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ABSTRACT: Major advances in X-ray sources including the development of circularly polarized
and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented
energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the
theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the
X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of
possible signals and their information content are discussed.
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1. INTRODUCTION
Newly developed X-ray sources such as free electron lasers
(FELs) or high harmonic generation (HHG) offer most
valuable insights on molecular structures and processes, with
unprecedented spatiotemporal resolutions and atomistic
sensitivity of molecular dynamical events. Significant advances
have been made in the control of the polarization and the
spatial structure of X-ray beams which are required to probe
chirality. In the optical regime, such capabilities have allowed
probing chiral molecules efficiently. X-ray chiral techniques are
now developing in a similar fashion. This review surveys chiral
techniques and their simulations with emphasis on the X-ray
regime.
Chiral molecules are defined by their lack of mirror

symmetry and are ubiquitous and of high relevance to
chemical and biological function1 and to drug design. Two
mirror-symmetric molecules are known as enantiomers and
possess some distinct physical and chemical properties. The
geometrical operation linking opposite enantiomers is an
inversion, also known as a parity transformation. The toxicity
of enantiomers also differs. For example, R-methadone has
analgesic and respiratory effects while S-methadone has no
such effects.2,3 D-Cocaine has higher activity and faster
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toxicokinetics than L-cocaine.4 (−)-(S)-Thalidomide has
multiple positive effects, but prescriptions of the racemate in
the late 50s led to a pharmaceutical disaster by causing fetal
malformations.5 Historically, early studies were made by
Pasteur in 1858, who had observed the selective fermentation
by bacteria of D-tartaric acid only.6 As can be seen from these
selected examples, the determination of the chirality of a
compound is of vital importance for the pharmaceutical,
chemical, and material industries.
Enantiomeric pairs interact with light in a different manner.

Molecular chirality was first discovered through the rotation of
the light polarization induced by a chiral sample due to the
different speeds of left and right circularly polarized light,7,8 a
technique now known as optical rotatory dispersion (ORD).
This effect can lead to the use of chiral molecules, crystals, or
nanostructures to design optical devices that control the
electromagnetic field polarization.9−13 Various light-matter
interaction processes may lead to enantiomer-specific spectro-
scopic signals, thereby detecting, for example, enantiomeric
excess in a solution. A chiral signal has an opposite sign for the
two enantiomers14−16 due to the extra minus sign introduced
by the parity inversion and, thus, vanishes in a racemic mixture.
Chiral signals are directly linked to the molecular geometry
and, thus, provide valuable structural information. Such signals
can be obtained by, for example, taking the difference of two
spectroscopic observables for different polarizations. For
example, the circular dichroism (CD) technique measures
the difference in the absorption of left and right circularly
polarized light. This technique usually involves the cancellation
of contributions within the electric dipole approximation and
the observation of a pseudotensor quantity that becomes the
leading term in the matter response. Pseudotensors are
quantities that do not change sign under a parity operation
when their rank is odd and reverse their sign when it is even. A
pseudotensor is crucial in chiral signals since it ensures that a
parity operation (equivalent to an exchange of two
enantiomers or of left and right polarization) provides the
desired cancellation. Unfortunately, these pseudotensors
usually require higher order multipoles (magnetic dipoles
and electric quadrupole) in the interaction. The interaction
multipoles are the terms of a converging multipolar expansion
of the molecule charge or polarization densities.17 Their
contributions to the signals are much weaker than their
nonchiral counterparts by a factor a/λ, typically 10−2 to 10−3,
where a is the molecular size and λ is the wavelength of the
incident light.
In some cases, chiral signals can be obtained even in the

electric dipole approximation when considering unbounded
states or nonlinear optical interactions18 or when using the
minimal coupling interaction (avoiding the multipolar
expansion altogether). Such signals are stronger since they
do not contain the a/λ factor and can lead to highly sensitive
chiral discrimination, making them potentially interesting for
various applications.
Molecular chirality offers a window onto fundamental

questions such as the origin of biological homochirality.19−22

L-Amino acids and D-sugars are exclusively present in biological
molecules, and it is believed that life could not exist with
heterochiral systems.23,24 Competing theories attempt to
explain the link between chirality and life. First, parity violation
exists at the fundamental level due to the electroweak
interaction, resulting in a ground state energy difference
between opposite enantiomers.25 However, this parity-violating

energy difference is extremely small (≈10−19 eV) and has not
been measured experimentally so far. Some have proposed26,27

