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FLUCTUATIONS IN INTRAMOLECULAR LINE SHAPES - RANDOM MATRIX THEORY
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Random matrix theory is used to develop a model for the distribution of energy levels and intensities in intramolecular
line shapes. The effects of missing lines, either due to their weak intensity, or due to the finite spectral resolution, are quan-
titatively incorporated. It is shown how the information regarding spectral fluctuations in jntermediate size molecules is
eroded in the large molecule statistical limit. Qur predictions are compared with recent experimental data on highly vibra-
tionally excited acetylene, and the relevant statistical measures are calculated

Recent experimental studies of molecular line
shapes in isolated polyatomic molecules have gener-
ated a vast interest in the statistical analysis of these
spectra [1—5] The purpose of such is to indentify
some universal features which will be of interest to a
wide class of systems This is in contrast to the tradi-
tiopal analysis which focuses on specific information
on a particular molecule (i.e. level positions and dipole
strengths).

Random matrices provide a natural theoretical
framework for interpreting the statitsics of energy
levels, as well as their widths, in complicated quantum
systems [6,7]. The model which has been most exten-
sively studied, is Wigner’s gaussian orthogonal ensem-
ble (GOE) of asymptotically large, real, symmetric
random matrices. Its main predictions are level repul-
sion (Wigner [8]) long-range order in the level se-
quence (Dyson—Mehta [9])and a %2, distribution
for the widths or intensities (Porter—Thomas [10]).
These results were proposed originally for nuclear
spectra but are expected to be valid much more gen-
erally. A remarkably close agreement between the
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GOE predictions and nuclear data have been found
[11], and there are indications that the same may be
true for atomic [12] and molecular [1,2,13,14] spec-
tra as well. Recent arguments [15,16] and calculations
(171 may indicate that GOE-type fluctuations are char-
acteristic of quantum mechanical spectra of chaotic
hamiltonians

In this paper, we shall make use of random matrix
theory, and develop a systematic method for the analy-
sis of molecular spectra We shall consider a prototype
molecular level scheme and analyze its statistical fea-
tures and the information content of the spectral line
shapes for intermediate size and large molecules. Our
model molecular hamiltonian (fig. 1) is:

H=|gle (gl +Is)e(s]

N "'
+12_3] D&l +:>;1' V(I + 1), )

and the radiation—matter interaction is

M= p (1)) + Is)el)
N :
+ 2o g (1)1 + IDGGD). @)
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Fig 1. The molecular level scheme of our ensemble. Hpls Vg
and ¢ are random variables.

Here |g)is the ground state (we shall take &= 0) which

is radiatively coupled to a single doorway state |s>
which, in turn, is coupled by some intramolecular cou-
pling V; to a background manifold {|1)}. This 1s the
fundamental model in molecular radiationless transi-
tions whereby [s) is a singlet and [/) 1s a manifold of vibra-
tional states belonging to another electronic state [18].
It also applies to intramoiecular vibrational redistribu-
tion whereby [s) and {|/2} belong to the same electron-
ic state and V; 1s an anharmonic coupling [19]. We
have also allowed the quasicontinuum states |7) to
carry oscillator strength via p,; (the Fano level scheme)
[20]. For this model, the absorption line shape, given
that the molecule is initially in the ground state |g) is

1(w) = 22 KelMIPRS(E; — w) = 23 15(E; — w), (3)
7 ]

where Ej are the eigenvalues of H:
HID=E, 1. €Y

Our statistical assumption concerns the manifold
{ID} in eq. (1). We assume that €; are centered around
the doorway €, with a constant average spacing D,
and the fluctuations around the average are those of
GOE. Furthermore, the states |/) are, except for the
orthonormality conditions, completely random vec-
tors (independent of the ¢, distribution) in the N X &/
“statistical space” ¥ It follows [6] from the ran-
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domness of the vectors |I) that, for large &V, all the
Vi and Mg are independent gaussian variables; the
only correlations allowed are for 7 = /" 1n which case
Vi1 and p,y have a bivariate gaussian distribution. We
specify the first two moments as follows (where the
bar denotes ensemble averaging)-

