extend the work developed in paper I of this series, by discussing the dynamics in the collec-
tive phase space in terms of a generalized Fokker-Planck equation . We are thus able to discuss
fluctuations in the collective motion which were neglected in the mean field theory of paper I . In
contrast with the standard derivations of Fokker-Planck equations, we do not assume quasi-equi-
librium for the internal system, but rather, describe its evolution in time as it is coupled to the collec-
tive system . The transport ccefTcients appearing in the Fokker-Planck equation are expressed as
functionals ofthe internal density matrix . We use a coarse-grained description to study the devel-
opment of the internal system as the reaction progresses, and we express the transport coefïicients
in terms ofthe above-mentioned coarse-grained variables. Finally, we analyze the balance of energy
between the collective and the internal systems .

1. Introductiou

In a previous publication in this series of articles [ref. ' ), to be referred to as I],
we presented a self-consistent mean-field approximation Z) for the treatment of
dissipative heavy-ion collisions (DIC). The macroscopic degrees of freedom were
described by means of classical trajectories. Using a coarse-grained description,
the internal system was represented by properly chosen dynamcal variables which
took into account the rapid excitation in DIC. For these variables a closed set of
equations of motion ("reduced equations of motion", REM) was derived . The
most severe drawback of the mean field approximation is that the fluctuations in
the classical degrees of freedom are neglected . In the present paper we remove this
restriction and treat DIC in terms of a generalized Fokker-Planck equation (FPE).
The main goal is to express the transport coefficients which appear in the FPE in
terms of the internal dynamcal variables . A very similar task was undertaken in the

375



376

	

D. H. E . Gross et al. j Deep inelastic collisions ( Ill

Brownian motion approach to DIC 3 ) . In the present work, however, we relax the
quasi-equilibrium assumption in order to allow also for more rapid changes in the
internal system . We obtain therefore a uniform description for DIC, uniform in
the sense that the same theory describes both the fast, coherent excitations in the
approach phase, and the slower statistical processes which characterize the contact
phase. The starting point for the discussion is the semi-classical Liouville equation
for the density matrix 6(R, P, t) [ref.')],

dt ß(R' P' t)

	

i~ [ß(R' P)' ß(R' P' t)]- - M cR ß(R' P' t)

	

2 cP [~(R), 6(R, P, t)] + .

We use throughout this paper the same notation as was introduced in paper I . Thus,
e.g ., R and P stand for the collective (macroscopic) degrees of freedom and their
conjugate momenta. The operators which act on the internal system are denoted by
(5 . Also,

ß(R, P) = ho+V(R)+ . . P, _ ~(R)+ P~
,

	

(1 .2)
2M 2M

(Note that due to a printing error, a factor of ~ is missing from the last term in eq .
(l .l) of L) We consider explicitly only one collective variable - the distance between
the collision partners . The extension to a larger number of collective degrees of
freedom is cumbersome but straightforward .
The self-consistent mean-field approximation is obtained by assuming that

6(R, P, t) can be factored as

D(R, P, t) _ ~(t)Q(R, P, t).

	

(1 .4)

Once this is accepted, one can show that the dynamics of the collective variables
can be described in terms of classical trajectories R(t), P(t), so that

Q(R, P, t) = S(R-R(t))S(P- P(t)) .

	

(1 .5 )

The reaction is then described by the coupled equations of motion

P = (F)P = tr (~~(R)).

	

(1 .6c)

The main purpose of I was to develop a coarse-grained version of eq . (1 .6a) . A
summary of the relevant results, adapted for the purpose of the formalism presented
in this work, is given in sect . 3 .
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The constraint (1 .4) on the form ~(R, P, t) implies that the correlations between
the internal density operator p(t) and the distribution Q(R, P, t) are neglected . In the
present paper, we study in detail the correlated part of B(R, P, t),

~oor(R, P, t) = 6(R, P, t)-~(t)Q(R, P, !) .	(1 .7)
We show in sect . 2 that the inclusion of ~~o~ leads to a generalizedFPE for Q(R, P, t),
similar to the one obtained in the theory of Brownian motion 3).

In sect . 4 we derive approximate expressions for the transport coefficients in
terms of the coarse grained dynamcal variables of the internal system . We restrict
ourselves to the limit of small diffusion. This is in contrast to the theory of Brownian
motion s) which holds in the limit of small deviation from thermal equilibrium .
In sect . 5 we summarize the results of the paper and discuss the conservation of
energy .

2. The generalized Fokker-Planck equation

As mentioned in the introduction, our aim is to derive an equation of motion for
the collective distribution function

Q(R, P, t) = trb(R, P, t)

	

(2.1)
which takes into account the fluctuations in the collective dynamics . We divide the
density operator B into an uncorrelated and a correlated part,

6(R, P, t) _ ~(t)Q(R, P, t)+D~o~(R, P, t) .

	

(2.2)
This is to be considered as a definition of 6~0~ in terms of P(t), which is as yet an
unspecified matrix with tr p(t) = 1 . It is convenient to rewrite the semi-classical
Liouville equation (1 .1) in a tetradic notation,

The density matrices are tetradic vectors, the Liouvilleans

tetradic matrices .
We define the time~ependent projector in Liouville space

~(t) ~ =P(t) tr ~ .

