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I I I I I be a general property of SI levels in pDFB, at  least above E,ib i= 

1600 cm-I. No levels have been found above this energy for which - - 7 indications of IVR are absent. 
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Figure 6. A plot of the SI vibrational level density against vibrational 
energy for pDFB. The indicated density considers only the gerade levels 
and is half of the total level density. Since there are eight vibrational 
symmetry classes in pDFB, the density of any single symmetry class will 
be approximately one-eighth of the total density. The positions and 
identities of the levels examined in the present study are shown on the 
plot. 

ditional oxygen. A kinetic analysis including both the collisional 
relaxation and the collision-free IVR reproduces quantitatively 
the relative intensities of structured and background emission.” 

Concluding Remarks 
This search for IVR dynamics is summarized in Figure 6, which 

shows a plot of the density of S1 vibrational levels against vi- 
brational energy. It can be seen that the 11 studied levels represent 
a fairly even energy spacing in the encompassed range. Indications 
of a dynamic IVR are observed for every level. IVR appears to 

(17) Holtzclaw, K. W. Ph.D. Thesis, Indiana University, Bloomington, IN, 
1984. 

There is no obvious reason why pDFB would in any way be 
exceptional among polyatomics. In fact, a similar but less en- 
compassing probe of IVR in p-fluorotoluene reveals an analogous 

These results combined with the ubiquitous onsets 
of congested emission in the collision-free spectra3 of many 
polyatomics is suggestive. The dynamic process of IVR may well 
be the rule among levels low in the S1 vibrational manifold of 
aromatics. 

The plot in Figure 6 also emphasizes the extraordinarily low 
level densities a t  which IVR can operate. The accessible vibra- 
tional level densities may be even lower. The densities reported 
in Figure 6 are one half the total level density. That value cor- 
responds to the assumption that the only symmetry restriction on 
coupling is the gerade-ungerade prohibition. If, as is probable, 
the symmetry restrictions are more severe, the accessible density 
will be further reduced. For example, if only a single symmetry 
species can couple to the initially prepared level, the accessible 
density will be about one-fourth of that shown in the figure.19 

The lower levels in our study involve a state density near one 
level per cm-I. Dynamic IVR can occur only if levels overlap by 
their homogeneous widths or if a set of levels is coherently pumped. 
The sparse vibrational density would appear to preclude IVR in 
our experiments as well as those of Moore et al.536 and of Hal- 
berstadt and Tramer.’ It seems imperative that an additional 
source of level density is available to these room temperature 
systems. The most probable candidates are rovibronic levels made 
accessible by Coriolis rotation-vibration coupling. 
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An algorithm for the propagation of wavepackets in nonlinear (anharmonic) potentials is developed. The information contained 
in a chosen set of dynamical variables is retained, and self-consistent, formally exact, reduced equations of motion (REM) 
are derived for these quantities. As a special case, we analyze the use of Gaussian wavepackets by focusing on the first two 
moments of coordinates and momenta, Le., ( x ) ,  ( p ) ,  ( x 2 ) ,  and ( p 2 ) .  For anharmonic systems, the REM contain “mean 
field” terms which assume that the wavepacket is Gaussian at all times and fluctuation terms arising from deviations of the 
actual wavepacket from Gaussian. It is essential to retain the latter terms in order to allow the Gaussian wavepacket to 
have the correct first and second moments. 

1. Introduction 
The evaluation of the propagator exp(-iHt) is a key step in any 

calculation of molecular dynamics and spectroscopy. It is well- 
known that, when the potentials of interaction contain only terms 
linear and quadratic in the coordinates (e.g., harmonic systems), 

Alfred P. Sloan fellow, Camille and Henry Dreyfus Teacher-Scholar. 

the propagator, in the coordinate representation, assumes a simple 
Gaussian form. Consequeltly, if the wave function is Gaussian 
at  t = 0, it will remain SO for all later times.’ It was proposed 
by HellerZ to use Gaussian wavepackets even for more realistic 

(1) R. P. Feyman and A. R. Hibbs, “Quantum Mechanics and Path 
Integrals”, McGraw-Hill, New York, 1965. 
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potentials, by making a local expansion of the potential surface 
and retaining quadratic terms. This results in a simple set of 
equations for the parameters characterizing the Gaussian. 