that, despite being very small, this energy difference could
favor one enantiomer over another over extremely long time
scales. Others consider this small energy difference as
insignificant and promote a statistical approach implying a
spontaneous symmetry breaking.28 Detecting extraterrestrial
life could resolve this issue.
Detecting chirality with a high degree of accuracy and

sensitivity is of interest for a broad range of applications. The
main techniques routinely employed in the IR and visible
regimes are circular dichroism (CD), optical activity (OA),
optical rotatory dispersion (ORD), and Raman optical activity
(ROA). In this review, we present extensions of these
techniques as well as new possible X-ray techniques.
The first chiral X-ray magnetic circular dichroism (XMCD)

measurements in crystals were carried out with synchrotron
sources. In this technique, the difference in X-ray absorption
spectra (XAS) of left and right incoming polarization is taken
in the presence of a strong magnetic field.29,30 This technique
provides valuable information on atomic spins. However, the
parity breaking is induced by an external field and is not linked
to an intrinsic molecular chirality, which is the subject of this
review. With recent developments of X-ray sources and their
polarization control, natural X-ray chirality can now be probed
at large scale facilities such as synchrotrons and X-ray free-
electron lasers (XFELs) as well as with tabletop sources
(HHG).
X-rays offer a particularly useful probe of molecular chirality

thanks to their short wavelength. In essence, chirality is a
molecular structural property, and the atomic resolution of X-
rays gives better structural information than possible in the
optical regime. The chirality is typically localized around a
chiral center, often a carbon atom. Alternatively, it may be
associated with global structures such as helices.1 By tuning the
X-ray wavelength to be resonant with a core transition, one can
get local insight on the chirality and map it across the molecule
instead of merely considering it a global property. It is also
possible to probe the chirality of the surrounding atoms in
order to measure the delocalization of chirality. Already in the
frequency domain, X-ray chiral signals offer numerous new
insights, but their capabilities are even more striking in the
time domain. Photoexcitation of chiral molecules can trigger
ultrafast charge migration and nuclear dynamics in a few
femtoseconds, and X-rays can resolve them while combining
while adding its usual advantages in structure and element
sensitivities. Understanding these dynamics and controlling the
photoexcitation of chiral molecules have great promise for
photoinduced chiral purification.
Frequency domain signals which probe molecular chirality in

the ground state have been implemented in lower frequency
(optical and infrared) regimes. Time-resolved extensions of all
these signals are straightforward by starting with a system in a
nonstationary state and monitoring the chiral nuclear and
electronic dynamics.
Chiral dynamics can provide most valuable information on a

large variety of systems. First, phototriggered chiral dynamics
in molecules that are chiral in their ground states can be
resolved. Compared to time-resolved (tr) signals that are
sensitive to the overall dynamics, core-resonant chiral
dynamics provides structural information at the vicinity of
the chiral center. Thanks to the element selectivity of core
transitions, one gets two-point molecular information by
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exciting at some position and detecting at another. For
example, in Figure 1, a chiral dynamics is triggered in the linear

molecule 1-bromo-1-amino-n-chloro-nonene. It has been
shown that an X-ray chromophore, here chlorine, offers a
sensitive window into the delocalization of chirality;31 see
section 3.1. By going into the time domain, it should be
possible to probe how fast a chiral dynamics propagates to
different locations within a molecule. Second, achiral molecules
can acquire chirality through photoexcited nuclear dynamics in
the excited states. This is the case, for example, in formamide,
which is planar and achiral in its electronic ground state and
becomes chiral in the excited state by out-of-plane bending.32

Finally, chirality can be induced in an achiral molecule through
interaction with another chiral molecule.33 This is relevant to
biological systems where chiral molecules present in the
protein structure can interact with a reaction center through
dipole−dipole coupling. The photosynthetic reaction center,
that often contains X-ray chromophores, e.g. metalloporphyr-
ins, can acquire an optical activity through the presence of
nearby chiral molecules. The induced molecular chirality can
thus measure the time-dependent coupling between the chiral
molecule and the probed achiral one.
In this review, we present expressions for time-resolved (tr)

techniques such as tr-XCD (X-ray circular dichroism), tr-
XROA (X-ray Raman optical activity), tr-PECD (photo-
electron circular dichroism), and tr-HD (helical dichroism).
To keep the presentation general, we do not specify the
preparation process and simply assume a nonstationary initial
molecular wave function. A standard pump−probe approach
can be used where an actinic pump pulse triggers a desired
dynamics that is subsequently probed after a delay using the
chiral detection mode.34 Alternatively, a stimulated Raman

