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Random matrix theory is used to develop a model for the distribution of energy levels and mtensities in intramolecular 
line shapes. The effects of mikng lines, either due to their weak intensity, or due to the kite spectral resolution, are quan- 
titatively incorporated. It is shown how the information regarding spectral fluctuations in intermediate size molecules is 
eroded in the large molecule statistical limit. Our predIctions are compared with recent experimental data on highly v~bra- 
tlonally excited acetylene, and the relevant skk.~tical measnres are calculated 

Recent experimental studies of molecular line 
tiLapes in isolated polyatomlc molecules have gener- 
ated a vast interest in the statLstical analysis of these 
spectra [l-5] The purpose of such is to indentify 
some universal features which will be of interest to a 
wide class of systems This is in contrast to the tradi- 
tional analySs which focuses on specific information 
on a particular molecule (i.e. level positions and dipole 

strengths). 
Random matrices provide a natural theoretical 

framework for interpreting the statitsics of energy 
levels, as well as their widths, in complicated quantum 
systems [6,7]_ The model which has been most exten- 

sively stndied, is Wigner’s gaussian orthogonal ensem- 
ble (GOE) of asymptotically large, real, symmetric 
random matrices- Its main predlctions are level repul- 
sion (Wigner [ 81) long-range order in the level se- 
quence (Dyson-Mehta [9]) and a G, distribution 
for the widths or intensities (Porter-Thomas [IO]). 
These results were proposed originally for nuclear 
spectra but are expected to be valid much more gen- 
erally. A remarkably close agreement between the 
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GOE predictions and nuclear data have been found 
[ 111, and there are indications that the same may be 
true for atomic [ 121 and molecular [ 1,2,13,14] spec- 
tra as well. Recent arguments [ 15,161 and calculations 
[I 7] may indicate that GOE-type fluctuations are char- 
acteristic of quantum mechanical spectra of chaotic 
hamlltonians 

In this paper, we shall make use of random matrix 
theory, and develop a systematicmethod for the analy- 
sis ofmolecular spectra We shaU consider a prototype 
molecular level scheme and analyze its statistical fea- 
tures and the information content of the spectral line 
&apes for intermediate size and large molecules. Our 

model molecular hamiltonian (fig. 1) is: 

and the radiation-matter interaction is 

M=l,,(lg)(sl + Is)(gl) 

(1) 

(2) 
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Fig 1. The molecular level scheme of our ensemble. pgZ, VsZ 
and EZ are random variables. 

Here Ig> is the ground state (we shall take cg = 0)which 
is radiatively coupled to a smgle doorway state Is> 
which. in turn, is coupled by some intramolecular cou- 
pling Vsl to a background manifold {II>]. This 1s the 
fundamental model in molecular radiationless transi- 
tions whereby Is) is a singlet and II> is a manifold of vibra- 
tional states belonging to another electronic state [ 18]_ 
It also applies to intramoiecular vibrational redistribu- 
tion whereby Is> and {I I)] belong to the same electron- 
ic state and Vd 1s an anharmonic coupling [ 19]_ We 
have also allowed the quasicontinuum states I[> to 

carry oscillator strengthvia ~~1 (the Fano level scheme) 
[20] _ For this model, the absorption hne shape, given 
that the molecule is imtrally in the ground state Ig> is 

I(w) = c l(glMli)l26(E, - w) = CZJ6(Ej - 0) ~ (3) 
3 i 

where Ej are the eigenvalues of H: 

H lj> = EJ lj> (4) 

Our statistical assumption concerns the manifold 
{II>} in eq. (1). We assume that ~1 are centered around 
the doorway l s, with a constant average spacing D, 
and the fluctuations around the average are those of 
GOE. Furthermore, the states 10 are, except for the 
ortbonormality conditions, completely random vec- 
tors (independent of the E! distribution) in the N XN 

