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ABSTRACT
We develop closed expressions for a time-resolved photon counting signal induced by an entangled photon pair in an interferometric spec-
troscopy setup. Superoperator expressions in Liouville-space are derived that can account for relaxation and dephasing induced by coupling
to a bath. Interferometric setups mix matter and light variables non-trivially, which complicates their interpretation. We provide an intuitive
modular framework for this setup that simplifies its description. Based on the separation between the detection stage and the light–matter
interaction processes, we show that the pair entanglement time and the interferometric time-variables control the observed physics time scale.
Only a few processes contribute in the limiting case of small entanglement time with respect to the sample response, and specific contributions
can be singled out.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079049

I. INTRODUCTION

Interferometric setups introduce a promising new method-
ology for quantum inference of matter information in quantum
spectroscopy.1–5 Since quantum probes change their state upon
interaction with external systems, multiphoton coincidence detec-
tion schemes should reveal quantum correlations induced by the
sample.6,7 We consider the optical measurement setup shown in
Fig. 1, which includes linear and nonlinear elements that trans-
form the optical field before and after it is coupled to a sample.
We focus on time-resolved detection of two photons. We use one
interferometric setup to prepare the initial quantum state of the
light, followed by a second interferometer that manipulates the
arrival times of matter induced radiation to obtain matter pathway
resolution. Interferometric schemes, such as the Mach–Zehnder,8
Hong–Ou–Mandel,9 and Franson,10 provide a useful toolbox to
scan the change in photon statistics by coupling to a sample from
which matter information may be inferred using multiphoton detec-
tion in coincidence.10–12 Quantum-enhancements of interferometric
detection schemes are an experimental reality in several fields.13

The direct detection of gravitational waves,14–16 unprecedented

phase estimation precision with high loss tolerance at lower photon
flux,17–21 and in wide-field imaging22 are all contemporary examples.
Here, we introduce a new family of signals applied to the inference
of objects at the microscopic scale.

Liouville-space pathways break down the density operator evo-
lution into the set of physical processes determined by time ordered
excitation and de-excitation processes (pathways) induced by the
applied fields. Sorting them out is important in order to develop
an understanding of the underlying matter dynamics. This descrip-
tion becomes crucially important when considering the effects of
the environment that break time reversal symmetry. Sorting these
pathways allows us to infer the role of each process in a system-
atic manner. Liouville pathway resolution enables us to compare
model-based theoretical predictions with experiment.23

Our goal is to sort out the Liouville-space pathways by scan-
ning interferometric delays in the preparation and detection stages.
We wish to identify what type of information regarding the dyna-
mics of the system and its coupling to a bath can be inferred
from these measurements. We consider two interferometers at the
preparation and detection processes, as depicted in Fig. 1 and fur-
ther discussed in Sec. II. Two-port linear interferometers induce
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FIG. 1. The quantum interferometry setup. (a) The Michelson interferometer U generates a pair of photons with variable exchange-phase θ, used as a control for the
photon-pair degree of distinguishability [see Eq. (2)]. The photons acquire the relative delay s. (b) State preparation protocol in which two photons are generated with a
possible relative delay, then coupled to the sample, and finally detected in coincidence in a Hong–Ou–Mandel interferometer (boxed area).

transformations in the two-photon space.24,25 They generate rota-
tions in the basis of the electromagnetic field.1 These transfor-
mations offer a unique set of control knobs used in both the
preparation and detection stages. These control parameters provide
novel spectral windows.2 We show that the interferometric con-
trol variables enable to conveniently scan the temporal dynamics.
We derive compact superoperator expressions for the time-resolved
coincidence-signal of two photons expanded in terms of Liouville-
space pathways. For simplicity, we consider two ideal detectors that
are fast in comparison to all relaxation times of the sample. This
extends Glauber’s celebrated theory of detection.26

The general expressions are given in Appendix B. For sim-
plicity, we have derived an approximation for the limiting case
of vanishing two-photon temporal separation (the entanglement
time Te). The two photons then arrive simultaneously relative to
the observed dynamics timescale. This corresponds to a vanish-
ing moving time average of the response, thus sensitive to the
dynamics above Te, which is in the femtosecond regime. At these
timescales, we expect environment effects to be more pronounced,
which requires the Liouville space approach. Moreover, using the
novel time variables, we are able to separate different processes
in the evolution of the sample in the time domain, from which
different transport mechanisms can be studied in detail, such as
exciton–exciton scattering.27–29

II. THE SETUP
Our setup shown in Fig. 1(a) contains two interferometers.

An entangled pair is prepared using a Michelson interferometer as
introduced in Refs. 13, 30, and 31 and depicted in Fig. 1(b). At the
detection stage, we employ a Hong–Ou–Mandel interferometer. In
this section, we provide the theoretical framework required for the
inclusion of both interferometers.

Each stage in the setup introduces a superposition of fields,
which we denote basis rotation or transformation. These platforms
are presented in a modular manner such that each stage is respon-
sible for a well-defined property (e.g., introducing a delay). Quan-
tum mechanically, the stages are inseparable since more than one
absorption, emission and detection events occur in all possible time
orderings. However, we limit the discussion to a distant detection
plane such that the propagation time of the emitted photons is much
longer than the typical time of the entire process. The detection and
interaction are then completely factorized temporally as depicted in
Fig. 2.

A. Interferometric state preparation
We assume a broadband ultrafast pump pulse that is known

to imprint identifying spectral information on each of the optical
modes. The modified Michelson interferometer in Fig. 1(a) gener-
ates control over this feature by controlled systematization of the
wavefunction in a type-II phase matching setting. This results in
engineered degree of distinguishability as discussed below.