In this Letter, we consider this algorithm from the perspective 
of nonequilibrium statistical mechanics. Given the actual wave 
function of the system, we introduce a Gaussian wavepacket which 
has the correct first and second moments of the coordinates and 
momenta (x), ( p ) ,  (x2), and ( p 2 ) .  Exact reduced equations of 
motion (REM) for the time evolution of this wavepacket are then 
derived. The REM are self-consistent and guarantee that the first 
two moments are exact. They contain two terms: The first is 
a “mean field” type and arises if we assume that the wave function 
remains Gaussian at all times. The second is a fluctuation type 
term arising from the deviations of the actual wave function from 
a Gaussian form. In section I1 we develop the basic REM which 
allow us to propagate an arbitrary wavepacket by keeping any 
desired number of dynamical variables. In section I11 we focus 
on the first two moments, specify the REM for Gaussian wave- 
packets, and analyze the resulting equations. 

11. The Reduced Equations of Motion 
We shall now derive the reduced equations of motion which 

form the basis for our expansion. We consider a system char- 
acterized by a Hamiltonian H a n d  a density matrix p which obeys 
the Liouville equation 

dp/dt = - i [H,p]  = -iLp ( 1 )  

L being the Liouville operator. We shall adopt a Liouville space 
notation in which an ordinary operator is represented by a ket 
I H ) ) ,  ( p ) ) ,  etc. We further define a scalar product of two op- 
erators as 

( ( A I B ) )  Tr (AtB) (2) 

(For brevity, we set h = 1 in this section.) Usually the complete 
density matrix p ( t )  is very complicated and it will be impractical 
to attempt to calculate it in full detail. Let us focus instead on 
a small set of dynamical variables of interest Ai, i = 0,  1, ..., N 
where A,, 1 is the unit operator and the remaining N operators 
are chosen depending on the level of detail in which we wish to 
construct our reduced description. We shall denote the expectation 
values of these operators by ai(t), Le. 

ai(t) ( (p(t) lAi))  Tr (p( t )Ai)  i = 0, 1, ..., N (3)  

Note that the normalization implies a. = 1. Let us further 
construct a simplified density matrix a(r) (which we may choose 
in a variety of ways) such that it satisfies the constraints of eq 
3, i.e. 

U i ( t )  = ( (4 t ) lA i )  ) Tr (4 t )A i )  (4) 

Normally, a(t) will depend on N + 1 parameters which are chosen 
to satisfy the N + 1 conditions (4). The conventional choice in 
nonequilibrium statistical mechanics is the maximum entropy, 
i.e.3-7 

N 

i=O 
a(t) = e x p E  hi(t)AiI ( 5 )  

hi being determined by eq 4. However, formally we may choose 
any distribution cr(t) which satisfies eq 4. Let us further define 
the following ( N  + 1) X ( N  + 1) matrix 

S ( t ) ,  ( (Ai la( t )Ai ) )  Tr  (A;u(t)Aj) (6) 

(2) E. J. Heller, J .  Chem. Phys., 62, 1544 (1975); Acc. Chem. Res., 14, 

(3) L. Onsager and S. Machlup, Phys. Reu., 91, 1505 (1953). 
(4) E. T. Jaynes, Phys. Reu., 106, 620 (1957); 108, 171 (1957). 
( 5 )  B. Robertson, Phys. Reu., 144, 151 (1966); 160, 175 (1967). 
(6) R. Zwanzig, Suppl. Prog. Theor. Phys., 64, 74 (1978). 
(7) R. D. Levine and M. Tribus, Eds., “The Maximum Entropy 

368 (1981). 

Formalism”, MIT Press, Cambridge, 1979. 

and the operator5 

It is easy to show that P(t)  is a projection opertor in Liouville space 
and has several interesting properties 

( 9  P( t )  P(t? = P ( t )  @a) 
A special case of (i) is P2(t)  = P(t ) ,  which is a necessary condition 
for P to be a projection operator. 

(iii) ( b ( t ) )  ) = ( (ArnI&(t)) ) (8c) 
p being dpldt and ir is daldt .  