“statistical space” *_ It follows [6] from the ran- 

domness of the vectors II> that, for large N, all the 

v.., and +l are independent gaussian variables; the 
only correlatrons allowed are for I= I’ m which case 
Vs, and pgl have a bivariate gaussian distribution_ We 
specify the first two moments as follows (where the 
bar denotes ensemble averaging): 

where r is the correlation coefficient of v5! and Q 
(0 <:r < 1). We have analyzed the statistics of the 
energy levels and the line shape function for this en- 

semble, for N --f -T The statistical properties of the 
Ej are little different from those of E,, i.e. the level 
density is still l/D and the fluctuations are those char- 
acteristic of GOE. The ensemble average of Z(w) is 
given by: 

I(w) = (&D)[(w - ~~+A)~+92]/[(w-~s)2+~r7], 

(6) 
where 

r = h&D, 4 = wQ~ I 

@’ = (I - rquQrg2 + a rq _ (7) 

Eq. (6) IS a well-known result when cz form a continuum 
and was proposed, without proof, for all values of 
r/D, by Lane et al [21--231 In the absence of radia- 
tive coupling to the quasicontinuum (JQ = 0) it re- 
duces to a simple lorentzian profile 

F(U) = ,-1/S ‘r/&I - Es)? + $P] 
P2 (8) 

The Fano line shape [TO] correspondin to our model 
whereby pgl and Vd are fmed and independent of I, 
may be obtained from eq. (6) by setring r = 1. 

Eq (6) gives the ensemble averaged line shape. The 
actual line shape, however, in a given experiment, cor- 
responds to a particular realization of the random varia- 
bles (Q, Vd, pgI) and will have fluctuations around F. 
These fluctuations are observable in intermediate size 
molecules. In large molecules, as we shall shortly see, 
they are suppressed and rhe only information content 
of the spectral line will be r(w). In order to analyze 
these fluctuations, let us recall an elementary result of 

’ In other words, the ensemble of the operators XZIZIEZ’ZI is a 
one to one map of the GOE such that the averaxe level den- 
sity is a constant instead of a semicticle. 
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statistics. Suppose we have Y ~dependent random 
gaussian varrables xi, each having a zero mean and a 
variance l/u_ If we consider the sum of their squares 
y G Z& x:, its distribution cailed 2 (i.e. x square 
with v degrees of freedom) IS given by [ 1 O] t 

pelt) dy = FXPIJ-~(PYY’-~ expl--pY) P dv T 1% 

where p = i u and r IS the gamma function. This dlstri- 
bution isqracterized by the meany= 1 and the 
variance y - y2 = 2/v. 

From eq. (3) we see that each component of the 
spectrum Ii is the square of the overfap of the molecu- 
lar eigenstate lj) with the “doorway state”Mlg). These 
overlaps are expected to have a gaussian distribution 
and therefore Ii& shoufd have a 4 (Porter-comas) 
distributiongiven bym)withv= l_ We thusexpect** 
that if we measure the intensities in a small frequency 
Interval (Aw Q T’) they wiIl Follow z_ This will not 
be the case for the entire distribution of intensities+ 
since the mean intensity F(w) depends on w. We shall 
therefore define new scaled variables 

Ji = l,j&J,) . (10) 

By const~ction 5 = 1 regardless of r+ We thus expect 
that the distribution of Jj wdl obey the xf law, i e. 

P(J) dl = (2~rJ)-~~~ exp(-$ J) d J _ -(I 1) 

What happens as the moIecular size increases? If 
the experimental spectral resolution is R, each experi- 
mentally observed intensity wjll be on the average the 
sum of v = R/D lines and the experimental distribution 

of J will become xz (i e. eq_ (9) with Y > I)_ As u + m 
have [IO] [z&X) -+ 6(J - I )] _ This implies that as the 
density of states increases, we shall gradually lose the 
information about fluctuation andI will turn into 
I(w)! 