pump can induce a broadband ultrafast excitation.35 More
elaborate multipulse preparation schemes can be envisioned as
well.
Chiral HHG (cHHG) is a recent exciting development in

time-resolved chiral X-ray experiments.36,37 An intense mid-IR
field38 is used to ionize a molecule. The released electron is
then accelerated by the intense laser field until it recombines
with the same molecule, emitting soft X-ray HHG light (up to
500 eV) in the process. Enantiomers were found to produce a
different HHG spectrum depending on the incoming laser
ellipticity.36 A precise control of the emitted light polarization
in free electron laser (FEL) sources has been achieved through
undulators.39 In FELs, an electron bunch is propagated
through a magnetic periodic structure, the undulator, giving
rise to an electromagnetic emission coupled to the bunch.40

Fine details of the electron trajectory are imprinted in the
generated light: a sinusoidal trajectory results in linearly
polarized light, while a helicoidal trajectory produces a
circularly polarized signal.41,42 The total control of the emitted
polarization of FELs has been achieved recently.39,41

Synchrotrons constitute a third common source of X-ray
light that have long produced circular polarized light43 for
continuous or nanosecond samples. Circularly polarized X-rays
can be obtained by collecting them off-axis above and below
the orbit plane. This source provides imperfect polarization
states at a rather low flux. Insertion devices are then used to
amplify the beam.44 Each of these sources have their own
merits. HHG sources offer the shortest (attosecond) pulse
duration and are tabletop but are limited to soft X-rays and
weak fluxes. Recent developments have reached the carbon K-
edge at 284 eV.45 Synchrotrons are very stable sources over a
broad frequency range (10−120 keV) and are widely available
worldwide. The most common (multibunch) operation mode
provides a continuous light source that can be used for
frequency domain techniques. A single bunch can be singled
out for time-resolved experiments with a resolution down to
tens of picoseconds.46 X-ray FELs are less common but
produce ultrashort high brilliance beams (few femtoseconds or
even attosecond47) particularly suitable for ultrafast time-
resolved nonlinear experiments. The improvement and
development of dedicated beamlines with accurate polarization
control of X-rays at synchrotrons48−52 and FELs53−56 are
making chiral techniques increasingly available to a broader
range of experiments. We further note that many beamlines
built for XMCD at synchrotrons can be used for XCD
measurements.
Two X-ray light characteristics make them particularly

suitable for chirality measurements. First, due to its high
photon energy, X-ray light can easily ionize the sample, and the
emitted photoelectrons can be detected, leading to X-ray
photoelectron spectroscopy (XPS). Its chiral extension, PECD,
is obtained by measuring the difference in XPS with left and
right polarizations.57−59 Second, the X-ray wavelength can be
comparable to the interatomic distance, leading to an
extremely small Abbe diffraction limit. Fields with varying
spatial profile across the molecular charge density can be
produced. The multipolar expansion of the light-matter
coupling then completely fails, and the light-matter interaction
must be described in the minimal coupling Hamiltonian that
implicitly incorporates all multipoles. Such signals can further
exploit the orbital angular momentum of light,60 potentially
leading to a new family of chiral techniques.

Figure 1. (a) Scheme for a tr-CD signal: a chiral dynamics is triggered
by an actinic pump and subsequently probed by a chiral-sensitive
technique, here CD.31 (b) X-rays have been shown to probe the
spatial extension of the molecular chiral density. Going into the time
domain will offer a window of how this quantity will propagate
spatially within a molecule.
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The above survey of chiral signals suggests a natural
classification scheme of signals according to the interaction
Hamiltonian that should be used in their description: electric
dipole, multipolar, or minimal coupling. This classification will
be adopted in this review. Multipolar coupling signals such as
XCD, XROA, and four-wave mixing (4WM) signals are
presented in section 3. These are direct extensions of the
corresponding optical techniques but take advantage of several
unique properties of X-ray pulses, namely element specificity
and localization of the interaction, ultrashort (down to the
attosecond) pulses, and large bandwidths. Signals that exist in
the electric dipole approximation are discussed in section 4.
These include signals involving complex electric dipoles, i.e.
bound to unbound transitions, such as PECD, as well as ones
derived with even order susceptibilities such as sum frequency
generation χ(2) (SFG). In section 5, we discuss signals that
require the full spatial variation of the incoming field. Helical
dichroism (HD), the difference in absorption of Laguerre−
Gauss beams with a specific transverse profile and opposite
orbital momenta, is an example.
Ultrashort X-ray sources can look at time-resolved chiral

