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into percent saturation. The data points are fitted, if necessary, 
by polynomial regression. The regression equation is then dif- 
ferentiated to obtain the probability function. The diffusion 
coefficient, D, is calculated from the first term of this function, 
Le., the intercept with the ordinate, at the time specified. 

The values of the refractive index gradient a t  the interface are 
insensitive to plotting or compilation errors since dn/dx goes 
through a maximum. It is not necessary to know thc absolute 
saturation concentration since the change of dn/dx in a measured 
interval (= the fringe progression velocity) directly at the interface 
yields the diffusion coefficient. The precision (Le., the smallest 
units distinguished) of the method we propose is demonstrated 
by the computed curves given in Figure 4. The ordinate intercepts 
a t  various times after the start of diffusion were plotted for dif- 
fusion coefficients in the range from 4 X 10” to 40 X 10” cm2/s, 
again under the assumption that the distribution of solute follows 
Gaussian probability. The changes in the refractive index gradients 
are greater early in the experiment and a precision of 0.01 X 10-5D 
is readily obtained. It is to be noted that the scale of the ordinate 

is 2.5 times greater than that of Figure 2. Any advantage that 
might be gained by using the still steeper curves of the ordinate 
intercepts a t  times earlier than shown is offset by an increased 
error in data compilation. We observe also that the precision of 
the method does not increase with time. The curves taken at later 
times run practically parallel so that the differences between them 
are not useful for the determination of the diffusion coefficient. 

Conclusions 
Graphs in which the density of interference fringes intersecting 

a reference line is plotted vs. distance from the interface will give 
mass transfer coefficients as well as the solubility and several other 
parameters of value in characterizing a solute distribution process. 
The method was developed in particular for situations in which 
solute transfer cannot be described by simple analytical equations. 
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The scaling of the line widths of overtone transitions with the molecular size is discussed by exploring the analogy with macroscopic 
theories of line broadening. A general argument shows that, in the large molecule limit, the line width should become independent 
of the molecular size. The density of vibrational states is therefore irrelevant under these conditions, for the same reasons 
that the spectrum of an impurity in a solid matrix does not depend on the size of the matrix. Our argument explains recent 
experimental and theoretical results and holds both for TI  and T2 (dephasing) mechanisms for the line broadening. A simple 
model is proposed for treating the overtone line width in terms of purely T2 processes. 

The conventional formulations of intramolecular relaxation 
processes are based on the Fermi golden rule, Le. 

r = 241/12p (1) 

Here I’ is the rate of the process under consideration (radiationless 
transitions, intramolecular vibrational redistribution,  et^.).'-^ 1 
is an average coupling matrix element and p is the density of states 
in the final channel. This formula may be misinterpreted to imply 
that I’ should necessarily increase as p increases. The density of 
states p plays an important role in the common chemical intuition 
and many qualitative arguments in intramolecular dynamics and 
chemical kinetics are based on the behavior of the density of states 
as a function of energy, p ( E ) .  It is expected, e.g., that the in- 
tramolecular dynamics of large molecules be extremely fast since 
the density of states is very high, and that the rates should increase 
rapidly with the available energy. It is also expected that for a 
series of molecules with the same “active site” (e.g., an overtone 
line shape) and increasing size, r should be proportional to p since 
the relevant coupling I1/1 is similar. This type of “intuition” 
contradicts the common wisdom of researchers working on ma- 
croscopic relaxation and line shape problems. If we consider, e.g., 
an impurity in a solid matrix then the density of modes in the 
host medium is proportional to the size of the sample (and the 
density of states increases even much more rapidly with the size). 
Obviously the size of the sample is irrelevant in the thermodynamic 
limit of a large sample, and we do not expect the line width of 
the impurity to grow with the volume of the sample. The reason 
is that usually V represents a localized interaction with a mi- 
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croscopic range. As the size of the system increases, more degrees 
of freedom become relevant but the projection of each on the 
microscopic Vdecreases in exactly the same fashion, so that in 
the thermodynamic limit of large size ly2p becomes independent 
of the size. Another way of viewing this is by realizing that I Vl 
and p cannot be considered to be independent parameters. That 
is, when we vary the molecular size, we always change both 1 Vl 
and p ,  and it is virtually impossible to imagine a controlled in- 
tramolecular experiment where we vary IVl and p separately. In 
fact for large systems they usually vary with molecular size in 
an opposite manner, such that the product 11/1*p is invariant. 
Similar argument may be given also regarding the dependence 
of the overtone line width on the degree of excitation (Le., the 
overtone quantum number n). Any argument that is based on 
the density of states alone is therefore meaningless under these 
circumstances. 