	

(2.6)
The procedure we follow is similàr to that used in the theory of Brownian motion') .
I~owever, there the projector is constructed with the quasi-static equilibrium density
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matrix

Pw(R) = exP ( -ß~(.R))/tr (.exP ( - ß~(R)))

	

(2.7)

and depends upon R and not t. In our context, we are interested in systems that
depart from equilibrium considerably, so that the choice (2.7) is not suitable .

Together with ~ we define the projector on the orthogonal subspace

with

9(t).~(t') = 0

	

for any t, t' .

	

(2.9)

The projection operatorsJ and ~when operating on the density matrix 6, project out
the uncorrelated and correlated parts of 6, respectively

= PQ, ~~ _ (2.10)

The projection of eq . (2 .3) onto ~- and 2-space read

i~~(t)6(t) = iPa+~LpQ+~L~6, (2.11)

t ~(r)~(t) _ -ipv+2LpQ+2L~D . (2.12)
ôt

In order to eliminate ~~, eq . (2.11) is solved formally,

~(r)6(r) _ -
J

t dr'~(c, r') [~l(r')i1.p(r')+~(t')]tr(t') . (2 .13)
a

The propagator ~(t, t') is defined by

i ô ~(t, t') _ ~(t)L~(t~(t, t'), (2.14a)

~(t, t) = 1. (2.14b)

Substituting (2 .13)`pnto (2.11) one obtains

iQ(t)~(r) = 9a(r)Lp(t)Q(r)- ~dr'~(r)L~(t~(r,r'){~(r')iLß(r')+p(r')}Q(t') . (2.15)

The various projections are easily written out explicitly,

~(t)iL~(t) ~ =ß(t){M tr ~ +~~(R)i°'' tr ~ }'ôR ôP



where

Sv, r~(R) _ ~(R)-<~(R))v . r

	

(2.18)

With these relations, eq . (2.15) takes the explicit form

rs(R'
P' t)

	

MôR tr(R' P_

	

t)-~~(R))v. r aP Q(R' P' t )

with

and the initial condition
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<~(R))v , r = tr (~(R)ß(t)),

	

(2.17)

r
+ ô ~ dt' tr {Sv , r F~(t, t')(iLoß(t')+P(t'))}Q(R, P, t')ôP ro

r
+ ~P ~

dt' tr {Sv, r~~(t, t'}z[Sv. r, ~, ß(t')] + } ~P 6(R, P, t').

	

(2.19)
ru

Eq . (2.19) is still an exact equation . Inspite of the explicit appearance ofß(t) in (2.18),
the equation is independent of the choice of ß(t), since ~(t, t') and Sv,,Fare implicitly
dependent on ß. In the present context, we define ß(t) in terms of the equation

Q(R' P' t)

	

M ôR Q(R' P' t)-~~(R))v, r~(R, P, t)

Here,10) is the ground state of the two colliding nuclei in the entrance channel . Eq.
(2.20) describes the development of the internal system under the mean interaction,
and it is the most natural choice for ß(t) .
Eqs . (2.19) and (2.20) represent an unsymmetric treatment of the collective and

the internal motions . Eq . (2.20) is a self-consistent mean-field equation for the
internal density ß, whereas eq . (2 .19) contains in addition to the effects of the mean
field also the fluctuations in the collective distribution function tr . A more symmetric
treatment is proposed in ref. Z) . However, due to the complexity of the internal
system, an application to the present problem is prohibitive . A more detailed discus-
sion of this point is deferred to appendix B.
The generalized FPE (2.19) finally reads

+ ~P J dt' tr ~Sv. r~(R~(t, t') ~ [SQ,r.%(R), ß(t~)]~ tr(R, P, t')
ro

+
~P

~dt'tr {Sv, r~(R~(t, t')z[Sv.r .~(R), ß(t~)~+} ôP v(R, P, t'),

	

(2.23)
ro

(2.20)

<%),, r = J
dRdP~t(R, P~(R, P, t), (2.21)

ß(t = 0) = Io)<ol~ (2.22)
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Wlth

The link between the present theory and the mean field approximation of paper I is
expressed by eqs. (2.20}{2 .22) . We use the methods developed in I, to obtain an
approximate, coarse-grained expression for P . This will be used in the evaluation
of the integral kernels appearing in eq . (2 .23) . In the next section we reformulate the
results of paper I so that they meet our present requirements . We are then able, in
sect . 4, to proceed with the evaluation of (2.23) .
To end the present discussion, we compare eq . (2.23) with the generalized FPE

which was derived in the Brownian motion approach to DIC [eq. (16) of ref. s)] .
The latter can be rewritten in the form

Q(R'
P' t)

	

MdR
Q(R'

P' t)- ~~~ cP Q(R' P' t)

with ~~4(R) as defined in (2 .7) and

+ ~P ~ dt' tr ~E~~(t, t')~R P~a(R)~ Q(R, P, t')
to

+
P

~ dt' tr {SF~R(t, t'}2[8~, Peq(R)]+ ~P Q(R, P, t'),

	