signals in which an excited state is first prepared and is then
probed through a chiral observable such as CD or ROA. Time-
resolved near UV CD (tr-CD) in a pump−probe setup has
been reported recently.61 We have shown that tr-XCD
involving a visible pump−X-ray probe can provide valuable
information.32 In a simplified picture, the molecular potential
energy surface (PES) can be described by a double-well
potential, where the minima correspond to the two
enantiomers. Commonly, the enantiomers are stable in their
ground state at room temperature; the energy barrier between
them is high and prevents interconversion dynamics. This
barrier can be small in the excited state, and an asymmetric
wavepacket in the excited PES can propagate back and forth
between the two minima, giving rise to a time-evolving chiral
signal.
In summary, X-rays offer many advantages to chiral

techniques. Their use as a local probe of core transitions or
the Ångström-resolved diffraction provides valuable structural
insights. Additionally, the magnitude of chiral X-ray signals is
favorable and can enhance intrinsically weak signals. Finally, X-
rays and extreme ultraviolet (EUV) are at the forefront of
extreme ultrafast measurements by reaching the attosecond
regime.

2. GENERAL CONSIDERATIONS REGARDING X-RAY
CHIRAL MEASUREMENTS

2.1. Pseudotensors, Polarization Vectors, and Rotational
Averaging

We first introduce the notation necessary to describe chiral
spectroscopic observables that will be used throughout this
review. We start with the parity operator which reverses the
sign of all coordinates. It spawns the parity group that has two
irreducible representations, with characters +1 and −1. Under
a coordinate inversion, a true vector μ becomes μ μ= − . A
pseudovector m, on the other hand, does not change sign, i.e.

=m m. Examples of true vectors and tensors are the electric
field E or vector potential A, the electric dipole moment μ, and
the electric quadrupole q. The magnetic field B and the
magnetic dipole moment m are examples of pseudovectors. An
arbitrary tensor, such as nonlinear response functions, can be
decomposed into irreducible parts, that are symmetric and

antisymmetric upon the action of the parity operator. A rank n
tensor, also called a true tensor, changes sign upon inversion

according to = −T T( 1)n n n( ) ( ) while a rank n pseudotensor

changes sign as = − +T T( 1)n n n( ) 1 ( ).
Chiral signals originate from the lack of parity. Pseudo-

tensorial response functions represent such quantities, and
spectroscopic observables sensitive to chirality are expressed
from the antisymmetric part of response tensors. One
straightforward manner to do that is to cancel out the
symmetric contribution by taking combinations of the same
observable with different polarization configurations. In
particular, this can be done with circular polarizations given by

= − = −e ei i
1
2

1

0

1
2

1

0
L R

i

k

jjjjjjjj

y

{

zzzzzzzz

i

k

jjjjjjjj

y

{

zzzzzzzz
(1)

where eL and eR are the left- and right-handed polarization
vectors for a plane wave propagating along z. The vectors (eL,
eR, ez) form an orthonormal basis with the following properties:

* = − * = −e e e eL R R L (2)

· = · = · = −e e e e e e0 1L L R R L R (3)

× = − × =e e e e e ei iz L L z R R (4)

Equation 3 shows that the basis obtained using circular
polarization, known as the irreducible basis, does not have a
Cartesian metric but instead an antidiagonal one with
components (−1, 1, −1) along the antidiagonal. One must
then be careful when performing tensor contractions with this
basis. Equation 4 allows one to get the polarization vectors b of
the magnetic field

= ×b e e
c
1

L R z L R/ / (5)

Many chiral measurements rely on the cancellation of
nonchiral contributions when the difference of the observable
between left and right polarization is taken. Thus, the following
formulas will be routinely used:

− = − ϵ ̂* *e e e e i kL
a
L
b

R
a

R
b

c
ab c

(6)

δ+ = − ̂ ̂* *e e e e k kL
a
L
b

R
a

R
b

ab
a b

(7)

where ϵc
ab and δab are the Levi−Civita and Kronecker symbols.

This relationship is true for the left and right plane wave
propagating along a wavevector k. ̂k is the unit vector along k.
In the basis defined in eq 1, we have ̂ = ek z.
Finally, rotational averaging wiQll be repeatedly carried out

later on. Chiral signals are only defined for rotationally
averaged ensembles. This is because, in many cases, signals
such as circular dichroism do not vanish in oriented achiral
samples and are, thus, not chirality-specific in these cases.
Rotational averaging of a rank N tensor T, ⟨T⟩Ω, is achieved by
rotating the tensor T using rotation matrices R and integrating
over all solid angles:

∫⟨ ⟩ = Ω Ω Ω

=

λ λ
λ λ

λ λ
λ λ

ΩT d R R T

I T

( )... ( )

( )

i i i i

N i i

... ...