The idea that the rates of intramolecular relaxations in large 
molecules should become size independent was introduced and 
discussed at length in the context of line broadening in the qua- 
sicontinuum of molecular multiphoton proce~ses.~ It was shown 
how the resulting reduced equations of motion obey exactly the 
scaling behavior discussed above. Recent experimental results5-’ 
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as well as theoretical calculationss of the line width of the C H  
overtone transitions provide further evidence for this argument. 
The line width of the overtone transitions is insensitive to the 
molecular size or to the overtone quantum number n. The density 
of vibrational states p on the other hand grows very rapidly with 
n and with the number of degrees of freedom N ( p  - n"). The 
purpose of this Letter is to point out that the arguments given 
earlier4 apply also to the overtone line shapes so that this size 
independence is not a t  all surprising. We shall consider two 
possible mechanisms: TI ,  Le., the relaxation of energy from the 
C H  mode to other molecular and a T2 mechanism in 
which the width is associated with fluctuations in the frequency 
of the overtone transition and does not correspond to population 
changes of the overtone state.'&I2 We shall show that the same 
scaling behavior is common to both models: When the molecule 
is sufficiently large the resulting width is expected to be invariant 
with the molecular size. 

A. T I  Relaxation Model 
We consider a model Hamiltonian consisting of a single 

local-mode coordinate ( R )  and a harmonic bath9 with N coor- 
dinates Q", u = 1, 2, ..., N ,  i.e. 

H = HL(R) + H d Q )  + V R Q )  (2) 
Here H L  is the local-mode Hamiltonian which can be taken 

to be a Morse o ~ c i l l a t o r : ~ ~  

(3) 
PL2 H,(R) = - + D(l - exp[-a(R - 
2 M  

HB is the bath Hamiltonian 

HB = Ehhw,(P,Z + QY2) (4) 
Y 

where P, and Q, are the dimensionless momenta and coordinates. 
Vis a coupling which could be kinetic energy or potential coupling, 
or both. Let us further denote the eigenstates of HL and HB by 
In) and la), respectively 

= Enln) (Sa) 

H B I ~ )  = E&) (5b) 

(6a) 

we = ha(2D/M)'I2 (6b) 

X = h2a2/2M (6c) 

Here 

E,, = w,(n + y2) - X(n + y2)2 

and 

a stands for the collection of all bath harmonic quantum numbers. 
The relaxation rate of state In) to In') (usually n'= n - 1) is given 

rnd = 2 * E p ( a ) l ( n ~ 1 ~ n a ) I 2 6 ( h n d  - h a p )  2*IV2p (7) 

This rate is the TI contribution to the overtone line width. For 
the sake of our subsequent discussion it will be more convenient 
to rewrite eq 7 in the form of a Fourier transform of a correlation 
function of the coupling V, i.e. 

(8a) 

by 

4 

rnd = $_Id. exp(iw,,{r) ( V(7) V(0))  

where 
(V(.)V(O)) = tr (exp(iHBr)Vexp(-iHBr)Vpeq) (8b) 
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Here peq is the canonical equilibrium density matrix 

peq exp(-HB/kV/tr [exp(-HB/kT)l (9) 

B. A Dephasing ( T , )  Model for the Line Broadening 
Dephasing of a spectral line arises from time-dependent fluc- 

tuations in its frequency which do no result in relaxation of 
Although the partitioning of H (eq 2) can be used 

to describe dephasing as well, by considering elements of Vwhich 
are diagonal in n, Le., (nPIkIna)," it is more convenient to adopt 
the following model Hamiltonian: 

H = HL(RQ) + HB(Q) (10) 

Here, the local-mode Hamiltonian is assumed to depend on the 
bath coordinates Q. As a simple model we may assume that H L  
is given by eq 3 but that the parameters D and a depend on the 
bath coordinates, Le., D = D(Q), and a = a(Q). For this model 
the frequency of the nth overtone is given by 

AEn,o = ( w e  - X)n  - Xn2 (11) 

where w, and X depend on the bath coordinates Q. It will now 
be convenient to split D and a into their equilibrium value where 
the bath is in the equilibrium configuration Qo, and a fluctuation 
part, Le., 

D(Q) 1 D + aD(Q) (12a) 

a(Q) d + aa(Q) (12b) 
where b D(Qo), d a(Qo). Equation 12 is nothing but a 
definition of 6D and 6a. Upon the substitution of eq 6 and 12 
in eq 11 we get - 

AEn.0 = AEn,o + U(Q) (13) 

where 
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and 

Here ae and X are given by eq 6 with D and a replaced by D and 
d ,  respectively, is the frequency of the overtone transition 
when all other nuclei are in their equilibrium position, and A = 
a,n - 2X(n + n2),  B = ' / 2 ~ e n .  This model, in the Markovian limit 
whereby the time scales of the bath are fast compared with the 
line width, predicts a Lorentzian line shape whose dephasing width 
is given byI2 

= $_Id. (U(r)U(o)  ) (1 6a) 

where 

( U(r)U(O))  = tr (exp(iH,r)U exp(-iH,r)Up,) (16b) 

Upon the substitution of eq 15 in eq 16 we finally get 

(17) 
(6a(r)6D(O)) + ( ~ D ( T ) W O ) )  

d D  A B  

Within this model the line width is therefore attributed to fluc- 
tuations in time of the Morse potential parameters D and a which 
cause the overtone frequency to fluctuate. No energy transfer 
from the local mode to the other degrees of freedom occurs in this 
picture. 