(2.25)
~o

~~~ = tr (~(R)Pev(R)),

	

8F = F-~~i.

	

(2.26)
Formally, eqs. (2.23) and (2.25) are very similar. The essential difference between
the two approaches is the choice of the internal density matrix : in eq . (2.23) the
dynamically varying ~(t), in eq . (2.25) the quasi-equilibrium density Pe 4 .

In ref. a) it was shown that eq . (2.25) can be further reduced to obtain the standard
form c

	

~PE,

M ôR_

	

-~FiaP ~+ c~P
K
(M

+T
P) ~~

	

(2.27)

In the present formalism the diffusion coefficient does not take the simple form
D = KT, but rather is expressed in terms of the dynamically evolving P(t) . This
expression for the diffusion coefficient which is the central result ofthe present work,
is discussed in sect . 4.

3. Reduced description of the internal dynamics
Eqs. (2.20)- (2.22) which define the internal density P(t), are a generalization ofthe

mean-field equation (1 .6a) . In I we developed a reduced version of eq . (1 .6a) . We
quote here the relevant results without supplying the proofs . The adiabatic spectrum
of the internal system is coarse-grained into groups labelled by n. The nvth adiabatic
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eigenstate of the hamiltonian <~(R))~ . � defined in eq . (2.21) is denoted by ~nv),
where v stands for all the necessary quantum numbers required to define the state
completely . With do as the number ofstates in binnand En(t) the energy ofstate ~nv),
the mean energy of bin n is

with

Én = 1

	

~E , .	(3 .1)m
dn ven

(For the sake of simplicity we consider transitions between bins only and do not
refer to any specific states . The generalization to include them is straightforward .)
Themain idea behind the construction ofthe reduced equations of motion (REM)

is the following . Once the (adiabatic) spectrum of the internal system is coarse
grained, one should choose a complete set of slow dynamical variables (operators),
and develop equations of motion for their expectation values . By means of this
process the information content of the theory is reduced and after some necessary
smoothing of the fast fluctuations in time, one obtains irreversible relaxation effects
in the theory . The search for the complete set ofslow dynamical variables is guided by
the relevant conservation laws. All variables which contribute to a conserved quantity
should be included .
The conservation of probability, try = 1, requires the incorporation of the

populations

Pn = ~ Pnv, nv = tr (7Cn~)

	

(3.3)
ven

Rn = ~ ~nv)~nv~,

	

tr ~n = dn .

	

(3 .4)

Since we aim at a theory which should also describe the fast processes in the approach
phase of DIC, we go one step further in the Mori hierarchy a' ') and include those
operators from which the first derivatives of the fCn are constructed. That is we
consider the coherence operators

The coherences tr ß;� ß represent the probability flux. The norm
z = ~	z

i'nm

	

IvnY, m,.l
v . P

(3.6)

P ~~ V
<ni'~ M c~R elm~

)
; . a.

Env(r) - EmN(r)
for nv ~ nn'

(3 .2 )
0, for nv = m~.
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measures the strength of the coupling between bins n and m. In I we derived REM
under the assumption that the populations Pn and the coherences constitute the
entire set of slow variables . It turns out that in this approximation energy is not
strictly conserved. Theenergy loss in the relative motion, calculated from the classical
trajectory, does not balance the energy gain of the internal system, calculated from
the population of the various bins . The physical reason for this unbalance is that we
did not properly account for the fact that the total energy is conserved . The set of
slow dynamical variables has to be enlarged to include the energies

stored in the various bins, or, rather, the deviations SEn from the mean energies in
each bin,

With

with

Furthermore, for simplicity

En
=
~ EnvPnvnv - EnPn+tSEn

	

(3.7)
v

SEn
=
~ (Env - En)Pnv, nv = tr (Fn~),

	

(3.8)
v

~n
=
~ InV)(Env-~nKnvl~

	

(3.9)
v

In the same way that we included the coherence operators as the time derivatives of
the ftn , we must also take care of the time derivatives of the ~ n corresponding to the
energy fluxes . However, within the approximation by which we reduce the exact
equation (2.20) the probability and the energy fluxes turn out to be correlated .
Adetailed discussion ofthis point will be presented in ref. 6) . The REMonly contains
the combination

( z

	

_
Y'nm = 1 +1a2

	

~ Inv) { 1-t ~I'~n
(Env-E" -E~~+É,")~vnv,,",,<m~l~

	

(3.11)
nm v, u

	

nm

Here, I'��, is the dephasing width ofthe basiccorrelation function [cf. (3.32) ofI], and

arZun = ,e2rem ~, IUnv, mK1
2

1~ Ivnv . ,np12 ((Env - En)
2
+ (En,K - En) Z )

vp

	

vp

relates this width to the combined rms deviation ofthe energy spectra in bins n andm.
It is assumed throughout that the bin size is chosen in such a way that

Ivnv . mkl Z(Env -ErnP) - l.En -Em) ~, IUnv . mkl z .
v~t

	

vp

(3.12)

(3.13)
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where ~n~ is defined by (3 .32) of I. We do not consider the contribution of the
adiabatic force" (that part of the force which comes from the diagonal matrix