7 = 2 _ .2
Va=0, Vg=v",

T‘gl =0, l-lgl = l-lz, Vsll-lgl =ropg, (5)
where r is the correlation coefficient of Vg and gy

(0 <r <1). We have analyzed the statistics of the
energy levels and the line shape function for this en-
semble, for )V — oo The siatistical properties of the

E; are little different from those of ¢, 1.e. the level
density is still 1/D and the fluctuations are those char-
acteristic of GOE. The ensemble average of I(w) is

given by:
I(w) = (12 [D)[(w — e+ A)2 + ¢?)/[(w — e)? + 3 T2],

©)
where
r= 2‘:71)2/D, A= ruugslu,
6% = (1 - r) @ p2/p> +317). ()

Eq. (6)1sa well known rasult when ¢, form a continuum
and was proposed, without proof, for all values of
I'/D, by Lane et al [21—23] In the absence of radia-
tive coupling to the quasicontinuum (i, = 0) 1t Tc-
duces to a simple lorentzian profile

)= 712 3T [ — €)? +3T2] ®)

The Fano line shape [20] corresponding to our model
whereby Hgy and Vg are fixed and independent of /,
may be obtained from eq. (6) by setiing r= 1.

Eqg (6) gives the ensemnble averaged line shape. The
actual line shape, however, in a given experiment, cor-
responds to a particular realization of the random varia-
bles (e, V1. 1) and will have fluctuations around 7.
These fluctuations are observable in intermediate size
molecules. In large molecules, as we shall shortly see,
they are suppressed and the only information content
of the spectral line will be 7(¢«). In order to analyze
these fluctuations, let us recall an elementary result of

¥ In other words, the ensemble of the operators ;1D e[ 1s a
one to one map of the GOE such that the average level den-
sity is a constant instead of a semicircle.
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statistics. Suppose we have » independent random
gaussian variables x;, each having a zero mean and a
variance l/u If we consider the sum of their squares
y=Zin xi , ts distribution called xz (i.e. x square
with » degrees of freedom) 1s given by {10]:

- T 200 el TP O Y R aiy S L)Y
fpw — 1 ] TWeY) CAPU Y I P Wy, )
where 5= 2 v and Mis the gamma function. This distr

WIICIC O — 2 # anu 1 1> ux LIEIA NUNIC LI, B3RS WEdti -

bution is characterized by th
variance y2 —72=2/v.
From eq. (3) we see that each component of the
spectrum J; is the square of the overlap of the molecu-
lar elgenstate |7} wath the “doorway state” M{g?. These
overlaps are expected to have a gaussian distribution
and therefore I, /I should have a x‘ {Porter—Thomas)
distribution glven byP(y) withpy = l We thus expect ¥+
that if we measure the intensities in a smali frequency
mterval {(Aw <€ T) they will follow X3 1 This will not

bha tha race for the antire dictribuation of intensitiec J.
OC UNe Case Ior tne enlre gisinioulion Of intensities

since the mean intensity (w) depends on . We shall

therefore define new scaled variables
I =HT(w). (10)

By construction J = 1 regardless of w;. We thus expect
that the dlstnbunon of J will obey the xl law,ie.

P dJ = Qu)y Y2 exp(—3J)dJ. -1

e tha v ntanrrlar c3ra S Y e
i

Whai happens as the molecular siZe increases?
the experimental spectral resolution is R, each experi-
mentally observed intensity will be on the average the
sum of v = R/D lines and the experimental distribution
of J will become X2 (i e. eq. (9) with v>>1). Asp >
have [10] [x2(J) - 8(J —1)]. This implies that as the
density of states increases, we shall gradually lose the
information about fluctuation and /(w) will turn into
I(w)!