Equations 8 and 16 show that both the TI and the T2 line widths 
are given by an integral of a correlation function of a bath operator 
(either Vor U). In the following analysis we shall consider the 
correlation function (V(r)V(O)) but all our arguments hold for 
(U(.)U(O)) as well. An important property of Vis that it is local 
in nature (i.e., depends on the coordinates of the atoms in the 
immediate vicinity of the local mode). Let us assume first that 
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V is linear in some bond distance q which in turn is a linear 
combination of the bath normal modes Q ,  i.e. 
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N 

Y' I 
V = Aq Cc,Q,  (18) 

So that 
N 

"-1 
(V(r)V(O)) = Etc,2(Qu(~)Q,(O)) * -(19) 

The correlation function (V(r)V(O)) may be characterized by two 
parameters: (i) its value at T = 0 

N 

u-1 
R2 (p) = Cc:(Q?)  (20) 

and (ii) its typical time scale y-'. The value of r (eq 8a or eq 
16a) is therefore 

r - fiZ/y (21) 

Let us imagine a series of molecules with the same local mode 
but with increasing size of the bath. Since c, is the projection 
of a bond coordinate on the uth normal mode, it is scaled with 
the number N of bath degrees of freedom as 

C ,  - 1 /N' l2  (22) 

c; therefore scales as 1 / N .  There are, however, N terms in eq 
20 so that R2 is expected to become independent of N for large 
N .  This argument will not change if the dependence of V on q 
is nonlinear. Let us assume for example that V - As". In such 
a case there will be typically N" terms in the expression of RZ but 
each one will be of the order of C$ and will scale as N-". 
Therefore, again R2 is independent of N .  y is roughly given by 
the frequency spread of the molecular modes. As N increases, 
we usually have more frequencies of each type but their spread 
does not change significantly. Thus, y is also expected to go to 
a fixed value as N - w. We have thus shown why Rz, y, and 
consequently the width r become size independent. The previous 
argument4 was given in terms of states (rather than modes) and 
led to the same result. In conclusion we note the following: 

( 1 )  We have shown that the width of overtone line shapes may 
be written as 

r = 2a1q2p = 2 a ~ z / y  (23) 

It is interesting to note the connection between the parameters 
IVl, p and R, y. Using a complete set of bath states la), I@), we 
have 

lV2 = CP(41(.lVl@)12 (23a) 

QZ = E P ( 4 l ( ~ I V l @ ) l 2  (23b) 

a 

whereas 

a.6 
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Thus, if the number of bath states contributing to eq 23 is d then 

R2 = l q 2 d  (24) 

Similarly, since y is the spread of effectively coupled levels, p is 
their density, and d is their number, we have 

y = dp-' ( 2 5 )  

As the molecular size increases, d increaes, lq2 and p will both 
change but R2 and y will not change appreciably. It may be 
therefore advantageous to discuss intramolecular dynamics in 
terms of R and y rather than IVl and p since R and y are inde- 
pendent and they both have a finite limit as d - m. In the same 
limit IVl -  0 and p - m and only the product I v z p  is significant. 
Furthermore, as shown in the reduced equation of motion for 
multiphoton processes4 0-l and y-' (and not V-l and p )  are the 
two relevant molecular time scales in the problem. 

(2) The invariance of r with size is not surprising if we think 
of an overtone as an "impurity" in a host. In the latter case the 
size of the host and the boundary conditions14 are, of course, 
immaterial. 

(3) The same conclusion will hold for line broadening of an 
impurity in a nonrigid cluster where the bath particles are free 
to move within the cluster. In the limit of large clusters this will 
reduce to the problem of pressure broadening and the line width 
will depend only on the density of particles within the cluster and 
not on its size.12 

(4) The present arguments are not restricted to the Markovian 
limit where the line is Lorentzian and they hold equally well any 
non-Markovian line shapes. 

(5) Finally, we wish to reiterate that, as noted earlier,"-I5 the 
distinction between intramolecular TI and Tz type processese is 
not absolute. The same terms in the Hamiltonian may be con- 
sidered as T I  or Tz type depending on the partitioning of the 
Hamiltonian and on the basis set. The eigenstates In) of HL(R,Q) 
(eq 10) depend parametrically on the bath coordinates Q and are 
thus fluctuating in time. The eigenstates of HL(R) (eq 2), on the 
other hand, are fixed. This is analogous to adopting an adiabatic 
vs. a crude adiabatic basis set.16 The same terms which cause 
dephasing in the former basis set may cause relaxation of popu- 
lation (T,) in the latter. It is therefore the convenience and 
simplicity in the description which will determine which kind of 
picture we want to adopt. 
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