(iv) P(t)la(t)A,) ) = 14t)An)) ( 8 4  
properties (i) and (iv) follow directly from the definitions (6) and 
(7).  (ii) and (iii) are proven in Appendix A. P(t )  therefore 
projects the complicated density matrix p ( t )  onto the simpler 
distribution a(t). Suppose now that a t  some initial time t = t ’  
we have 

p( f?  = u(t3. (9) 
In general, p ( t )  for t > t’will not be equal to ~ ( t ) .  Using as- 
sumption (9) we derive, in Appendix B, the following exact REM 
for ai( t )  .4,7 

N 

1-0 
*rn(t) = +((ArnILIU(t))) + CKrnLtJ? al(t) 

K( t , t?  = W(t,t? V-’(t,t? 

wrnn(tit? = -i( ( A r n l ~ Q ( t ) ~ ( t , t ? l ~ ( t ? ~ ~ )  ) 

(10) 

Here 

( 1 Oa) 

(lob) 

vk/(t,t? = ((AklU(t,t?lU(t?AI)) (10c) 

Q(t)  1 - P(t)  ( 1 0 4  

(1Oe) 

is the complementary projection to P ( t ) .  Also 
U(t,t? = exp[-iL(t - t 3 ]  

Equations 10 are exact. These are N equations for the N un- 
knowns ai(t) i = 1, ..., N (note that a, = 1). These equations are 
nonlinear since a(t) and K(t,t? depend on ai(t) in a nonlinear way. 
The first term in eq 10 is a “mean field” term which arises if p ( t )  
= a(t) for all times. In that case Q(t)  p ( t )  = 0 and consequently 
K(t,t’) = 0. The second term arises from the fact that p ( t )  # 
a(t) for t > t’, and corrects the time evolution of a(t). We further 
note that eq 10 is time local unlike the more conventional equations 
which are memory type.& These type of equations were explored 
extensively in several  field^.^^^ The key step in utilizing eq 10 
is to develop some approximate scheme for evaluating the kernel 
K .  This will be discussed briefly below. 

111. Application to Gaussian Wavepackets 
We are now in a position to apply eq 10 to develop an ap- 

proximation for the quantum mechanical propagator. For sim- 
plicity in the notation we specialize to a single degree of freedom 
x. The generalization to multidimensional systems is straight- 
forward. Let us consider the following four relevant variables: 

A ,  = x (1 la)  

A2 = P  (1 1b) 

(8) S .  Mukamel, J. Chem. Phys., 70,5834 (1979); Adu. Chem. Phys., 47, 
509 (1981). 

(9) S .  Mukamel, Phys. Rev. E ,  25, 830 (1982); J .  Stat. Phys., 27, 317 
(1982); 30, 179 (1983); S .  Mukamel and D. Grimbert, Opt. Commun., 40, 
421 (1982). 
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error associated with it may grow rapidly with time. A further 
analysis is required in order to justify the usage of eq 17 for 
realistic anharmonic systems. 

(b) In eq 17, 2 and p obey simply the classical equations of 
motion and are not affected by the second moments ( x 2 )  and ( p 2 ) .  
The self-consistent eq 10 will in general couple all four moments 
and will allow the second moments to affect the first moments. 

(c) Equations 17 may be generalized in two ways. We can 
either add higher moments ( x 3 ) ,  ( p 3 ) ,  etc. by taking a more 
elaborate wavepacket with more parameters. This will increase 
the number of equations. Alternatively, we may retain the 
Gaussian form but then we have to expand eq 10 perturbatively 
in anharmonicities or in h in order to get a self-consistent Gaussian 
wavepacket. 

(d) An alternative self-consistent method based on a nonlinear 
Fokker-Planck equation was developed recently toward obtaining 
a Gaussian approximation which has the correct second-order 
correlation function (and the spectrum).lo That procedure is based 
on constructing an effective harmonic system with more degrees 
of freedom which has the same correlation function as the original 
anharmonic system. 
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Appendix A 
Equation 8b may be derived by starting from eq 7, i.e. 

