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We discuss some newly developed reduced equations of motion of systems which undergo transition from
coherent to incoherent dynamics, and compare these equations with the well-established Bloch equations. We
show that in spite of some structural similarities, there are important differences in the behavior of their

solutions.

The continuous transition from coherent to incoherent
dynamics is a universal phenomenon which occurs in a
variety of physical processes. To cite a few examples,
we can consider the dynamics of a magnetic dipole (or
a harmonic oscillator) coupled to a heat bath and driven
by an external field,! intramolecular line broadening in
molecular multiphoton absorption,? and reactive scat-
tering of complex particles.?® One can classify these
processes into two categories. (a) Systems where a
limited number of degrees of freedom of interest are
coupled to a thermal bath (the first examples above).
(b) Systems in which the concept of a thermal bath does
not hold and a reduced description of the processes of
interest is obtained by deriving equations of motion for
a limited set of dynamical obsewables. (The intra-
molecular line broadening and reactions between com-
plex particles belong to this class. )

A graphical representation of the two categories men-
tioned above is given in Fig. 1. Systems which belong
to class (a) are represented by two levels immersed in
a heat bath (dashed background) and driven by the ex-
ternal field (wavy arrow). The complete set of sys-
tem degrees of freedom are the elements of the 2x 2
density matrix. Systems which can be classified in
category (b) are represented by two groups (bins) of
states. Here, one does not deal with the entire den-
sity matrix of the system, but rather, considers a
limited number of coarse-grained dynamical variables,
e.g., the summed probability to be in bin 1 or 2,

The discussion of problems which fall into the first
category is better understood theoretically as well as
experimentally. Developing a theory for such pro-
cesses, one distinguishes between the “bath” and the
“system” degrees of freedom, and derives equations
of motion for a complete set of system operators. One
usually obtains the well-known ordinary Bloch equa-
tions (OBE).* In order to discuss the relevant proper-
ties of the OBE, we quote here the equations for a driven
two-level system coupled to a bath [Fig. 1(a)].!

d

EAPZ—iQ(Uu - 013) =T (aP - AP'Y), (1a)
d . .

2"{ 0'12-——'1,9 AP - (l'JJ+ Fz) 019y (lb)
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Oay =0fy, (1c)
d
AP=3(Py - P,); i (P, + P,)=0. (1d)

Here, Q denotes the coupling of the external driving
field to the system (the Rabi frequency). Ty and I'y
(where TI',> I'y) are the T, and T, relaxation constants
for the populations P;, i=1, 2 and the coherences oy,,
respectively. The conventional coherence (off-diagon-
al element of the density matrix) is actually o,.v2.
The scaling factor v2 was introduced for making the
comparison with Eq. (9) more transparent. The de-
tuning w = wyy - wy is the energy difference between
the two level frequency w,; and the frequency of the
field. AP’ denotes half the population difference at
equilibrium. For a bath at a temperature 7,

AP = tanh (w,/2kT). @)
The OBE have the following important properties.

(i) After sufficiently long time, the system will al-
ways relax to its steady state where the time deriva-
tives vanish. In the absence of driving (2=0), the
steady state is

apP=ap®,
)]

0’12 = 0.

(ii) Inthe limit I’y > Q, the OBE reduce to simple
rate equations!‘®’

dap_ (2T, ¢f ) -
F_—(m+r‘, (aP-aP),

= 2

=== |

= ==

(0) (b)

FIG. 1. A graphical illustration of the systems under dis-
cussion. (a) A two-level system coupled to a thermal bath.

(b) A two bin system,
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- 2
AP= ap'V r,/<r1+ —Z-ZF—ZQ—T) . (4)
w +I"2

(iii) The structure of the OBE guarantees that for
any choice of the parameters I'y, I'y, @, and w, and if
at the initial time {= 0

P1+P2:1, (58.)
|aP| =3, (5b)
loy |*= $PP,. (5¢)

Then the above relations hold for any later time. Thus,
the solutions of the OBE are always acceptable as far
as the general requirements [Eqs. (5)] on a 2x 2 den-
sity matrix are concerned. This does not guarantee
that the solutions describe properly the process of
interest. Indeed, the OBE are justified only when the
bath correlation time is much shorter than 1"{1, I‘;‘,
and @!. But, since the bath correlation time does not
appear in the OBE themselves, there is no built-in
mechanism in the OBE, which signals an improper
application of the OBE. The fact that the solutions

of the OBE are always “acceptable” [i.e., fulfill the
requirements of Eqs. (5)] makes their application for
phenomenological purposes rather popular.