elements of âV/âR). This is equivalent to the assumption that all mean quantities
of the adiabatic spectrum do not depend upon t . In particular," = 0. The effect
of the adiabatic force will be discussed in ref. 6) .
The REM for the complete set of slow dynamital variables are

Wlth

For the definition of Gnk we refer the reader to eq . (3 .29) of I. The force «F~iP.o .r
induced on the mean trajectory of the relative motion reads now

«FiiP.Q .r = -<oUaP~io.r-
i~l ~

(wki - i!'ki)Sko-

	

(3 .17)R kl

With this definition of the force, energy is conserved (on the mean) between the
trajectory and the internal system . The correlation between the energy and proba-
bility fluxes is apparent from the REM [eqs . (3.15)]. In many ways these equations
are analogous to the equations of motion in hydrodynamics where the macroscopic
density flux is related to the flow of energy .
Once the expectation values of the dynamital variables are known from the

solution of the REM, one has to reconstruct the density matrix P which enters eq .
(2.23) . The least biased way to do so') is to use

n n n n

	

nn nm
n

	

n, m
(3.18)

where the coefficients ~ .;,x~, ~, ;,`~ and ~,M,~ are determined by the condition that P,
reproduces the expectation values of the corresponding operators (3.12) . For ~(t)
as it appears under the time integral in eq . (2.23) further simplifications are possible.
Because R", ~", ~��, represent the II-space of all slow dynamital variables ß may be
just replaced by Ilp under the integrals. Furthermore, because the operators ~Y��,

dt P" 2 ~ Im Snk, (3.15a)
k

dt SFrn - ~ ~ rnk Re Snk , (3.15b)
k

_

-dt Snk ~%nksnk+l 1 +a ~d
n _

Q
k

nk n k

«nk ink SEn aEk

1 ++ (X~k tlrnk ~ dn dk ~ ~
(3.15c)
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are related to the first time-derivatives of the îc� and Ê� , even the ~Y� ,~ part ofRP
may be neglected . Therefore, in order to evaluate the time integrals in eq . (2.23),
we use

(P � SE �p(t) _ ~

	

ÎI +

	

Ê
~n ~ tr(E�E~)

4. The transport coefficients

Sp, tC~)a, t = C~)a, t -CC~))p, a, t'

(3.19)

Eq . (2 .23) as it stands cannot be applied to any problem of practical interest
because of the complicated integral kernels . In the present chapter, we introduce
further approximations by which it becomes possible to reduce these integrals, and
express them in terms of already-calculated quantities . To do this, we estimate the
transport coefficients to the lowest non-vanishing order in the fluctuations . In this
way we take only the first step in improving the results of the mean-field approxima-
tion of paper I .
The basic approximation which we make is to neglect the effect of the fluctuations

(or width) in the collective phase-space on the internal system during the time interval
Tat which contributes significantly to the integrals in (2.23) . From eq . (2.14) we see
that r ot is the average lifetime of a correlation 2D. In the approach phase the width
of the distribution Q is small because of the initial conditions . In the exit channel the
fluctuations in u should remain small because of the large mass of relative motion
and the small velocity ~as compared to the mass and average velocity of the internal
nucleonic degrees of freedom . Thus, we assume that the mean-field approximation is
sufficient to describe~the evolution during short time intervals of the order Tot . This
has the following consequences :

(i) In evaluating the integral kernels in eq . (2.23) we substitute for all phase-space
functions A(R, P, t) their Q-averaged values <A(R, P))a, � calculated at the time t in
which they appear in the integrands . Consequently the first integral in eq . (2.23)
vanishes altogether . We assume that the internal system evolves in time through
the influence of the mean field C~),Q, t and that there is no difference between ~ and
<~),o, , . Hence in the present theory the "frictional force" is due entirely to the
induced force <~)p,t.

(ü) In the same spirit, Sp, , ~(R) appearing in the second integral is replaced by

The above approximation allows us to evaluate the 2-space propagator ~ (t, t')
of eq . (2 .3) . During the short times T~t,t we replace the Liouvillean by its mean field
analogue

CL)t = CLo)t`FCLi)t~

	

(4.2a)
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1<L~2 = <L~2, (4 .3 )

(4 .4)

~ (t, t') can be expressed as a product oftwopropagators ~o (t, t') and~, (t, t') which
solve equations analogous to eq . (2.13) :

with the diffusion coefficient

~, (t, t) = 1 .

	

(4.6b)

The propagator ~o(t, t') describes the propagation of the internal system under the
(self-consistent) mean field <h~o , r . On the other hand `~,(t, t') prôpagates each
phase-space point R, P along a classical trajectory parallel to the most probable
trajectory . It is subjected to the mean velocity (P/11~Q. ~ and the mean force ((Fiio.o., .

Implementing these results in (2 .23) we obtain for the last term in (2.23)

aP J
~dt'tr{av. ~(Fia, r`~o(t, t'}zLbv., "(~ia. r"" l3(t~)~+`~i(t, t')

	

PP ~(R, P, r')}~

	

(4.7)
a

Making use of

~' (t' t~) âP ~(R'
P' t ~ ) = c7P ~$' (t ' t~~(R' P' t~) ~

	

P ~(R ' P' t )

	

(4.8)

we can write (4.7) as

P D
ôP

rr(R' P' t), (4.9)