The pump beam is reflected by the dichroic mirror (DM) and
then passes the first time through the β-barium borate (BBO) crys-
tal. The generated entangled pair passes through the λ/4 plate that
switches the polarization such that ϕ(ωa, ωb)→ ϕ(ωb, ωa) and then
exits the interferometer from the left. Otherwise, the pump photon
is reflected by the second DM and passes through the BBO crystal
for the second time with a controlled phase introduced by the piezo-
electric transducer (PZT) device on which mirror M1 is positioned
generating possibly an entangled pair. Finally, the pump beam is
filtered out of the interferometer by the first DM.

The combined nonlinear interferometer transformations create
a two photon wavefunction of the form
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FIG. 2. Block design for two-photon interferometric spectroscopy. Decoupling of the interaction and detection process when both are well temporally defined. (a) The
detection pathways corresponding to the HOM interferometer placed after the sample. Here, τ > 0 is the detection time difference of the two photons and T > 0 is the HOM
delay. Two paths of direct propagation OI−II along with OIII−IV in which there is a coherence between reflected and transmitted modes. (b) Ladder diagrams that correspond
to the light–matter interaction corresponding to the matter correlation functions in Eq. (8a) (for a three-level model system). Only processes in which two photons interact
with the sample and two are detected and sketched.

∣Ψθ⟩ = ∫ dωadωbΦθ(ωa, ωb)a
†
(ωa)b†

(ωb)∣vac⟩. (1)

The amplitude is given by

Φθ(ωa, ωb) =
1
√

2
[ϕ(ωa, ωb) + eiθϕ(ωb, ωa)]. (2)

The joint spectral amplitude (JSA) resulting from the direct-
channel ϕ(ωa, ωb) (due to one pass in the BBO with aligned
polarizations) used in our calculations is given by ϕ(ωa, ωb)

=Ap(ωa + ωb)φ(ωa, ωb). The Gaussian pump envelope Ap(ω)
= exp[(ω − ωp)

2
/σ2

p] is centered around ωp characterized with
the bandwidth σp.32 The phase-matching factor φ(ωa, ωb)

= sinc[(ωa − ω̄a)Ta + (ωb − ω̄b)Tb], breaks the frequency exchange
symmetry, i.e., φ(ωa, ωb) ≠ φ(ωb, ωa). Here, ω̄a/b is the central
frequency of the signal and idler beams, and Ta/b = L(v−1

a/b − v
−1
p ),

where L is the nonlinear crystal length and v is the inverse group
velocity at the relevant central frequency (ω̄a/b, ωp). In this (type-II)
phase matching condition, the channels are flipped using their
opposite and orthogonal polarization degrees of freedom, e.g.,
∣Ψθ⟩ = ∣HV⟩ + eiθ

∣VH⟩, where V and H correspond to horizontal
and vertical polarizations, respectively. For different phase matching

conditions that give rise to identically polarized biphotons, one
would expect a different output, e.g., ∣Ψθ⟩ = ∣HH⟩ + eiθ

∣VV⟩.
Here, we have calculated the preparation step in the Schödinger

picture, modifying the initial amplitude rather than the field opera-
tors. The detection stage is computed using the Heisenberg picture
as explained in Sec. III. This way, the dynamics is calculated in
the matter’s reference-frame, as done in Ref. 2. Each interferome-
ter introduces additional spectroscopic control parameters that can
be used to study the joint light–matter quantum state.

III. DETECTION PATHWAYS
The detection process involves a Ong-Ou-Mandel (HOM)

interferometer as shown in the boxed area of Fig. 1(b). We define
the signal in time domain. We consider a sample described by the
Hamiltonian Hμ that is coupled to field degrees of freedom Hϕ by
the dipolar interaction Hint = μ(r, t) ⋅ E(r, t). Here, μ(r, t) = V(r, t)
+V†
(r, t) is the dipole operator, V = ∑i<j μij∣i⟩⟨j∣ is a lowering tran-

sition operator acting in the molecular Hilbert space with the corre-
sponding matrix element μij, and E(r, t) = ∑σ[Eσ(r, t) +H.c. ] is the

electric field operator given by Eσ(r, t) = ∑k

√
2πk
ΩQ

ϵ̂σ(k)ak,σ(t)eik⋅r ,
where ϵ̂σ(k) is the σ-polarization vector, ΩQ is the quantization
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volume (c = 1), and ak,σ(a†
k,σ) are (bosonic) photon annihilation

(creation) operators obeying [ak,σ , a†
k′ ,σ′] = δσ,σ′δk,k′ . Hereafter, we

assume that the applied field is near resonance with a molecular
transition such that the rotating wave approximation (RWA) may
be applied by setting Hint = EV†

+ E†V .
The two-photon coincidence signal is defined by

Ô(t, τ) = E†
a′ ,R(ra, t)E†

b′ ,R(rb, t + τ)Eb′ ,L(rb, t + τ)Ea′ ,L(ra, t). (3)

Here, ER and EL are electric field superoperators that act from the
right ERρ ≡ ρE and left ELρ ≡ Eρ of the density operator. We further
define their linear combinations A±O = ALO ± ARO (correspond-
ing to the Hilbert-space commutator and anti commutator). These
will be useful for the compact description in the interaction picture
below. The primes reflect the fact that the detection and interac-
tion planes are described in different basis sets due to the HOM
transformation, as explained below.