With this background in mind, we shall turn our
attention to the systems which fall into the category (b)
mentioned above. The theoretical treatment of such
systems gained recently appreciable momentum, with
the derivation® of reduced equations of motion (REM),
which govern the time evolution of the relevant dynami-
cal observables. These equations are structurally
similar to the OBE, and are sometimes referred to
as the “generalized Bloch equations,” The main pur-
pose of the present note is to show that, in spite of
some similar features, there are important differ-
ences between the OBE and REM, which we shall dem-
onstrate in the sequel.

We shall use a representative model system to
demonstrate our claims. Consider a system whose
spectrum can be subdivided into two bins, and is
driven by an external interaction [Fig. 1(b)]. Let
the number of states in the bins be d; and d;, and let
the Hamiltonian be

d dy
H=) |lade(la|+ 3 [28) eu(28 ]
a=1 8=1
+ 20 (| 1a) Vs (28| + | 28) Va o (a]). (6)
B

In most cases, one is interested in obtaining a re-
duced (coarse-grained) description of the system, in
terms of its slow dynamical variables. The prob-
abilities P;, i=1, 2 to be in either bin form such dy-
namical variables

P‘=Trp[2 |ia)(ia|] , (7)

where p is the density matrix of the entire system. As
long as the time scale 7, which characterizes the vari-
ation of the populations is long, their evolution can

be well described in terms of time-local rate equations
(incoherent dynamics). When this is not the case, one
may follow the newly developed methods of Ref. 2 to
introduce into the description higher degree of coher-
ent dynamics. The first stage in this systematic ex-
pansion around the incoherent description is achieved
by enlarging the list of dynamical variables and in-
cluding also the coarse-grained single quantum coher-
ences 0y, and 0z;. They are defined as the expectation
values of the opnerators.

1
S”:?Z 2 [1a) V(28|
aB
and
5.212 Stz » (8)

where
di+d, \ 12 1/2
o=(%t) (T ivar) . e

The coherences are characterized by a dephasing
time constant 7,(= 1‘51). As long as 7, and 7, are larger
than all other time scales in the system 7., one can
derive time local reduced equations of motion (REM)
which have the following form:

d

77 AP= - iQ{oy = 04), (9a)
% Oy =iQAP = AP'"Y) ~ (jw + Ty) 04y, (9b)
where
Oy =0f, 9c)
AP=3(P; - Py); % (P + P,)=0, (94)
and
ap® _ldi-d (10)

I'; is again the 7, (dephasing) time constant and w is
the mean energy difference between the bins 1 and 2.

It should be emphasized that Eq. (9a) is an identity
which results from the definition of the coherence vari-
ables. Equation (9b) on the other hand is an approxi-
mation to the exact equation for doy,/dt. 1t is obtained
from the exact REM by expanding its coefficients to
first order in Q. In this approximation, the dephasing
rate I'y and the mean energy difference w are determined
exclusively by the long time behavior of the correlation
function

I(t)EzB: l Vaﬂ IzeXP[i(Ela—Eu )t]/z; IVaB |2

~expl (fw~ Iyt ). (11)

Thus, T’y and w depend on the spectral range of
the interaction (i.e., the frequency range of ¢;, — €,
for which V,, is finite) and not on the magnitude of V 4.
Therefore, in this approximation I'y and Q are inde-
pendent parameters of the theory.

The resemblance between the REM [Eq. (9)] and the
OBE [Eq. (1)] is striking. The solution of the REM
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[Eq. (9)] relaxes to the steady state [Eq. (3)] after
sufficiently long time [property ()].

The REM, as well as the OBE contain a dephasing
mechanism which arises from our loss of information
in the description (i.e., reduction). When the dephas-
ing rate is small, the time evolution is coherent where-
as when it becomes large enough, the time evolution
becomes incoherent. That is, in the limit Iy »> Q, the
REM reduce to a simple rate equation [property (ii)].
Here it reads

d _ 200

= w + g

= AP= AP - AP, 12
2 AP (AP - AP'Y) (t2)

Note also that the parameters which appear in the
REM can be related to the assumed slow time scales
7p and T4, but 7, does not appear in the REM. The
variables in the REM, being coarse-grained quantities
defined in terms of the density matrix p, should fulfill

similar requirements to those imposed on the variables
of the OBE [EQS. (5)]. In the present context, they

read
Pi+pP,=1, (13a)
|aP | =3, (13b)
|01z [2=3(dy d))'/?Py Py {13¢)

The important difference between the two sets of
equations is that property (iii) of the OBE is nof auto-
matically fulfilled by the REM [Eq. (9)]. In particular,
we shall show that in order that Eq. (13b) should be ob-
served (positive values for P, and P,), the range of
parameters T, ©, and AP'"’ must be restricted
severely.

In order to simplify the argument, let us take a sys-
tem withtwo degenerate bins, thatis w =0, In this case
only the imaginary part of g, is of interest and let

S=1Im 021.