D(t) _ ~~ dt' tr{â,, r(~ia, r~o(t, t~}iLbv . ~ "(~ia, r ""P(t~)]+ }~

	

(4.10)
n

Here `~o(t, t') is identical with U(t, t') which was introduced in I . In performing
the integral (4.10) we use its lowest-order approximation, namely

~o(t, t~)aa. nß : cr. aa = Saa. ~rbbß . da exP ~- ~
J

,dt�(E~(t�) _Ebß (t�))~ .
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This, together with the result (3 .19) for P (t) can now be substituted into (4.10) to yield
the desired expression for the diffusion coefficient D in terms of the variables Pn(t)
and SEn which characterize the dynamics of the internal system .

Leaving technical details to appendix A, the result reads

with the correlation function

The dissipative part ofthe mean induced force (3.17) or, rather, the related energy
rate can be written in a corresponding way . As shown in appendix A, we obtain

with

1

	

t

	

P (t')

	

Pm(r')

	

iD(t) =
2
~~ dt'~nm(t, t') ~~ +

	

d

	

- 2 ~rnm
nm

	

to

	

n

	

m

`

	

i
nm

	

to

	

1 + anm

Pn(.t~) _ Pm( t~ ) + iaem dEn(t') + dEmlt')
X

~~ dn

	

~m

	

~rnm ~

	

~n

	

dm

	

~~'

which holds for large I'm� .

exp

(4.14)

Eny"(tr~-EmN(t,)

	

R(t')Fn,. .mv(t~). (4.15)

The similarity between the expressions for the diffusion coefficient and the dissipatioe
energy rate clearly manifests the intimate link between fluctuation and dissipation .
The relation to the Brownian motion approach s) and to the fluctuation-dissipation
theorem is discussed in appendix A.
A simple form ofD(t) is obtained by evaluating the integral in (4.12) in a Markovian

approximation . As shown in appendix A we obtain

D(I) = 1

	

F

	

t

	

r

	

P (t) + Pm(t)
-1~~

	

8En (.t) - SEm(t)

	

~ (4.16nv, np( )Iz

	

2

	

nm
2

	

2

	

nm ~

	

2

	

2

	

~~

	

)2~nm nv

	

~nm+rnm

	

dn

	

dm

	

En

	

Em

5. Summary

In the preceeding chapters we developed a theory for the description of DIC, in
which the fluctuations in the collective phasespace are taken into account . The
resulting set of equations are written down in terms of the distribution function

(-
SEnlt')

E z
SEm(t')

- ez ~~'
(4.12)

n m

r

~,
(4.13)

r
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Q(R, P, t), and a set of dynamcal variables with which we obtain a coarse-grained
description of the internal dynamics .
The final reduced equations of motion for the system are summarized as

za
v(R, P,

t) - - P a ~-
<~(R)i P . ~

~ Q+D(t)a2 Q,

	

(S.la)at

	

MaR

	

aP

	

aP

dt Pk

	

2 ~ Im S,~,

	

(S.lb)

dt SEk

	

~ ~ T^k Re Snk,

	

(S .lc)
n

z

dt `Snk - ti^ksnk + I 1 +a

	

a

	

ti

ynk

	

_n _

	

k

nk ~ n

	

k

ank _ynkSEn SEk

1 + a~k itl',~ ~ dn

	

+

	

dk
(S.ld)

The parameters an,~ . ynk, I',~ and nnk are explained in sect . 3. For the induced force
<FiP. , one may take as first guess the tr-mean induced force

( kl

	

ki)Skl"R kt
(5 .2)

With the relation between the diffusion coefficient D(t) entering eq . (S.la) and the
internal dynamcal variables as given by eq . (4.12) or in an approximate fashion
by eq . (4 .16), eqs. (5 .1) and (5 .2) constitute a set ofcoupled, self-consistent equations
of motion for the internal and relative motion . Eq . (5 .1a) is a proper Fokker-Planck
equation for the distribution function tr(R, P, t) .
The set of reduced equations (5 .1) represents the most simplified version of our

theory as indicated in the appendix . It is straightforward, though sometimes cumber-
some, to calculate the diffusion coefficient D(t) and the induced force <FlR)i P.l in
more detail . Also the inclusion of explicit states ~I~ poses no additional problem.

In practice, one can simplify the generalizedFP equation by assuming a gaussian
distribution for tr(R, P,t) . Then eq . (5 .1 a) reduces to two sets of ordinary differential
equations for the mean trajectory and the corresponding variances. At each time t,
this form of tr(R, P, t) is used to construct the mean internal hamiltonian (jt~,~Q, � and
the mean force operator <~a. � in terms of which the propagation of the REM
[eq. (5 .1)] can be calculated to give the mean force «~iiP, a . � eq . (5 .2), and the
diffusion coefficient D, eq . (4.16), which in turn are required for the propagation of
tr(R, P, t) . The computational effort that should be invested in such calculations
does not exceed by much that which is needed to follow the REM in the mean-field
approximation (see I) . . Such calculations are easily carried out now and will be
reported in a later publication 6).
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The self-consistent treatment of the internal and the collective degrees of freedom
guarantees the conservation ofthe total amount ofenergy in the system . This quantity
is written as

By writing ~(R, P, t) in terms of its correlated and non-correlated components
[eq . (2.8)] we can express E(t) as a sum of the mean-field contribution and the
energy stored in the correlations,

E~o ~(t) =

	

fdRdPtr(17(R, P)D~o~(R, P, t)) .

	

(5.4)

Concentrating first on Em~ a� (t), we write <(h>>p.Q .t interms ofthe dynamical variables
which were introduced in sect . 3,

E(t) =

	

fdRdPtr(1~(R,, P)B(R, P, t) .

	

(5.2)

z
EmCan(t) = fdRdPtr(H(R, P)Q(R, P, t)P(t) _ «hi)p.Q . ~+ ~~~~. ~"

	

(5.3)