A. The HOM detection interferometer
In our setup in Fig. 1, two beams are combined on a beam

splitter (BS) that is mounted on a movable stage. This enables to
scan variable propagation times of the reflected pathways of the
beam with respect to the transmitted ones, introducing the HOM
time-delay T. This process is described by a linear transformation
since the photons at the detection plane are represented in a dif-
ferent basis. The transformation (Jordan–Schwinger map) can be
represented as an SU(2) rotation in the frequency-domain,24,25,33–35

resulting in the input–output relation for the field operators. Writing
the field in vector notation given by E(r, ω) = (Ea(r, ω), Eb(r, ω))T ,
the HOM rotation the detected field is given by E∣detection(r, ω)
= R̂TE∣interaction(r, ω), where R̂T is given by

R̂T =
⎛

⎜

⎝

t ireiωT

ire−iωT t

⎞

⎟

⎠

. (4)

Here, t and r are the transmission and reflection coefficients obey-
ing ∣t∣2 + ∣r∣2 = 1. For the 50:50 BS considered here, t = r = 1/

√

2.
In the following, we express all field operators in the matter
interaction-domain basis E∣interaction ≡ E(r, ω), which requires the
inverse rotation of the observable in Eq. (3).1

B. The observable
Glauber’s G(2)(τ) coincidence signal is formally given by the

expectation value of this observable, which is evolved using the total
density matrix of the field and matter in the interaction picture,

C(t, τ) = ⟨TÔ′(t, τ)e
− i

h̵

t∗
∫
−∞

dsHint,−(s)
⟩. (5)

Here, T is the time ordering superoperator that maintains
the bookkeeping of the interaction events, e.g., TA(t1)B(t2)

= θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1), the Heaviside step-
function is defined by θ(t) = 1, ∀t ≥ 0, and θ(t) = 0, ∀t < 0. Note
that the interaction Hamiltonian superoperator is represented by the
field modes prior to the transformation. Hong-Ou-Mandel interfer-
ometer (HOMI) introduces the time delay T as an additional control
parameter to the observable superoperator O(t, τ)→ O(t, τ, T). For

the HOM detection setup, we should transform the observable in
Eq. (3) according to the HOM transformation [Eq. (4)], resulting
in 16 detection pathways. Only the four—in which one photon of
each mode are detected—contribute to our signal (see also Ref. 9),
reducing Eq. (3) to

Ô′(t, τ, T) = OI +OII +OIII +OIV , (6)

where the detection pathways are given by

OI = E†
a,R(ra, t)E†

b,R(rb, t + τ)Eb,L(rb, t + τ)Ea,L(ra, t), (7a)

OII = E†
b,R(ra, t)E†

a,R(rb, t + τ)Ea,L(rb, t + τ)Eb,L(ra, t), (7b)

OIII = −E†
a,R(ra, t)E†

b,R(rb, t + τ)Ea,L(rb, t + T + τ)

×Eb,L(ra, t − T), (7c)

OIV = −E†
b,R(ra, t − T)E†

a,R(rb, t + T + τ)

×Eb,L(rb, t + τ)Ea,L(ra, t). (7d)

Note that since Eq. (6) is given in the basis of the interaction
domain [different from Eq. (3)], none of the quantities are primed
in the definition of Ô as well as the field operators Em,X (m ∈ {a, b},
X ∈ {L, R}). We have explicitly included the HOM delay T variable
to the coincidence observable, which is expressed in OIII−IV and a
(−) sign [Eq. (6)]. All four combinations depicted in Fig. 2(a) (top
right) contribute to the interferometric coincidence signal. When
the BS is removed, the ordinary coincidence detection setup can also
be recovered by only keeping the OI contributions.

IV. THE INTERACTION PATHWAYS
We expand the signal in Eq. (5) perturbatively to fourth order

in Hint such that each photon interacts twice with the sample. Gen-
erally, four interactions generate 16 left-right Liouville pathways.
In addition, each arrow may point inward/outward resulting in a
total of 256 possible pathways. As depicted in Figs. 2(a) and 2(b),
this number is significantly reduced mainly due to the coincidence
detection and the initial Fock state. Note that Fig. 2(b) contains
half of the contributions and their complex conjugates should be
added. It is possible to further reduce the number of contributions
by the following considerations. Near resonance, the rotating wave
approximation (RWA) can be invoked, resulting in the simplified
interaction Hamiltonian Hint = EV†

+ E†V . We further consider the
three-level model systems depicted in Fig. 3, initially in the ground
state ρ0 = ∣g⟩⟨g∣, so that the first interaction can only be excitation
(no de-excitation). This eliminates contributions in which an emis-
sion event occurs after a single photon is detected. The expectation
value ⟨Ô⟩ is thus real (note that the diagrams in Fig. 3 are symmetric
with respect to exchange of L-R and taking the complex conjugate).
By convention, we only include pathways in which the last inter-
action is taken from the left with an outgoing arrow (generated a
detected photon). The contributions in which the last interaction is
from the right are related to these by conjugation and interchanging
L-R. The full signal is finally given by 2Re⟨Ôpi⟩, where pi denotes
all pathways terminated at the left. The top interaction from the left
must point outward; otherwise, this mode is not occupied and hence
not detected. Photon number conservation implies an equal num-
ber of inward/outward arrows. Only diagrams in which two photons
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FIG. 3. Interaction pathways for three-level exciton model. The five interaction
pathways with the respective exciton dynamics for the selected three-level exciton
model system. Each energy manifold ∣{g}⟩, ∣{e}⟩, ∣{ f }⟩ is composed of several
states.

interact with the sample and two photons are detected contribute
to the signal. Since two-photon population is detected, diagrams in
which there is a single arrow in one of the sides are eliminated.