( )
...
... ...

N
N
N N

N
N N

1
1
1 1

1
1 1

(8)
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where the tensor λ λT ... N1 is in the molecular frame and
⟨ ⟩ΩTi i... N1 is in the laboratory frame. The averaging tensors I(N)

are given in Appendix A.
2.2. Coupling of Light to Chiral Matter

Signals described by three radiation/matter coupling Hamil-
tonians will be considered in this review. We first introduce the
electric dipole coupling Hamiltonian.

μ= − ·H t tE( ) ( )int (9)

where μ is the electric dipole and E is the incoming electric
field. This interaction does not generate pseudotensorial
quantities for even order susceptibilities. However, if the
electric dipole is complex, it is possible to obtain chiral
signals,18 as discussed in section 4.
The second interaction is given by the multipolar

Hamiltonian62,63 truncated at the electric quadrupole

μ= − · − · − ·∇m qH t t t tE B E( ) ( ) ( ) ( )int (10)

where m and q are the magnetic dipole and the electric
quadrupole, respectively, and B is the magnetic field. Since m
is a pseudovector and q is a second-rank tensor, this coupling
can generate chiral observables.
Finally, the last, exact, interaction Hamiltonian discussed in

section 5 is

∫ ∫ σ= − · +H t d t
e
m

d tr j r A r r r A r( ) ( ) ( , )
2

( ) ( , )int
2

(11)

where j(r) and σ(r) are the current and charge density
operators and A is the vector potential. e and m are the
electron electric charge and mass. This coupling is derived by
t h e s t a n d a r d m i n ima l c o up l i n g Ham i l t o n i a n
∑ −α α α α αq r t mp A( ( , )) /22 , where the sum is over elementary
charges. Expanding the square and taking the continuous limit
for the sum leads to eq 11. This description is convenient to
describe extended structures. Standard electronic structure
codes can provide the matrix elements of the charge and the
current density operators

σ ψ ψ= †er r r( ) ( ) ( ) (12)

ψ ψ ψ ψ

= | ⟩⟨ | + | ⟩⟨ |

= ℏ ∇ − ∇

†

† †

r r p p r r
e
m
e
mi

j r

r r r r

( )
2

( )

2
( ( ) ( ) ( ( ) ) ( ))

(13)

where ψ†(r) and ψ(r) are the electron field fermion creation
and annihilation operators at position r and p is the
momentum operator. The σA2 interaction cannot induce
chiral signals by varying the polarization, since the matter
quantity involved is a scalar, insensitive to the field polar-
ization. However, the use of spatially varying fields with orbital
momentum is still possible. The current density is a vector field
that need not have a well-defined parity; that is, it can have
both odd and even contributions under a parity inversion.
Chiral signals can thus arise by mixing these two contributions.
The three coupling Hamiltonians discussed in this section

(electric dipole coupling, multipolar coupling, minimal
coupling) naturally construct a way to classify chiral-sensitive
signals as summarized in Table 1. Interestingly, this
classification is not only formal but also encompasses different
experimental aspects. The multipolar coupling signals rely

usually on dichroic measurement in which the strong achiral
background gets canceled out. The electric dipole coupling
signals either use nonlinear interactions in the incoming field
or transition toward a continuum (photoionization). Finally,
the minimal coupling Hamiltonian is well suited for techniques
using beams with large spatial variations.

3. CHIRAL SIGNALS INVOLVING ODD-PARITY
MULTIPOLES

We first discuss chiral signals that are expressed in terms of
odd-parity multipoles, for example, the magnetic dipole and
the electric quadrupole at the lowest order. These multipoles
are usually not the first nonvanishing order in the multipolar
expansion of the interaction Hamiltonian, and the relevant
signals are small chiral corrections to a strong achiral
background. These chiral contributions to the signal can be
isolated by canceling out the unwanted achiral terms through
multiple measurements with opposite circular polarization
configurations. Despite their weakness, these signals have been
most used experimentally. This section presents first the
frequency domain signals and selected experimental and
simulation results in the X-ray regime.
3.1. X-ray Circular Dichroism