P(t)lP(t))) = ClrJ( t )  4)) s-'(t), ((A,lP(t))) ( A l l  
J J  

Note, however, that from eq 3 and 4 we have 

( (A j ld t ) ) )  = ((A,lo(t))) = ( ( A j r ~ ( t ) A , )  ) s,o(t) (A2) 

('43) 

Also 

c S - W ,  S,o(t) = 4,o  

Upon the substitution of eq A2 and A3 in eq A1 we get eq 8b. 
Equation 8c may be obtained by starting from 

(A4) ( (A,IP(t)lb(t)))  =C ( (AmlrJ(t)Ak) ) s k F 1 ( t )  ( ( A i I b ( t ) ) )  

Note that from eq 3 and 4 we have 
k J  

d 
( (A/IP(t)) ) = ( ( A I I P ( ~ ) )  ) = ( (Ail+(t)) ) (A5) 

Also from eq 6 

( (AmlrJ(f)Ak) ) = s(t)mk (A61 

Substitution of eq A5 and A6 in eq A4 ressults in eq 8c. 

Appendix B 
Imagine a time t' whereby 

At? = P(t? A t ?  = rJ(t? (B1) 

A t )  = U(t,l? At? (B2) 

(B3) 

Let us write the formal solution of the Liouville eq 1 

where 
U(t,t? = exp[-iL(t - t ' ) ]  

Multiplying both sides of eq B2 by P( t )  and recalling eq B1 we 
get 

4 0  = P(t) A t )  = p( t )  u(t,t? P(t? At? (B4) 
Multiplying by Amt from the left and taking a trace we get 

rJm(t) = E((ArnIU(t,t?ldt?An)) S-l(t?nrrJc(t? (B5) 
n.1 

A3 = x 2  (1 IC) 

A4 = p 2  (1 Id) 

We shall be interested in following the time evolution of these 
variables. To that end we construct the following Gaussian wa- 
vepacket q 0 ( x ) :  

(x l$ , ( t ) )  = ( ")"exp[ i i 
rh h h - a ( x  - $ 2  + - p ( x  - n) + 

Here 2, p, and y are real whereas a is complex, i.e. 
a = i a l  + a2 (12a) 

All these parameters are time dependent. The density operator 
r ~ ( x , x ' )  corresponding to +o is 

r ~ ( x , x : t )  = (x l+o( t ) )  (+o(t) lx')  (13) 

i.e. 

rJ(x,x',t) = - n)2 + ( x ' -  + 

I i i 
- ( Y ~ [ ( x  - f)' - ( x ' -  X)'] + - P ( x  - X') 
h h (14) 

Note that the phase y does not appear in rJ. The four real pa- 
rameters x, p, al, and a2 may be determined via eq 4 where Ai 
are the operators defined in eq 11, Le. 

(1 5a) 

(15b) 

u i ( t )  ( x ( t ) )  = n(t)  

r ~ ~ t )  = ( p ~ )  = p(t)  

h 
u3(t)  - c 1 2 ( t )  = ( x 2 ( t ) )  - ( ~ ( t ) ) ~  = - 

4al(t) 

When eq 14 together with eq 15 is substituted in eq 10 we obtain 
the desired self-consistent equation for the propagation of the 
Gaussian wavepacket with the exact values of the first two mo- 
ments. Note that by eq 15 the parameters r ~ ~ ,  a2, u3, and r~~ carry 
the same information as x, p, al, and a2 and we may express the 
equations in terms of either set of variables. 

We are now in a position to discuss the significance of our 
results: 

(a) The procedure suggested by Heller2 is obtained from our 
equations if we make the following approximations: 

(i) Neglect the fluctuation term K completely (Le., assume that 
the true density matrix p( t )  is Gaussian at all times). Equations 
10 then assume the form 

6,(t) = -- Tr  [A,Hu(t) - A,a( t )HI  (16) 
where a(t) is given by eq 14 and A ,  were defined in eq 11. 