The five surviving pathways are depicted in Fig. 3; all contain
two field modes from each side of the density operator. Their com-
plex conjugates should be added as well. These processes are labeled
Pi, where i ∈ [1, 5] in Fig. 3, corresponding to the superoperator
correlation functions denoted as Fi given by

F1(τ1, τ2, τ3) = ⟨VLG(τ1)V†
RG(τ2)V†

LG(τ3)VR⟩, (8a)

F2(τ1, τ2, τ3) = ⟨VLG(τ1)V†
LG(τ2)V†

RG(τ3)VR⟩, (8b)

F3(τ1, τ2, τ3) = ⟨VLG(τ1)V†
RG(τ2)VRG(τ3)V†

L⟩, (8c)

F4(τ1, τ2, τ3) = ⟨VLG(τ1)V†
LG(τ2)VLG(τ3)V†

L⟩, (8d)

F5(τ1, τ2, τ3) = ⟨VLG(τ1)VLG(τ2)V†
LG(τ3)V†

L⟩ (8e)

(plus their complex conjugates). Here, ⟨⋅ ⋅ ⋅ ⟩ ≡ tr{⋅ ⋅ ⋅ ρμ(−∞)},
where ρμ(−∞) is the initial state of the matter, and Liouville-space
Green’s function is given by G(t) = − i

h̵ θ(t)e−iLμt−ηt .
The matter correlation functions Fj(τ1, τ2, τ3), with

j = 1, . . . , 5, presented in Eq. (8a) and illustrated in Fig. 3,
provide a useful microscopic insight into the capabilities of
entangled-photon spectroscopy to retrieve detailed information
on ultrafast photoinduced dynamics of various chemical systems,
inter alia molecular aggregates, whose dynamics is determined by

the electronic interaction induced Frenkel exciton scattering and
exciton–phonon interactions. Since the actual measured correlated
signals are represented by convolutions of Fj with the doorway and
window functions, the latter containing relevant information on
the entangled photon sources, as well as interferometric supple-
ment, and having nothing to do with the dynamics of the system
under study, one should in first place understand what kind of a
matter dynamical information is contained in the aforementioned
four-point correlators.

Since all matter dynamical information, available via coherent
four-wave mixing spectroscopy, is fully contained in the third-order
nonlinear response function,

Fcoh = ⟨V̂+G(τ1)V̂−G(τ2)V̂−G(τ3)V̂−⟩, (9)

with V̂ = V + V†, the differences in the spectroscopic information,
provided by entangled-photon vs four-wave mixing spectroscopies,
originate just from the different Liouville-space structures of the
four-point matter correlators F. Although the latter is apparently
very different for F, presented in Eq. (8a) vs Eq. (9), the issue allows
for a clear, simple, and conceptually explicit analysis as follows.

Indeed, as shown, using Liouville space Green functions
techniques36,37 and further by means of the Nonlinear Exciton Equa-
tions (NEEs),38 in the case of weak to moderate exciton–phonon
coupling, when the dynamics is dominated by excitonic effects
and effects of polaron formation/self-trapping are not sub-
stantial, there are three phenomena that contribute to optical
response: (i) exciton–exciton scattering, described in terms of the
exciton–exciton scattering matrix Γ̄(ω), (ii) exciton–photon cou-
pling mediated transport, described by the exciton transport correla-
tion function G(2)

(ω), (iii) and combined effects, expressed in terms
of convolutions of the two above; of course, the expressions for the
response contain the one-exciton Green function G(ω) that contains
the exciton–phonon coupling induced exciton dephasing.

The Green function approach can be extended to analyze
the Liouville space correlators Fj in Eq. (8); this analysis will be
addressed in detail in a separate publication (here we just present its
main outcome) to relate it to the Feynman diagrams (Fig. 3). Despite
a very different Liouville-space structure of the correlators in the
entangled photon vs four-wave mixing case, due to the specific fea-
tures of the Frenkel exciton model with moderate exciton–photon
coupling, the ingredients that enter the final expressions, namely,
Γ̄(ω), G(2)

(ω), and G(ω) stay the same, just the final expressions
get modified. Translating the results, presented in Eq. (8a) from the
Sum-over-States (SOSs) to the exciton-scattering language, we can
combine the Feynman diagrams (4) and (5) in Fig. 3 to obtain type
(i) effects, i.e., pure exciton–exciton scattering; it is well known that
combining these two diagrams, we take care of the so-called can-
cellation of the N2 term problem, which in the exciton-scattering
approach happens automatically. Combining diagrams (1), (2), and
(3), we obtain a type (ii) contribution that reflects exciton trans-
port effects, since in diagrams (1) and (3), the system is in the
population/exciton–exciton coherence state during the τ2 time seg-
ment. In diagram 2, the system is in the ∣g⟩⟨g′∣, which means in the
ground electronic state with different phonon structures, it plays a
proper cancellation role for exciton transport in the way how dia-
gram (4) operates for exciton scattering. Note that both diagrams
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(2) and (4) also describe slight modification/renormalization of the
exciton scattering matrix due to exciton–phonon coupling.

Very importantly, type (iii) effects (combined exciton–exciton
scattering and exciton transport) in the four-wave mixing on the
SOS language originate from the diagrams when the system is in
the population/exciton–exciton coherence and two-exciton ground
state coherence (∣ f ⟩⟨g∣ or ∣g⟩⟨ f ∣) during the time periods τ2 and
τ3, respectively. Since such diagrams never appear in the entangled-
photon spectroscopy case, type (iii) effects do not contribute to the
signals in the latter case.

Summarizing, unlike the coherent four-wave mixing spec-
troscopy, the entangled-photon spectroscopy studies only effects
of exciton–exciton scattering and exciton transport, with no com-
bined contributions, thus providing a better separation of dynamical
phenomena that contribute to spectroscopic data.