~~~%%p.n.t
= Eint(t) _ [., Env(t)Vnv .nv(t) _ ~ EePn(t)+ ~ (SEn(l) .

	

($.

The rate of change of the internal energy can be easily written as

dt E'nt = - i ~ En(Smn - Snm)+ ~ ~rnmsrnn

nm

(5.6)

The rate of change of the mean kinetic energy can be calculated by using the FP
equation (5 .1 a),

We now show that within the framework ofapproximations introduced in sect . 4,
the rate of change of E�,~e � is balanced by the rate of energy due to the correlated

- _
dt M dRdPM Q(R, P, r) ~<I~F)~p . a, r +~(t)/M . (5.7)

\ l a . r J

Thus,

=dt Emeen(t) M
D(t), (5.8)

where D(t) is the diffusion coefficient (4.10) .
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part of D(R, P, t),

dt E~°,(t) = I dRdPtr{~(R, P)1(t)iLD(R, P, t))

_ - I dRdPtr{SN, rHiLb(R, P, t){

Using eq . (2.12) for .2~(R, P, t), we have

_ -
J
dRdPtr~S P,,FM 6(R, P, t) } .	(5 .9)

dt E`°`(t) = J
drdPM J

rdt'tr{dv . rF'R(t, t')(l(t')iLp(t')+P(t')){Q(R, P, t') . (5 .10)
to

By following the sequence of approximations of sect . 4, we arrive at

dt E°°`(t) _

	

~ dRdP~D(t) ~P o(R, P, t) _ - M D(t).

	

(5.11)

The loss of correlation energy is equal to the gain of the diffusive part of the mean
energy (5 .8) . Eq. (5.11) seems to give an unlimited increase of the (negative) correla-
tion energy . However, we calculated the transport coefficients in the limit for small
widths ofQ(R, P, t) (cf. sect . 4) . Therefore, eq . (5.11) gives the slope ofE~°, (t) for small
widths (times) only .
We conclude that the total energy is conserved in our formalism . However, we are

unable to calculate directly the correlated part of the total density matrix ß(R, P, t),
nor to obtain an expression for the energy stored in these correlations . We are only
able to identify E~r (t) by its rate ofchange, using the exact relations (5.8) and (5.10) .
We are not able to show explicitly the influence E~ °~ (t)mayhave on the dynamics . This
could have been achieved by considering E~ °* as an explicit dynamcal degree of
freedom (like, e.g., SE�), which will result in a non-Markovian diffusion coefficient .

In paper I we have used some arguments based on smoothing the fast fluctuations
in the internal system by the introduction ofa coarse-grained description in the time
variable (see eq . (3.17) in I and the discussion which preceeds and follows it) . Amore
quantitative discussion of this point was deferred to the present paper. A more
natural place to discuss this matter seems to be in the next paper of this series . There
we reconsider the space of slowly varying dynamical variables and discuss the effects
of the energy conservation on the REM.

We would like to express our appreciation of the hospitality extended to us by
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Appendix A

In this appendix we evaluate the diffusion coefficient (4.10) with~o (t, t') given by
eq . (4.11),

is the mean induced force . The quantity bp(~ in front of the integral in eq . (A.1)
may be replaced by (F(t)), because the factor multiplying (<F(t))) vanishes .
Under the integral we use for ~(t) the diagonal fonm (3.19) . Consistently, there

(<F(t'))) is to be read as the mean diagonal force, only . Explicitly,

D(t) _
[.t Fnv, nvl.t) J

dt'(Fev, nvlt/) -((F\.tI))))Pnv, nv(tI)
vp

	

to

XFn ~~,(t')(Pnv,nv(t')+Ptnp .mit(t~))~

	

(A.4)

E' runs over non-diagonal elements of F, only .
The sum over the diagonal elements of F is to be neglected . It contains the devia-

tions of the diagonal elements F,~, m from the mean adiabatic force . We neglected
similar terms in the REM by disregarding the adiabatic forces in each bin and replac-
ing the meanadiabatic force by -<OUoPt)o, t eq . (5.2) . Into the remaining sum over the
non-diagonal elements ofFwe introduce eq . (3.19),