The REM read now
d

EAP: 205, (14a)
dﬁt—s =-QaP-aprP'")-1,8, (14b)
P +P,=1, (14c)

The initial conditions will be AP(0)=1/2, [P,;(0)=1],
and S(0)=0. We shall also assume d,=d,, which is
typical of most cases of interest.

It is instructive to study the solution of Eq. (14)in the
(AP, S) plane. Dividing Eq. (14b) by Eq. (14a) we get

s -QarP-aP")-r,s
dap = 208 |

The lines dS =0 and dAP =0 are shown in Fig. 2 by
dashed lines. Their intersection defines the singular
solution of the equation, namely S=0 and AP= AP,
This is the equilibrium point to which the solutions will
approach asymptotically. The line dS=0 is of particu-
lar significance since in its vicinity one can solve S
from Eq. (14b). Upon subsituting this solution in
Eq. (14a), one obtains the rate equation (13) (with w=0).

(15)

d,/d2= 1210
Ap)=-9/22 i
Tp , Td
- (A)]1437a] 0.1 —
81]o2875] 05

FIG, 2. Two typical solutions of the REM in the (AP, S)
plane. The parameters for which these solutions are obtained
are indicated in the figure. The arrows mark the direction

of increasing time.

The solution of Egs. (14) can be easily obtained:

AP(t)= AP + G - AP et/

t 1 t
X [COSh(X Z_Td> + ; sinh <x 27'4 )] , (16)

with
T4=1/Ty, (17a)
7,= 9%/, (17b)
N
x=(1—4 -—d~> . (170)
T
»

Equation (16) is valid also when y takes imaginary
values.

Two typical solutions are shown in Fig. 2, where one
sees that the condition (13b) (that | AP | =1/2) is not
fulfilled by the solution marked B. It can be easily
shown from Eq. (16) that Eq. (13b) is satisfied only if

r: 71, _ 4[logld/dy)]’
3R =7y = 7+ Tlogldy/d)F - (18)

This is the central result of this note. It proves
the statement made above that the probabilities ob-
tained from solving the REM do not necessarily behave
as probabilities should. If the parameters in the REM
violate the condition (18), one obtains numerical values
for the probabilities which do not lie in the interval
(0., 1.). This statement which was proved here analy-
tically, for a simple case is correct for more compli-
cated REM. Numerical results show that the probabili~
ties attain unphysical values when the mean interaction
becomes too large relative to the relevant dephasing
rates,

This phenomenon limits severely the applicability of
the REM [Eq. (9)] in most cases. In order to get a
clearer view of the situation we shall now investigate
the condition (18) in two limiting situations.

() dy~d,(AP® ~ (). Inthis case, the REM [Eq. (9)]
reduce to the OBE [Eq. (1)] with I, =0 and w =0, In
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this limit, Eq. (18) does not pose any restriction on the

parameters, and all the solutions of Eq. (9) are ac-
ceptable,

(b) dy>>d; (AP~ —}). This is the case most fre-
quently met in the application of the REM.** Here the
condition (18) can be approximated by

Ir'i= 8o, (18a)

Under such conditions, the solution of the REM dis-
plays the over-damped approach to equilibrium, where
x [Eq. (17¢)] is real. This case is illustrated by the
curve marked A in Fig. 2. The condition (18a) relaxes
somewhat the strong inequality (I', > ), which renders
the simple rate Eq. (12) applicable.

When © >T, one should question the validity of Eq.
(9b), and especially the applicability of Eq. (11) as
the definition of the dephasing rate. In these circum-
stances, the dephasing is not merely due to the coarse
gained description of the spectrum, but is also affected
by the mixing of states from the two bins due to the
presence of the interaction. Including these effects in
the REM by expanding the coefficients to second order
in © modifies Eq. (9b) to read
4 013= Y AP — AP ~ (4w +T,) 0y, - —QL,
dt w +TI3

X 2 Im[Ty+iw) oy, (9b")

When the bins are degenerate (w =0) we obtain an
equation which looks like Eq. (14b) with I'; replaced

by
93
1"5“51"2-[1+2-—2]. (19)
s

One can easily show that for all values of I'; and Q
(T3')*> 80% (20)

Hence, the modified form of the effective dephasing
rate guarantees the acceptibility of the solutions of
the REM.

The conclusion that should be drawn from the present
study is that the mathematical structure of REM of the
type presented in Eq. (9) does not automatically guar-
antee a physically acceptable solution for an arbitrary
choice of the dephasing terms. Rather, (and in con-
trast with the OBE or the simple rate equations) the
dephasing terms should be evaluated carefully in or-
der to obtain a consistent description of the dephasing
processes,
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