A. The signal
In Fig. 1(a), we consider the HOMI detection setup. The prepa-

ration alters the primary source, resulting in the JSA given in Eq. (2).
The HOMI detection transforms the G(2)(τ) signal in Eq. (3) into
Eq. (6).

The total signal involves summing over all the product combi-
nations of detection pathways in Fig. 2(a) with all the interaction
pathways depicted in Fig. 2(b) (see Appendix B for the expres-
sions of all combinations for a general preparation process). The
signal contains many terms corresponding to all combinations of
Liouville pathways i ∈ [1, 5], with all detection pathways defined in
Eq. (6) Oν, where ν = I, . . . , IV . One way to think about it is that
each process Pi is obtained by a coherent superposition of all HOM
detection pathways Sν,i, and the signal is given by their superposi-
tion. For an illustrative example of the derivation of a contribution,
see Appendix B. The coincidence signal in Eq. (10) is finally given by

C(τ, T, s) = 2Re{∑
ν,i
Sν,i}, (10)

where Sν,i ≡ tr{OνPiρ(−∞)} and the detection and interaction
pathways are labeled in Fig. 2. The detection pathways are given
in Eq. (6) (see Appendixes A–C for detailed expressions). Note
that the density matrix is given by a product of the matter and
field, respectively, ρ(−∞) ≡ ρμ ⊗ ρφ. The field is traced with respect
to ρφ ≡ ∣Ψθ⟩⟨Ψθ∣ using Φθ(t1, t2) =

1√
2
[ϕ(t1, t2) + e−iθϕ(t2, t1)] with

respect to Eq. (1) due to the Michelson interferometer.

B. The short entanglement-time limit
We now invoke an approximation that greatly simplifies this

signal. Consider a symmetric joint spectral amplitude, obtained by
either using θ = 0 in Eq. (2) or via a narrowband pump. In either
case, the entanglement time Te represents the time window in which
both photons arrive.30 We also consider the characteristic time scale
for the matter dynamics to be bound from above by τR. We focus on
the regime τR ≫ Te such that both photons arrive simultaneously.
The relative delay s introduced in Fig. 1(a) between the pair now sets
the time interval in which all interactions occur. In this limit, the
amplitude is approximated by a narrow distribution,

Φ(t1, t2)→ δ(t1 − t2 − s). (11)

Consequently, processes with vanishing time intervals between
interactions do not contribute to this order (τ1, τ2, τ3) ≠ 0. Note that
Φ(t1, t2) is symmetric to t1 ↔ t2 exchange under this approxima-
tion, which is consistent with θ = 0. Here, the Michelson interfer-
ometer is used for rectification of the exchange phase θ when an
ultrafast pump is used. Alternatively, a narrowband pump can be
used in which the exchange phase correction is no longer essential.
Since (T, τ, s) are measured on a finite grid, we define the discrete
time delta distribution δt1 ,t2 , which attains the value 1 when t1 = t2
within our setup. Plugging Eq. (11) in the signal Eq. (B1) for τ ≥ −T
and s > 0, we obtain

C(τ > −T, T, s) = 2Re{− θ(τ + T)F1(T, τ + T − s, 2s − T)∣E

− θ(τ + T)F2(2T + τ − s, s − T − τ, τ + s)∣E
− θ(τ + T)[F3(T, τ + s, T − 2s)
+F3(T + τ, s − 2T − τ, T + τ)]∣E

+ 2δτ,s ∫ dτ3F5(∣τ∣, τ3, ∣τ∣)∣D

− 2δ2T+τ,s ∫ dτ3F5(∣τ∣, τ3, 2T + τ)∣E}, (12)

where the coincidence contribution C4 does not appear in this limit.
We have introduced the notation ∣E/D corresponding to the direct
(OI,II) and exchange (OIII,IV) paths of the HOM interferometer.
From this, we see that only process i = 5 in Fig. 3 contributes to both
the direct paths OI/II and the rest are limited to the exchanges OIII/IV .
In this limit, we already appreciate the degree of control offered
by the interferometric setups, offering a novel temporal inference
tool-box. For example, for s = 0, only exchange path processes may
contribute since s sets up the scale in which all the interactions with
the sample occur. HOM exchange paths are not restricted by this
due to the ambiguity in the arrival times. We thus single out the
F3 contribution, C(τ > −T, T, s = 0)∝ −θ(τ + T)Re{F3(T, τ, T)}.
In addition, for τ = 0, we obtain

C(τ = 0, s < T < 2s, s)∝ θ(T)Re{F1(T, T − s, 2s − T)}, (13a)

C(τ = 0,
s
2
< T < s, s)∝ θ(T)Re{F2(2T − s, s − T, s)}, (13b)

C(τ = 0, 2s < T, s)∝ θ(T)Re{F3(T, s, T − 2s)}. (13c)

Equations (13a)–(13c) demonstrate that by following the multidi-
mensional data, it is possible to isolate certain contributions in the
time domain.