In this section, we consider signals described by the multipolar
Hamiltonian, eq 10. We start with the simplest chiral signal,
circular dichroism (CD): the absorption difference between
left and right polarized incoming light. XCD signals can be
measured in the frequency or in the time domain. In the
former, circularly polarized plane waves are used to measure
absorption and their frequency is scanned, while, in the latter,
the free induction decay following an impulsive excitation is
measured in time and is then Fourier transformed. The ladder
diagrams contributing to the CD signal and the experimental
geometry are given in Figure 2a and b, respectively. A
diagrammatic representation of interaction pathways allows
one to interprete, design, and compute spectroscopic signals in
a systematic way. Double-sided Feynman diagrams, see e.g.
Figure 2a, describe pathways on the density matrix in Liouville
space while loop diagrams, see e.g. Figure 7, represent the
evolution of the bra and ket wavefunctions in Hilbert space.
Each representation has its merits and the rules to read these
diagrams are given in Appendix C.
The signal is usually normalized by the sum of the

absorption spectra that have a purely electric dipole character.

ω
ω ω
ω ω

=
−
+

S
A A

A A
( )

( ) ( )

( ( ) ( ))
L R

L R
CD 1

2 (14)

where Ap is the absorption signal of a p polarized light (p = L
for left and R for right) and ω is the incoming field frequency.

Table 1. Chiral-Sensitive Signals Discussed in This Reviewa

Multipolar Electric Dipole Minimal Coupling

Static XCD SFG/DFG HD
XROA cHHG HROA

PECD
Time-resolved tr-XCD tr-PECD tr-HD

tr-ROA tr-cHHG tr-HROA
aXCD: X-ray circular dichroism. XROA: X-ray Raman optical activity.
PECD: photoelectron circular dichroism. cHHG: chiral high
harmonic generation. HD: helical dichroism. HROA: helical raman
optical activity. tr: time-resolved.
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The electric quadrupole moment q contribution to the CD
signal averages to zero in isotropic ensembles of randomly
oriented molecules, since the electric quadrupole is a
symmetric tensor and may be neglected.14 This is in contrast
with anisotropic systems, for example, crystals, whereby
rotational averaging is not done and the signal is dominated
by the electric quadrupole−electric dipole response. In the X-
ray regime, the absorption baseline is routinely shifted to zero
below the edge, and the definition in eq 14 leads to a vanishing
denominator and large uncertainties. To avoid divergences, we
thus use an alternate definition:

ω
ω ω
ω ω

=
−
+

S
A A

A A
( )

( ) ( )

(max ( ) max ( ))
L R

L R
CD 1

2 (15)

where the max A indicates the value of the spectrum at the
main edge. This definition tends to underestimate the signal
asymmetry ratio around the edge but prevents a divergence
when the absorption signal is very small.
XCD in solids, also known as X-ray natural circular

dichroism (XNCD) as opposed to XMCD, was first measured
in 1998 by Alagna et al. on single crystals at the Nd L3-edge.

64

XCD has also been measured in molecular crystals of cobalt
and neodymium complexes65,66 at their Co K- and Nd L-edges,
respectively. Theoretical works have highlighted the impor-
tance of the electric quadrupole−electric dipole coupling for
XCD.66−68 In the following, we focus on randomly oriented
molecules where the quadrupolar term vanishes. The first
measurements of XCD on a chiral molecule at the carbon K-
edge69 were reported on methyloxirane in the gas phase,
shown in Figure 3a. The experiment made use of the elliptical
wiggler at the ELETTRA synchrotron to generate circularly
polarized light, and the measured asymmetry ratio was ∼ −10 3.
This molecule contains multiple chiral carbons, and it was
shown that tuning the photon energy can lead to a selection of
the probed chiral carbon.
XCD has also been measured in serine and alanine thin films

at the oxygen K-edge,70,71 shown in Figure 3b, and at the
nitrogen K-edge on histidine.72 The O K-edge XCD
experiments were conducted using helical undulators at
SPring-8 on powder samples deposited on a SiN thin film by
sublimation. Deposited samples can simplify the experimental

setup but are required to cancel out the linear anisotropy
component if it is present. Figure 3b highlights the spectra
around the 1s → π* transition of the oxygen atom in the C−
OH group. The large variation of spectra in this area shows
that XCD can be very sensitive to small local structural
variations.
Multiple XCD signals have been measured on chiral

molecules, mostly in a crystallized form73 or embedded in a
film.71,74 XCD measurements on oriented samples are not per
se a measure of molecular chirality but are still an interesting
probe of electric dipole−electric quadrupole mechanisms. Such
mechanisms also play an important role in other chiral signals
such as X-ray Raman optical activity.
The absorption signal of a p polarized weak probe is given

by75,76

μω ω ω ω ω ω= ·⟨ ⟩ + ·⟨ ⟩* *A E B m( ) 2 Im ( ) ( ) ( ) ( )p
p p p

(16)