We next turn to the energy level fluctuations (i.e. 
deviations of the level positions from a regular “picket 
fence” ~ec~rn). We briefly review the GOE predic- 
tions [6,1 I.241 _ To begm with, one may deal with 
*he spacing distributions. For example, the nearest 
nei~bour spacing d~t~bution is wee-approx~ated 
for GOE by the Wigner surmise, 

P*(X) dX = +X exp(+x*), Xj = (Ei+l- Ej)~~. 

(12) 

**Thisresdtholdswhcn r/D> 1. 
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This should be compared urith expf-x) for the Poisson 
ertiemble of completely random levels. A systematic 
way of analysis was developed recently [ 1 I] _ It starts 
wrth the hierarchy of Dyson’s k-level chrster functions 
[25], of which the two-level function Y2 is the most 
important. (1 - Y2(r)] dr gives the probabtity of ob- 
serving a level in an i~~nitesirn~ interval D dr at a dis- 
tance rD from another given level, irrespective of where 
the other levels are. Y2 is zero for Poisson for all r, 
whereas for GOE its value is 1 at r = 0 (implying level 
repulsion), it falls off as I/n2r2 for r 2 1, and its in- 
tegral (0 <r < -) is 0.5 (the latter two implying a 
long-range order in the spectrum). One may test the 
data directly for 452, or for better accuracy, may cab 
culate 22(r) and AS(r) defined below. 

Consider an interval of fHed length rD_ The average 
number of levels in the interval is r’. The variance of 
the number of levels is 

r 

x’(r) 3f - 2 /(r - t) Y2(t) dr , (13) 
0 

which IS simply r for Poisson, and for GOE approaches 

[6,9] 2/7r* log r + 0.44 for r 2 1. This imphes a long- 
range order in the GOE (e.g. for r = I 04, X*(GOE) =I 
1 whereas X2 (Poisson) = 104). The GOE is therefore 
characterized by much smaller fluctuations than the 
Poisson, and due to its “ordered nature” will be much 
more sensitive to missmg levels than the Poisson en- 
semble, a,, introduced by Dyson and Mehta [9], 1s 
another measure for level ffuctuations- For an interval 
(-I,, I.) of the spectrum centered at zero, we define 

A~(r)=(l/ZX)~ [A@)-LU-~B]~~E. 
-L 

(14) 

Here N(E) IS the number of levels below E in that m- 
terval, T = 22,/D, and AE + B is the “least-squares fit” 
straight line to the staircase function N(E) ‘The en- 

semble average of A, is related to X2, and hence to 
Y;! [261, 

r 

&(r) = (2/r”l) I(r3 - 2r*r + t3) Z2(r) dt _ (15) 
0 

&3(r)=+5 r for Poisson whereas for GOE it approaches 
l/n2 log r - 0 007 for r 2 10. One may study Z*(r) 
or s&)asa function of r. It should be noted that the 



sample errors (i.e. the variances of I? and Aj) asso- 
ciated in the analysis of data are also now fully under- 
stood [ 111 and C2 and A3 are among the “sharpest” 
measures available. 

In order to illustrate how these ideas may be utrl- 
ized to extract useful information from molecular 
spectra, we shall consider now one “clump” observed 
recently in acetylene by Field, Kinsey and coworkers 
[ 1] _ Our first goal is to determine I(o). TO that end 
we define the intergrated mtensity, 

w 

S(w) = I I(WI 1 dwl - (16) 
_m 

In frg. 2, we show a three-parameter fit of S(w) ob- 

tained by substitutingqw) [eq. (S)] in eq. (16) and 
making a least-squares fit of I?, E, and pP The fit is 
remarkably good. A five-parameter fit using eq. (6) 