V. DISCUSSION
The setup above presents several types of control variable over

the signal. These can be categorized in three groups: (a) classical
pump, (b) preparation, and (c) detection parameters. The pump
related parameters include the central frequency of the pump and its
spectral width (ωp, σp). The preparation setup is rich with param-
eters including the central frequencies of the daughter photons
and their respective time (ω̄a, ω̄b, Ta, Tb) using the phase match-
ing conditions and dispersion properties of the nonlinear crystal at
these frequencies (see Sec. II). These parameters were not scanned
here and offer a rich playground for future studies. The detection
parameters include the number of detected photons (here, two) and
the HOM Delay T.
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Interferometric spectroscopy with quantum light has several
merits. Due to the specified number of interacting and detected pho-
tons, certain pathways that contribute to classical signals are elimi-
nated. This feature has strictly quantum origin since we are using
Fock states. Due to the application and detection of a fixed num-
ber of photons, the signal records only processes that lie within the
two-photon subspace. This greatly reduces the number of Liouville-
space pathways. One can define an entropic measure from the
Liouville pathway probability functional that depends on the prepa-
ration and detection details. Ultimately, it is possible to identify the
activated pathways by shaping this probability with the available
control parameters. This represents the quantum information gain
obtained by the protocol. One way to see that is by defining a path-
way related entropy S0 = −∑

L
i=1Pi log Pi, where L is the number of

Liouville pathways with a given probe and Pi is the probability of
the ith pathway. Then, compare it to the entropy of the interfero-
metric setup S = −∑L

i=1Qi log Qi, where Qi is the overall probability
of the ith pathway in the manipulated scheme. Ultimately, one can
quantify the quantum inference due to the detection process alone
using an identical probe and different detection by calculating the
Kullback–Liebler divergence D[P∥Q] = ∑L

i=1pi log Pi
Qi

.39

Each of the delays in this setup affects the signal differently,
which allows us to control the pathways in the time domain.
For example, by taking Φ(t1, t2)→ δ(t1 − t2 − s), the entire process
duration is set by s for the direct detection pathways. This stems from
the fact that one photon is absorbed and emitted, while its entangled
partner goes straight to the detector in some pathways. One observes
a superposition of processes in which both photons interact with the
sample with a conjugate process in which both had not. Therefore,
the two-photon coherence time sets the characteristic interaction
duration for the direct pathways. The exchange detection pathways
have more freedom due to the superposition in the time domain
introduced by the HOMI. When the material system under study
possesses several characteristic time scales τR, they can be studied
separately by adjusting s.

Coincidence-detection further involves unique scaling rela-
tions between the applied intensity Ip, the light-sample coupling and
the detected signal. This allows us to avoid damaging the sample by
using weak quantum fields.2
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APPENDIX A: HILBERT-SPACE APPROACH
TO PHOTON COUNTING

In this appendix, we propose an alternative derivation in which
the entire calculation is computed in Hilbert space. This repre-
sentation has the advantage of offering more compact expressions
reflected in less diagrams. However, when external degrees of free-
dom are included to account for inaccessible processes as a result of
possible coupling to the environment, this is no longer possible.

Our observable is expressed via interaction of an field mode
with the detector, changing its polarization. This can be described
using perturbative expansion of the interaction Hamiltonian with
the detector degrees of freedom such that each interaction event
contributes a single interaction to the wavefunction that describes
the light, sample, and detector. An N photon measurement operator
corresponds to

M′
= T∫ ⋅ ⋅ ⋅∫ dt1 ⋅ . . . dtN dr1 ⋅ . . . drN Hint(t1) ⋅ . . .Hint(tN),

(A1)
where each active pixel corresponds to a single interaction Hamilto-
nian Hint(t) = E ⋅V . When the detector’s dipole response is taken
to be small and fast, we approximate it as the delta distribution
in space-time and obtain the known Glauber detection scheme.
We consider an ordered measurement scheme without loss of gen-
erality for the two-photon coincidence scheme. We also assume
that the detection plane is far from the sample such that the time
ordering operator does not mix the two-photon detection with
the light–matter coupling. The wavefunction of the sample and the
detectors at positions {ri, ti} is separable and, therefore, takes the
form

∣Θ(t);{ri, ti}⟩μφM = ∣Ψ(t)⟩μφ∣g, g⟩M .

Here, the subscripts M, φ, and μ describe the detectors, field, and
sample, respectively. After the interaction with the detectors,

∣Θ(t);{ri, ti}⟩μφM =
2 detectors

E(ra, ta)E(rb, tb)∣Ψ(t)⟩μφ∣e1, e2⟩M

=M(ra, rb; ta, tb)∣Ψ(t)⟩μφ∣e1, e2⟩M . (A2)

Developing the light-sample wavefunction perturbatively, we obtain

∣Ψ(t)⟩μφ =∑
k=0
∣Ψ(k)(t)⟩μφ, (A3)

∣Ψ(k)(t)⟩μφ = (−
i
̵h
)

k
T+ ∫ ⋅ ⋅ ⋅∫ dt1 ⋅ . . . dtkdr1 ⋅ . . . drkHint(t1)

⋅ . . .Hint(tk)∣Ψ(−∞)⟩μφ, (A4)

where T+ denotes the time ordering operator forward in time
T+A(t1)B(t2) = θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1). Note
that we introduced the (+) subscript to the time ordering since the
Hermitian conjugate evolves formally backward in time using T− to
the left of the observable. We calculate the probability of this detec-
tion setup by taking the modulus square of this amplitude, resulting
in

P({ri, ti}) = ⟨Θ(t);{ri, ti}∣Θ(t);{ri, ti}⟩μφM , (A5)

= ⟨Ψ(t)M†
({ri, ti})T−∣T+M({ri, ti})Ψ(t)⟩μφ, (A6)
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and explicitly

P(ra, rb; ta, tb) =
∞
∑

k,l=0
⟨Ψ(l)(t)E†

(rb, tb)E
†
(ra, ta)T−∣T+

× E(ra, ta)E(rb, tb)Ψ
(k)
(t)⟩μφ. (A7)

This equation is exact in the light–matter interaction and per-
turbative in the interaction with the detector. Note that until this
stage, all field-source contractions are permitted such that emission
of a photon can occur after the detection of another. From this point,
we assume that the detectors are placed far from the interaction
area such that one can assume that the time ordering applies for the
light–matter interaction solely and the detection events are ordered
by definition (ta > tb),