This signal can be decomposed into E−E (electric dipole−
electric dipole) and M−E (magnetic dipole−electric dipole)
contributions:

∑
μ μ

ω ω
ω ω

= −
ℏ

| | *·
·

− − Γ
− e eA E

i
( )

4
3

Im
( )p

E E

c
cg p p
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cg cg
0
2

2 2

(17)

∑
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ω ω
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= −
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| | *·
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− − Γ
− b e
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c i

( )
4
3

Im
( )p

M E

c
cg p p
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0
2

2 2

(18)

Figure 2. (a) Ladder diagrams of the CD signal (for diagram rules see
Appendix C). Permutation of the electric dipole μ and magnetic
dipole m must be included. (b) Geometry of a CD measurement.

Figure 3. (a) CD spectrum at the C K-edge of S-(−)-methyloxirane
measured by Turchini et al.69 Reprinted with permission from ref 69.
Copyright 2004 American Chemical Society. (b) CD spectra at the O
K-edge of L-tyrosine (black), L-aspartic acid (red), L-serine (green),
and L-alanine (blue) films measured by Izumi et al.71 Reprinted with
permission from ref 71. Copyright 2013 AIP Publishing.
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Since *· = *· = −e e e e 1L L R R , −− −A AL
E E

R
E E vanishes. On the

other hand, *· = − *· = −b e b e iL L R R and the M−E contributions
add up. Introducing the line shape function fcg(ω) given by

ω
ω

ω ω
=

− − Γ
f

i
( )

( )cg
cg

cg cg
2 2

(19)

the left and right polarization difference and sum become

∑ μω ω ω− =
ℏ

| |
·mA A

E
c
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Re ( )L R
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(20)

∑ μ μω ω ω+ =
ℏ

| | ·A A E f( ) ( ) 2
4
3

Im ( )L R
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cg gc cg0
2

(21)

Finally, the sum-over-states (SOS) expression of the CD
signal defined in eq 14 reads

μ

μ μ
ω

ω

ω
=

∑ ·

∑ ·

m
S

c

f

f
( )

2 Re ( )

Im ( )
c cg gc cg

c cg gc cg
CD

(22)

Equation 22 is the standard expression for CD signals.14 It is
common to interpret it using the rotatory strength

μ= ·mRgc gc cg (23)

CD signals have been routinely used in the IR/visible
regimes due to their high sensitivity to molecular structure. In
the X-ray regime, one can combine the structural information
with the element specificity of the X-ray excitation to probe the
molecular chirality at the vicinity of a chosen atomic element
within the molecule.
Figure 4 depicts the simulated X-ray CD spectra of o-, m-,

and p-chlorophenylethanol (CPEO) molecules at the Cl L2,3-
edge. The simulations were carried out using the restricted
excitation window TDDFT (REW-TDDFT) under the
Tamm−Dancoff approximation. The chlorine atom which
serves as the X-ray chromophore located at the various
positions (ortho, meta, and para) provides a local probe of
molecular chirality. The CD spectra depicted in Figure 4 show
that the maximum chiral signal strength follows the order o > p
> m for the different substituted molecules. The meta
substituted molecule has the weakest electronic coupling
with the chiral center. This trend is in agreement with other
optical reactivity and conductivity properties.77,78

Figure 5 shows another example of X-ray CD at the chlorine
L2,3-edge in 1-bromo-n-chloronona-2,4,6,8-tetraen-1-amine
chains. The rotatory strength at the strongest XAS peak is
displayed vs the X-ray chromophore position. We see a
decrease with the distance between the X-ray chromophore
and the chiral center, revealing again the sensitivity of the XCD
to the local molecular chirality.
Experimental XCD signals at the C K-edge of three amino

acids (L-phenylalanine, L-tyrosine, L-tryptophan) and S-
ibuprofen deposited on a SiN substrate measured at Elettra,
Trieste, are shown in Figure 6. The differences of the XCD
spectra of the three amino acids illustrate the sensitivity of
XCD to the molecular geometry over a large distance from the
chiral center, despite the localized nature of the core orbitals.
Comparison with ab initio calculations of the XCD spectra
shows that the contribution from carbon atoms localized at
inequivalent sites in the molecules can be spectrally separated
in the XANES spectrum. Thus, probing with a narrow band X-
ray pulse allows selection of a location within the molecule.