We next turn to the energy level fluctuations (i.e.
deviations of the level positions froma regular “picket

fanrca™’ Waoa hri v rovionr o {-NF nradis
l\llv\i ay\a\dlulllj. Ww Ull\}ll) ILViLer Lllb IFLFES pAALULL

tions {6.11,24]. To begn with, one may deal with
the spacing disiributions. For example, the nearest

neighbour spacing distribution is well-approximated
for GOE by the Wigner surmise,

Po(x) dx = 3mx exp(—57x2),  x;= (Ejyy — E}[D.

#¥ This result holds when I'/D > 1.
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This should be compared with exp{—x) for the Poisson
ensemble of completely random levels. A systematic
way of analysis was developed recently [11]. It starts
with the hierarchy of Dyson’s k-level cluster functions
[25). of which the two-level function Y, is the most
important. [1 — Y,(r)] dr gives the probability of ob-
serving a level in an infinitesimal interval D dr at a dis-
tance rD from another given level, irrespective of where
the other levels are. Y5 is zero for Poisson for all 7,
whereas for GOE its value is 1 at r = 0 (implying level
repulsion), it falls ofT as 1/72r2 for r 21, and its in-
tegral (0 <r < e0)is 0.5 (the latter two implying a
long-range order in the spectrum). One may test the
data directly for Y5, or for better accuracy, may cal-
culate £2(r) and 33(") defined below.

Consider an interval of fixed length rD. The average
number of levels in the interval is r. The variance of
the number of jevels is

22)=r—2 [ -0 Yy dr, 13)
0

which s simply r for Poisson, and for GOE approaches
[6,9] 2/7% log r + 0.44 for r 22 1. This imples a long-
range order in the GOE (e.g. forr =~ 104, £2(GOE) =
1 whereas X2 (Poisson) = 104). The GOE is therefore
characterized by much smaller fluctuations than the
Poisson, and due to its “ordered nature” will be much

more bCll)lllVC ioc llllbbl.llg lCVClb Llldll lllC 1 Ulthll cIl-

semble, A3, introduced by Dyson and Mehta [9], 1s

another measure for level fluctuations. For an interval

(—L, L) of the spectrum centered at zero, we define

AN =(1/2L) f [N(E) — AE — B]2dE. aa)

Here N(E) 1s the number of levels below £ in that in-
terval, r = 2L /D, and AF + B is the “least-squares fit”
straight line to the staircase function N(F) The en-

mhle ayvaracae af A icralated ta Y2 and hanns in
av..xuuu, avoiapo Ul L-\3 1D 1TEAITH U 7, a3 1TaILcC 19
Y, [26].-
r
a30=@" [P -z 22@a. (5
0

A3(r) =1 r for Poisson whereas for GOE it approaches
1/77“ log r — 0 007 for r 2 10. One may study Z2(r)
ord 3(r) as a function of r. It should be noted that the
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sample errors (i.e. the vanances of £2 and As)asso-
ciated in the analysis of data are also now fully under-
stood [11] and £2 and A, are among the “‘sharpest”
measures available.

In order to illustrate how these ideas may be util-
ized to extract useful information from molecular
spectra, we shall consider now one “clump™ observed
recently in acetylene by Field, Kinsey and co-workers
[1]. Our first goal is to determine /(w). To that end
we define the intergrated intensity,

w

S(w) = f (wp)dwy. (16)