D(t) = 2 ~dt~ ~. l~nnt(t, t~) (pdtl ) +
Pd(t,)lto n,n

	

n

	

tn

- 3 J i lEnv - EmN~t~~
Jr

+2(Î~l~,n� (t,t' )-(~n-~tn)~nn,(t,t,))
.~SEZt')- bmZt')~En En,

lbE (t')

	

bE,~(t')1~
+2(y`nnt(t, ti)- (En+E~,)~nnt(t, t' )) l

	

î

	

+~-

	

,
En Em

(A.5 )

t

D(t) = z tr bp(~)tr . t dt'~o(t, t')[bp<~)o, r, P(.t~)7+~ (A.1)
J to

In tetradic notation, bp <~it*, t reads

bp(F)a . t . =nv . mit Fnv, mu(t)-((F(t)))bnv, n,p, (A.2)

where

((F(t))) _ ~F~.mp( t)Pnv,,~it(t) (A.3)
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En = tr (EnEn) = dn(Gn -~ .

The various correlation functions are

- ~ ~ (Env-Emk)dt"1Fnv.m~(t'),

	

(A.6)

.~

	

t

	

,I

~n,n(t,t') _ - ~ L..Fnv,mP(t)expC ~~~,(E�Y-Emk)dt"JFnY.mP(tI)(Env"(t')-Emu(t~))+ .
(A.7)

///'''t

	

,
~nm(t, t ' ) = [rFnv.mp(t)exhC-~J,(Eny-Emt,)dt"JFnvmy(t)(Env(t~)+Em~(C')) . (À.ô)

~em(t+ t') is intimately related to the force-force-correlation function which plays a
fundamental role in both linear response theory and the theory of Brownian motion 3) .

Once the matrix elements Fny, n,N are given, the three functions ~, ~ and ~P can be
calculated directly . In analogy to the derivation of the REM l' 6), we may, however,
simplify the evaluation of eq . (A.5) by the approximations

r~

~nm(t, t~) - el-iru�-~..)(t-t')~F" *

	

- (t)F

	

(t'),

	

(A.10)nv, mp

	

nv, mp
vp

~nm(t, C') - el-~~~-r..Nt-t'1L Fnv. mR(t)Fnv, m~(C')(Env(t~)+EmN(t'))
vp

The last equality in (A.11) follows from the assumption of random matrix elements .
At this point, caution is in order . In principle, all correlation functions should be

calculated independently and directly from their microscopic definitions . It should be
noted that in the REM only ratios of correlation functions, like ~ljl, ~%J enter . They
were simplified in analogy to eq . (A.9) [refs . l' e )] . The diffusion coefFcient (A.5)
is the first place where a correlation functionenters explicitly . This is because for its
derivation we had to use the COP [chronological ordering prescription s)], leading
to explicit time-integrals. The REM were obtained by following the POP [particle
ordering prescription e)] . They are local in time and only ratios of the correlation
functions appear l' e) .

Inserting the explicit expression (A.10) and (A.11) into (A.5) is a further simplifica-
tion . Using it naively in other places may lead to unphysical results .
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The final result for the diffusion coefficient reads

1

	

`

	

P (t')

	

P,t,(t')

	

IiE (t')

	

SE (t')
D(t) = 2~~ dt'~nm (t, t') ~

	

d

	

+ -
d

	

-ZifiTnm ~

	

sz

	

-

	

Fz

	

~~ .

	

(A.12)
nm to

	

n

	

m

	

n

	

m
For large Ttntt the exponential decay of ~nm dominates the integrand and we obtain
the Markovian approximation

1

	

T

	

P (t)

	

Pm(t)

	

1

	

SEn (t)

	

SEm (t)
D(t) = 2~~ IFnv, mu(t)a ~2 +TZ

	

{ d

	

+

	

d

	

- Zitconm ~

	

ea

	

-

	

einm vtt

	

nm

	

nm

	

n

nm

In order to investigate the relations between dissipation and fluctuation we may also
evaluate the rate of energy due to the dissipative part of the mean induced force
(3 .17),

«R~(t)))a~~ _ ~ ~ ( -iwnm-Tnm)Snm(t)~

	

(A.14)

For Stt�t(t) we formally solve eq . (3.15c) and obtain

«RF(t)))d~9s

_ ~ I t dt'dnm(t, t')1 +ia~

	

{Pd t,)

	

Pd(t') + fiT
m
C
S
d (t') +

S
d (t')~~'

	

(A.15)
nm to

	

nm

	

n

	

m

	

nm

	

n

	

m

with the correlation function

d (t t') _ ( -ico

	

-T )fie(-'w~,-r~)h-`~l~L,*

	

(t)v

	

(t').nm

	

~

	

nm

	

nm

	

nv, mtt

	

nv, my .

In analogy to the discussion of sect . 4 of It this may be interpreted as

0

v~

eXp C- t
J

t(Env -Empl~t �
~r'

dnm(t't~) - ~(~- i)R(t)F~,mw(t)

	

Env\t')-E

	

(t')	R(t~)Fnv.mP(t') .
mk

(A.16)

(A.17)

The correspondence between the diffusion coefficient (A.12) with . the correlation
function (A.6) and the energy rate (A.15) with the correlation function (A.17) is
striking . It manifests the close link between dissipation and fluctuation . It may be fur-
ther supported by a comparison with the results ofthe Brownian motion approach a)
where, in a Markovian approximation, the well-known fluctuation-dissipation
theorem holds .