P(ra, rb; ta, tb) = ∑
k,l=0
⟨Ψ(l)(t)∣E†

(rb, tb)E
†
(ra, ta)

× E(ra, ta)E(rb, tb)∣Ψ
(k)
(t)⟩μφ. (A8)

Each term in Eq. (A8) can be represented using a fully time
ordered loop diagram, as depicted in Fig. 4. This figure represents
the forward (in time) evolution of the ket (left) perturbatively in the
interaction picture to the kth order and the bra backward in time to
the lth order along the time contour τC. Between interaction events,
the sample and the electromagnetic field are evolved using their free
Hamiltonian. The lowest order in which two photons interact with
the sample and detected is fourth. Contributions with odd num-
ber of photons from the left or right at the detection are naturally
eliminated. This corresponds to

P(ra, rb; ta, tb) ≈
4

∑

k,l=0
⟨Ψ(l)(t)∣E†

−(rb, tb)E
†
−(ra, ta)

× E+(ra, ta)E+(rb, tb)∣Ψ
(k)
(t)⟩μφ, (A9)

where the ± subscripts highlight the operation direction of the field
with respect to the time contour τC for positive and negative time
directions. Equation (A9) gives rise to two kinds of contributions:
(1) four interactions in one side and none at the other and (2) two
interactions from each side. The Hilbert space description—while
equivalent to the alternative Liouville space—results in partial time
ordering. The time ordering is maintained along the contour τC
and thus along the left and right branches of the diagram in Fig. 4
individually. Alternatively, if one is interested in evolving the den-
sity matrix (in Liouville-space), the relative time-ordering of left and
right branches is also important, resulting in absolute time ordering.
This difference becomes important in the interpretation of pertur-
bative treatments of light–matter coupling and essential when one
considers coupling to reservoirs. As a result, in the wavefunction
approach (Hilbert space), the relative coherence during the evolu-
tion is not expressed; only the final phase is accumulated along the
entire evolution of the bra and ket separately such that the over-
all coherence is accounted for as shown in Fig. 5(a). Alternatively,
in the Liouville-space approach, the change in coherence is instan-
taneously monitored in the calculation process as demonstrated in
Fig. 5(b). For time dependent perturbation theory that includes
terms which break time reversal (bath), using the Liouville space
approach is inevitable and thus invoked in this paper.

FIG. 4. Diagrammatic representation of the typical term in Eq. (A8). The left (right)
branch of the diagram represents the forward (backward) evolution of the joint
light–matter wavefunction. The number of interactions in each branch corresponds
to the respective order of perturbation of either the bra or the ket in the interaction
picture. The interaction and detection intervals in this calculation do not overlap,
although, in principle, they may overlap.

APPENDIX B: THE SIGNAL

The signal in Eq. (10) is composed of all processes Pi evaluated
with all observables Oj. One way to think about it is that each pro-
cess Pi is obtained by coherent superposition of all HOM detection
pathways Ci(t, τ, T), and the signal is given by their superposition.
The coincidence signal in Eq. (10) can be written accordingly as

C(t, τ, T) = 2Re{
5

∑

i=1
Sν,i} (B1)

and solved for each detection-interaction pathway combination
below separately.

1. Example of one process–observable combination
We now illustrate how to combine the preparation and obser-

vation boxes for a single term from the total signal. We chose SI,1
as shown in Fig. 6. This contribution introduces four combina-
tions of field modes corresponding to coupling with a and b modes,
(aa, bb, ab, ba). We consider the realization in which a is coupled
from the left and b from the right,
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FIG. 5. Partial vs full time ordering. (a) A typical fourth order term in the wavefunction perturbative treatment. (b) Similar terms in Liouville space expansion. Breaking the
loop contour (forward and backward) into a single time evolution for both the bra and the ket.

FIG. 6. The resulting combination of the ν = I direct detection pathway and i = 1
interaction pathway.

SI,1∣aLbR = ∫ dt4dt3dt2dt1θ(t1t2)θ(t2t3)θ(t3t4)

× tr{[E†
b,R(t + τ)Eb,L(t + τ)E†

a,R(t)Ea,L(t)]

× E†
a,L(t1)Eb,R(t2)Ea,L(t3)E†

b,R(t4)ρφ(−∞)}

× tr{VL(t1)V†
R(t2)V†

L(t3)VR(t4)ρμ(−∞)}.

The operators in the square brackets correspond to the detec-
tion process and thus last. Initially, only two field modes are popu-
lated, and thus, we assume that after the detection process, the field
returns to its ground-state (vacuum) and obtains

SI,1∣bLaR = ∫ dt4dt3dt2dt1θ(t1t2)θ(t2t3)θ(t3t4)

× ⟨vac∣Eb,L(t + τ)Ea,L(t)E†
b,L(t1)Eb,L(t3)∣Ψθ⟩

φ

× ⟨Ψθ∣E
†
a,R(t4)Ea,R(t2)E†

a,R(t)E
†
b,R(t + τ)∣vac⟩

φ

× ⟨VL(t1)V†
R(t2)V†

L(t3)VR(t4)⟩
μ
,

where we have plugged in the explicit expression for the source
term ρφ ≡ ∣Ψθ⟩⟨Ψθ∣ using Φθ(t1, t2) =

1√
2
[ϕ(t1, t2) + e−iθϕ(t2, t1)].