(ii) Make a harmonic expansion for H ,  Le., expand it in co- 
ordinates retaining only quadratic terms. This result is2 

i 
h 

m = 1, ..., 4 

Here, V ( x )  is the interaction potential and the derivatives in eq 
17 are taken at x = Z, p = p. As is clear from our present analysis, 
eq 17 are valid for harmonic systems. Once anharmonicities are 
introduced, these equations do not have the correct self-consistent 
values for 3, p, ( x ' ) ,  and ( p 2 )  due to approximations (i) and (ii) 
made above. Approximation (i) may be quite severe since the (10) S. Abe and S.  Mukamel, J .  Cbern. Pbys., 79, 5457 (1983). 
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We shall now consider p ( t ) :  

J. Phys. Chem. 1984,88, 3188-3196 

where we have used eq 7. 

solve eq B5 for a(t3 and substitute it in eq B8 resulting in 

bm(t) = 

Equations B5 and B8 form the basis for our REM. We now p(t)  = -iLU(t,t? p ( t 3  

P(t)  p ( t )  = -iP(t)L U(t,t? P(t? p(t? 

(B6) 
Again multiplying both sides by P(t )  and using eq B1 we get 

(B7) -ic ( (AmILU(t,t?ldt?An) )(( (AIU(tJ?ldt?A) ) - ‘ )n lUl ( t )  
n.1 

Multiplying both sides by A,+ from the left and taking a trace, 
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Unlike earlier studies of photoelectron spectroscopy which were carried out with traditional light sources, the availability 
of intense tunable radiation provided by synchrotron sources has made possible remarkable progress in the characterization 
of the important dynamical aspects of molecular photoionization. In this article we review both the current experimental 
thrust in molecular photoionization and the theoretical models which are being developed to adequately describe the important 
new features which emerge from these experiments. Progress in this area continues to reveal the rich dynamical content 
of molecular photoionization. 

Introduction 
Molecular photoelectron spectroscopy came into prominence 

with the studies of Turner and his co-workers’ in the early 1960s. 
The main purpose of these studies of photoelectron spectroscopy 
was to characterize a molecule in terms of a simple energy level 
scheme based on molecular orbitals. Although these earlier studies 
contributed significantly to our understanding of both molecular 
electronic structure and of photoelectron dynamics,2 they were 
carried out with traditional light sources and hence did not provide 
photoelectron spectra over a continuous range of photon energy. 
Measurements of these photoelectron spectra over a continuous 
and wide range of photon energies are clearly needed to char- 
acterize the dynamical aspects of the molecular photoionization 
process. Synchrotron radiation provides the intense tunable source 
of photons needed to study the continuous variation of atomic and 
molecular photoionization cross sections with photon energy. The 
increasing availability of synchrotron radiation, coupled with the 
advent of high-resolution, angle-resolving electron spectrometers, 
is making it possible to study the structure and dynamics of the 
electronic continua of atoms and molecules a t  a highly differen- 
tiated level.3 Such experiments, along with related theoretical 
developments, have led to remarkable progress in our under- 
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standing of the dynamics of molecular photoionization processes. 
The main purpose of this article is to review the highlights of 

recent progress in the experimental and theoretical studies of 
molecular photoionization. This article is not intended to present 
a detailed account and critical assessment of developments in this 
field but is written in the form of an informative survey of both 
the current experimental thrust in molecular photoionization and 
the theoretical models which are being developed to adequately 
describe the important new features which are emerging from these 
experiments. We shall see that shape resonances or quasi-bound 
states in which an electron is temporarily trapped by a potential 
barrier play an important role in molecular photoionization and 
lead to very pronounced dynamical features in the photoelectrom 
~ p e c t r u m . ~  Although similar barriers are known in atomic 
systems, the nonspherical force fields of molecules can lead to very 

(1) D. W. Turner, A. D. Baker, C. Baker, and C. R. Brundle, “Molecular 
Photoelectron Spectroscopy: A Handbook of He 584 A Spectra”, Wiley-In- 
terscience, New York, 1970. 

(2) See, for example, J. Berkowitz and W. A. Chupka, J .  Chem. Phys. 51, 
2341 (1969). 

(3) M. 0. Krause in “Synchrotron Radiation Research”, H.  Winick and 
S. Doniach, Eds., Plenum Press, New York, 1980, p 101. 

(4) J. L. Dehmer, D. Dill, and A. C. Parr in “Photophysics and Photo- 
chemistry in the Vacuum Ultraviolet”, S. McGlynn, G. Findley, and R. Hu- 
ebner, Eds., Reidel Publishing Co., Holland, in press. 
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