In lowest-order pertubation theory, the generalized friction kernel appearing in eq .
(16) of ref. s) reads

re
= I d~1tr{She- (')tt)fl u(r-t)e

-ßÄe~ÂSFe-xÄe(iltt)Hu(t- ~)} .

	

(A.18)

t In eqs . (4.15), (4.16) of I the sum should run over n > m, only . In eq . (4.16) the states nv, mlt should
béinterchanged in the matrix elements.
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After some algebra we find

Similarly, the diffusion kernel

= tr {SFe - l ilh )Hau - r>i~S~, e

	

ß~]+eci/~)y~u-r>}

	

(A.20)

reads

with

e-li/~)IE��-E�� -iq)Ir-s)
_ ~ ~ ISFnv . mNl2

	

Env
-
EmP- lij

	

lpnv, nv - pmR . mWf

_

	

z -lil~)IEw -E � , N - iq)(r - rll/
~~ISFnv.mkl e

	

2lpnv.nv+pmu.mpf
nm vp

Here pny, ny = e-ßE,./~nye-ßE°~ . qis an infinitesimal increment .
Iri Oür present approach, pny ny = Pr,/dn+(Eny-in)(SE �/E� .

We see a close correspondence between eq . (A.19) and eqs. (A.15), (A.17) as well as
between (A.21) and (A.12), (A.6) .

In a Markovian approximation, the Brownian motion approach leads to the
fluctuation-dissipation theorem

tore is not introduced .

~~ ~(t)dt = T
J
~.7(r(t)dt .

0

	

0

No such theorem can hold in the present dynamical theory for P (t), since a tempera-

Appendix B
RELATION TO THE WORK OF WILLIS AND PICARD Z)

In their paper z) Willis and Picard treat the formal reduction of the coupled von
Neumann equation for some "matter" degrees offreedom m with some other "field"
degrees of freedomf. A reduced and coupled set of equations of motion is deduced
for both systems in a symmetrical fashion. In this appendix we want to discuss the
similarities and differences between the two reduction schemes.
We sketch the reduction scheme of Willis and Picard applied to our semiclassical

Liouville equation (1 .1)

393

(A.19)

(A.21)

We choose R and P as the field degrees of freedom and the internal as the matter
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degrees of freedom, and define
tr(R, P, t) = tr~(R, P, t),

	

(B.3a)

with the properties

~(t) =
J
drdPb(R, P, t) .

	

(B.3b)

Notice that Q is defined as in (2.1) but P (t) is different from the choice taken in eq .
(2 .20) .
The Willis and Picard projector is given as

tr~wp' = ti' ,

We define the following Liouville operators :

P t3
M ôR

	

'

(B.6)

(B.7c)
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Sn.rV = ~- ~'/ e.n

av . rF = ~ - ~Fiv, r"

These definitions are the ones given by Willis and Picard Z) generalized to the present
case of a mixed quantal and classical von Neuman equation (B.1) .
The final Willis and Picard coupled reduced equations of motion for ß (t) and

Q(R, P, t) are

ô _ P ô

	

ô

	

d r

at ~

	

MôR ~
_ ~~i°, r ôP ~

	

ôP JtOdt
tr

(B.8a)

(B.8b)

x CSP.r~`~wP(t, t') {ift [S R, ß ] - -i[Sp~, ß]+ âP} ~(t~),

	

(B.9a)
r ,

ôt ß(t)

	

i~ [~~ie~P~-
-J

r
dt~ fdRdP ~ SQ . rn~wP(t+ t~){ }Q(t'),

	

(B.9b)
ra

where the curly brackets { } symbolize the same term as in eq . (B.9a) and ~WP(t, t')

is defined by

t ât `~wP(t, t') _ ~WPL~WP~WP(t+ t~),

	

`~wP(t, t) = 1 .

	

(B.10)

Eq . (B.9a) is formally identical to our eq . (2.14) . Of course the propagator ~ w P is
dif%rent from our ~ due to the different projector 1 W P . The reduced equation
(B.9b) for ß (t) is entirely different from our mean field one (2.20) ; which is the first
part ofeq. (B.9b) only. The additional second term on the r.h.s . ofeq. (B.9b) represents
the fluctuations induced into the internal system via the coupling to the R-P motion .
The calculation of ß(t) is of course the key to any treatment of deep inelastic col-

lisions (DIC) . The internal system has 6A -6 degrees offreedom . Therefore any useful
equation for ß(t) must be simple. Eq . (B.9b) is by far too complicated . We do not see
any possibility of solving it by reducing it further. Therefore, we have to abandon
the aesthetical appeal ofhaving symmetrical equations for Q (t) and ß (t) . The difficul-
ties are not distributed symmetrically either . It is possible to have a complicated
equation for the "simple" R-P motion but we need a simple equation for the com-
plicated internal motion . That is the kind of"symmetry" we have to take into account,
and this is achieved in the present paper.
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