/ 

A 
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[mstead of(S)] showed very little improvement so 
that we chose p = 0. r(w) calculated using these pa- 

rameters is also shown in fig. 2 Once F(w) is derer- 
mmed, we can calculate Ji ~$/l(w$ and consider 
their distribution, p(J)_ There are several problems 
n-r comparing p(J) directly with Xf [eq. (1 I)] We 
first have to assume that the experimental results are 
“pure” with no spurious levels (i.e. all levels have the 

same set of good quantum numbers) Another orob- 
lem arises from the finite experirnen tal resolution 
which implies that closely lying levels may not be 
resolved This, as shown earlier, wrll change x; mto 
xz, v being the number of unresolved transrtions in 
each of the observed spectral lines. In general we can 
have a mixture of x,’ with various values of r~_ A third 
problem arises smce as is clearly seen in fig. 2B, there 
IS a lower bound I* for the experimentally observed 
mtensitres such that all levels with I <I* are missing. 
The effect of I* can be easily incorporated into the 
theory by proper integrations. In fig. 3 we show the 
experimental [I] hrstogram of P(J) together with the 
xi distributron (broken lme). The solid curve repre- 
sents a distribution calculated from x: by taking I* = 
6 X 1O-3 and omitting all lines with1 <I*. It is evi- 
dent that the later is at least in qualitative agreement 
with the histogram. The missing levels have thus a 
dramatic effect on the observed distribution I’(J). The 

fractronfof randomly missing levels (NT - hr)jNT 
(NT being the total number of levels in the observed 
range and N is the number of lines actually observed) 
is estimated from this curve to be -0.7. 

B 
The statistics of level positrons as reflected in 3’ 

and z3 rs also consistent with this picture of missing 

Frg. 2. The ensemble averaged line shape(w). (A) The stair- 
case funchon is the integrated intensity S(w) of the even- 
mental results [l]_ The curve is the least-squares fit using eqs. 
(8) and (16). D = 1, r = 33. l a was obtained from the fit and 
was set l s = 0. (El) The experimental [l] Ii and the best fit 
F(W) of (A). 

----- ___ ___ 

0 05 10 15 20 
J 

Fig. 3. Hutograms of the experimental distriburion P(J). The 
broken cnrve is a x: drsrribution and the solid curve is a modr- 
Fred X: _ with mixsing levels. I* = 6 X 1 0m3. 
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Fig 4. Measures of energy level fluctuations (A) I? versus I. 
The dots represent the experimental data [I]_ Shown are the 
calculations for GOE (solid line) and for GOE with f= 0.15 
(dotted Ime). We alu, show the sample errors for the GOE 
(bro+l lmes). Whenfis ftik the Sample errorS incr-. 
(B) As versus I. The curves are as in (A). A3 (65) was Cal- 
culated to be 0.42 T 0.11 for COE and 0.96 for GOE with 
f= 0.15 (with a larger sample error), compared with the ex- 
perimental A3 (65) = 0.85. 

levels. In fig 4 we show X*(r) and x3(r) as calculated 
from the experknental data- It is clear that the simple 
GOE predictions are not in good agreement with these 
curves. Assuming however, a fractionfof randomly 
missing levels we calculate C2 and z3 using the fol- 
lowing expressions: 

X2(,)=f,+(1-_n2Z~E(‘/(1-~) 

and 

(17) 

E,(r) = +:fi + (1 -f)G 3,GO&/(l - f)) - (1% 

The curves withf= 0.15 shown in fig. 4 are certainly 

consistent with the experimental data. It should be 
noted that the sample errors associated wiJh 2* and 
A, measures increase withfso that the estimates of 

f from the fluctuations m mtensitles and in level posi- 
tions are not inconsistent. 

In conclusion we have shown how the statist14 

analysis the line shape parameters r, Es, pG together 
with the fractionfofmissing levels. It should be noted 
that by “missing” we mean levels that do interact 
with the doorway state but are not resolved in the 
spectrum due to experimefital resolution or dynamic 

range. In addition, there may exist, of course, many 

more levels which do not interact at all with the door- 
way state and therefore do not affect the spectrum. 
The number of lines in the experiment (65) IS rela- 
tively small (although excellent agreement with GOE 

predictlons had been obtained in some nuclear data 

for 70 levels [27]). We expect that this type of analy- 
sis will become even more useful and quanhtatrve 
when more data with larger numbers of levels, im- 
proved spectral resolution, and fewer missing levels 
will become available_ 
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