— oo

In fig. 2, we show a three-parameter fit of S(w) ob-
tained by substituting /(w) [eq. (8)] in eq. (16) and
making a least-squares fit of I', €, and g, The fitis
remarkably good. A five-parameter fit using eq. (6)
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Fig. 2. The ensemble averaged line shape T(w). (A) The stair-
case function is the integrated intensity S(w) of the expen-
mental results [1]. The curve is the least-squares fit using eqs.
(8) and (16). D = 1, " = 33. ¢, was obtained from the fit and
was set e = = 0. (B) The expenmenla.l [1] I and the best fit
T(w)of (A)
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[instead of (8)] showed very little improvement so
that we chose p= 0. I—(m) calculated using these pa-
rameters is also shown in fig. 2 Once I(w) is deter-
mined, we can calculate J; —]i/I(C-J}») and consider
their distnibution, P(J). There are several problems
in comparing P(J) directly with x% [eq. (11)] We
first have to assume that the experimental results are
“pure” with no spurious levels (i.e. all levels have the
same set of good quantum numbers) Another prob-
lemn anses from the finite experimental resolution
which implies that closely lying levels may not be
resolved This, as shown earlier, will change xl mnto
x- v being the number of unresolved transitions in
each of the observed spectral lines. In geseral we can
have a mixture of x2 with various values of v. A third
problem arises since as is clearly seen in fiz. 2B, there
1s a lower bound I for the experimentally observed
mtensities such that all levels with 7 <I™ are missing.
The effect of I* can be easily incorporated into the
theory by proper integrations. In fig. 3 we show the
experimental [1] histogram of P(J) together with the
x-l) distribution (broken line). The SOlld curve repre~
sents a distribution calculated from x by takmg[ =
6 X 10—3 and omitting all lines w1th] I Itisevi-
dent that the later is at least in qualitative agreement
with the histogram. The missing levels have thus a
dramatic effect on the observed distribution P(J). The
fraction f of randomly missing levels (N — N)/N¢
(N1 being the total number of levels in the observed
range and AV is the number of lines actually observed)
is estimated from this curve to be =0.7.

The statistics of level positions as reflected in =2
and 33 15 also consistent with this picture of missing

Fig_ 3. His(og;rams of the experimental distribution P(J). The
broken curteisa 7(1 dxstrl'buuon and the solid curve 1s a modi-
fied Xp with missing levels, I'=6x103.
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Fig 4. Measures of energy level fluctuations. (A) 2 versus r.
The dots represent the experimental data (1). Shown are the
calculations for GOE (solid line) and for GOE with f= 0.15
(dotted hine). We also show the sample errors for the GOE
(broken hines). When f is finile the sample errors increase.
(B) A versusr. The curves are as in (A). A3 (65) was cal-
culated to be 0.42 + 0.11 for GOE and 0.96 for GOE with
f= 0.15 (with a larger sample error), compared with the ex-
perimental A3 (65) = 0.85.

levels. In fig 4 we show ¥2{r) and 13(r) as calculated
from the experimental data_ It is clear that the simple
GOE predictions are not in good agreement with these
curves. Assuming however, a fraction f of randomly
missing levels we calculate Z2 and A using the fol-
lowing expressions:

22y =fr+ (1 — N2 ZLop/(1— 1)) an
and
Z3|(")=1_lsfr +( —f)zza_(;o]z(’/(l —). (18)

The curves with f= 0.15 shown in fig. 4 are certainly
consistent with the experimental data._ It should be
noted that the sample errors associated with ZZ and
A5 measures increase with f so that the estimates of
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f from the fluctuations 1 ntensities and in level posi-
tions are not inconsistent.

In conclusion we have shown how the statistical
analysis the line shape paramefters I", €50 Hgg together
with the fraction f of missing levels. It should be noted
that by “missing’ we mean levels that do interact
with the doorway state but are not resolved in the
spectrum due to experimental resolution or dynamic
range. In addition, there may exist, of course, many
more levels which do not interact at all with the door-
way state and therefore do not affect the spectrum.
The number of lines in the experiment (65) 1s rela-
tively small (although excellent agreement with GOE
predictions had been obtained in some nuclear data
for 70 levels [27]). We expect that this type of analy-
sis will become even more useful and quantitative
when more data with larger numbers of levels, im-
proved spectral resolution, and fewer missing levels
will become available.
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