Following Ref. 40, we change the integration time variables to time
differences between interaction events and obtain

SI,1∣bLaR = ∫ dτ3dτ4Φθ(t, t − τ3)Φ∗θ (t, t − τ3 − τ4)

× ⟨VLG(τ0)V†
RG(τ2)V†

LG(τ3)VR⟩
μ
,

where Liouville-space Green’s function is given by G(t)
= −

i
h̵ θ(t)e−iLμt−ηt . This term was obtained from Eq. (10) using

one additional approximation: the free-photon propagator from the
sample to the detector is taken to be ⟨Ea,L(t)E†

a,L(t1)⟩ ≈ δ(Δt − L/c),
where L/c is the distance between the detector and the sample, c is
the speed of light, and Δt is taken to be the time difference between
the emission and detection.

APPENDIX C: THE FINAL SIGNAL—ALL COMBINATIONS

Here, we combine all possible contributions that correspond
to all contributing configurations of the detection and interaction
pathways. All pathways are summed as shown in Eq. (10).

1. Sν,1

SI,1 = ∫ dτ3dτ4Φ∗(t − τ3:4, t + τ0)Φ(t, t − τ3)F1(τ0, τ3, τ4),

SII,1 : ∫ dτ3dτ4Φ∗(t + τ0, t − τ3:4)Φ(t − τ3, t)F1(τ0, τ3, τ4),

SIII,1 = −∫ dτ3dτ4Φ∗(t, t + τ0 − τ3:4)Φ(t + τ0 − τ3, t − T)F1

× (T, τ3, τ4) − ∫ dτ3dτ4Φ∗(t − τ3:4, t + τ0)

×Φ(t − τ3, t − T)F1(T + τ0, τ3, τ4),

SIV ,1 = −∫ dτ3dτ4Φ∗(t + T + τ, t − T − τ3:4)Φ(t − T − τ3, t + τ0)

×F1(T, τ3, τ4) − ∫ dτ3dτ4Φ∗(t + T + τ, t − T − τ3:4)

×Φ(t, t − T − τ3)F1(τ0 + T, τ3, τ4).
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2. Sν,2

SI,2 = ∫ dτ3dτ4Φ∗(t − τ4, t + τ0)Φ(t, t + τ3)F2(τ0 − τ3, τ3, τ4),

SII,2 = ∫ dτ3dτ4Φ∗(t + τ0, t − τ4)Φ(t + τ3, t)F2(τ0 − τ3, τ3, τ4),

SIII,2 = −∫ dτ3dτ4Φ∗(t, t + τ0 − τ4)Φ(t + τ0 + τ3, t − T)

×F2(T − τ3, τ3, τ4) − ∫ dτ3dτ4Φ∗(t − τ4, t + τ0)

×Φ(t + τ3, t − T)F2(τ0 + T − τ3, τ3, τ4),

SIV ,2 = −∫ dτ3dτ4Φ∗(t + T + τ, t − T − τ4)Φ(t − T + τ3, t + τ0)

×F2(T − τ3, τ3, τ4) − ∫ dτ3dτ4Φ∗(t + T + τ, t − T − τ4)

×Φ(t, t − T + τ3)F2(τ0 + T − τ3, τ3, τ4).

3. Sν,3

SI,3 = ∫ dτ3dτ4Φ∗(t − τ3, t + τ0)Φ(t, t − τ3:4)F3(τ0, τ3, τ4),

SII,3 = ∫ dτ3dτ4Φ∗(t + τ0, t − τ3)Φ(t − τ3:4, t)F3(τ0, τ3, τ4),

SIII,3 = −∫ dτ3dτ4Φ∗(t, t + τ0 − τ3)Φ(t + τ0 − τ3:4, t − T)

×F3(T, τ3, τ4) − ∫ dτ3dτ4Φ∗(t − τ3, t + τ0)

×Φ(t − τ3:4, t − T)F3(τ0 + T, τ3, τ4),

SIV ,3 = −∫ dτ3dτ4Φ∗(t + T + τ, t − T − τ3)Φ(t − T − τ3:4, t + τ0)

×F3(T, τ3, τ4) − ∫ dτ3dτ4Φ∗(t + T + τ, t − T − τ3)

×Φ(t, t − T − τ3:4)F3(T + τ0, τ3, τ4).

4. Sν,4

SI,4 = ∫ dτ3dτ4Φ∗(t, t + τ0)Φ(t − τ4, t + τ3)F4(τ0 − τ3, τ3, τ4),

SII,4 = ∫ dτ3dτ4Φ∗(t + τ0, t)Φ(t + τ0 + τ3, t + τ0 − τ4)

×F4(τ0 − τ3, τ3, τ4),

SIII,4 = −∫ dτ3dτ4Φ∗(t, t + τ0)Φ(t − T + τ3, t − T − τ4)

×F4(2T + τ0 − τ3, τ3, τ4),

SIV ,4 = −∫ dτ3dτ4Φ∗(t + T + τ, t − T)Φ(t − τ4, t + τ3)

×F4(τ0 − τ3, τ3, τ4).

5. Snu,5

Here, each contribution is naturally symmetrized,

SI,5 = ∫ dτ3dτ4Φ∗(t, t + τ0)[Φab(t − τ3, t − τ3:4) +Φba]

×F5(τ0, τ3, τ4),

SII,5 = ∫ dτ3dτ4Φ∗(t + τ0, t)[Φab(t − τ3, t − τ3:4) +Φba]

×F5(τ0, τ3, τ4),

SIII,5 = −∫ dτ3dτ4Φ∗(t, t + τ0)[Φab(t − T − τ3:4, t − T − τ3)

+ Φba]F5(τ0 + 2T, τ3, τ4),

SIV ,5 = −∫ dτ3dτ4Φ∗(t + T + τ0, t − T)[Φab(t − τ3, t − τ3:4)

+ Φba]F5(τ0, τ3, τ4).
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