We now turn to the time-resolved extension of XCD, tr-
XCD. The most common setup is to pump a chiral molecule or
an achiral molecule that becomes chiral in its excited state with
an actinic pulse. A delayed X-ray pulse then probes the
molecular dynamics. The X-ray probe is finally frequency-
dispersed on a detector.
As in the frequency domain, this signal is measured by taking

the difference in the absorption of left and right circularly
polarized light (CPL) of a delayed probe with respect to an

Figure 4. XCD (red) signals at the Cl L2,3-edge on substituted o-, m-,
and p-chlorophenylethanol molecules, shown in panels a, b, and c,
respectively. The chemical structures are shown in the insets with the
chiral center marked by an asterisk. Reprinted with permission from
ref 31. Copyright 2017 Royal Society of Chemistry.

Figure 5. Magnitude of the rotatory strength, eq 23, as a function of
the distance between the X-ray chromophore and the chiral center at
one of the strongest XAS peaks. The amplitude of the rotatory
strength decays when the distance between the chiral center and the
atom probed by X-rays increases. Reprinted with permission from ref
31. Copyright 2017 Royal Society of Chemistry.
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initial actinic pump. Equation 16 can be extended to time-
dependent polarization and magnetization:

μ

ω

ω ω ω ω ω= ·⟨ ⟩ + ·⟨ ⟩* * m

A T

T TE B

( , )

2 Im( ( ) ( , ) ( ) ( , ) )p p p p

p

(24)

where T is the time delay between the actinic pulse and the
probe and p = L, R is the polarization. The time and frequency
resolved tr-XCD signal is defined by

ω τ
ω τ ω τ
ω τ ω τ

=
−
+‐S

A A

A A
( , )

( , ) ( , )

( ( , ) ( , ))
tr XCD

L R
1
2 L R (25)

The time-resolved (frequency-integrated) tr-XCD can also
provide interesting information:

∫τ ω ω τ=‐ ‐S d S( ) ( , )tr XCD tr XCD (26)

The tr-XCD is obtained by expanding to one more order
into the CPL probe. Chiral contributions appear through

pseudoscalars, and we shall limit the discussion to terms
mixing electric and magnetic dipoles (electric quadrupoles
vanish upon rotational averaging):

∫μ μω⟨ ⟩ = ⟨ ⟩ω−T dt t T( , ) e ( , )p i t p
chir chir (27)

∫ μτ τ τ= ⟨ · ⟩ω−
−m Bdtd t Te ( )( ( ) ( , ))i t p p p

1 1 1 (28)

∫ μτ τ τ τ ρ= ⟨⟨ | − · − | ⟩⟩ω−
−m Bdtd t T t te ( )( ( , )) ( ) ( )i t p p p

1 1 1 1 0 0

(29)

Where the double bra-ket indicates an expectation value taken
in Liouville space in which the density matrix is vector, see
Appendix C. A similar expression is obtained for the magnetic
dipole expectation value:

∫ μ

ω

τ τ τ τ ρ

⟨ ⟩

= ⟨⟨ | − · − | ⟩⟩ω−
−

m

m E

T

dtd t T t t

( , )

e ( )( ( , )) ( ) ( )

p

i t p p p

chir

1 1 1 1 0 0

(30)

Figure 6. Carbon K-edge XCD spectra of three left-handed amino acids, L-phenylalanine, L-tryptophan, L-tyrosine, and of S-ibuprofen
(unpublished data, courtesy of R. Mincigrucci).
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These expressions can be expanded into sum-over-states
expressions. However, most interesting chiral dynamics involve
both nuclear and electronic dynamics and are thus not simply
expanded over states since the propagator contains a
numerical propagation of the nuclear wavepacket. The
expectation values are conveniently defined using the wave
function in Hilbert space as

∫
μ

μ

μ

ω

τ τ τ τ

τ τ τ

⟨ ⟩

= ⟨Ψ | · |Ψ ⟩
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where the two terms in eq 31 are shown in Figure 7a and c and
the two in eq 32 in Figure 7b and d.

Assuming that the wave function is a product of a nuclear

and an electronic wave function |Ψ(t0)⟩ =∑e|Φ(t0)⟩|φ⟩, where

|Φ(t0)⟩ is the nuclear wavepacket and |φ⟩ is the electronic

eigenfunction, the sum over the electronic states gives
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where Ue is the propagator of the nuclear wavepacket of the
state e. Since the core-excited coherence is extremely short-
lived compared to standard nuclear dynamics, we make the

approximation τ =†U t( , )c 1 in the following. Using that

ω ω=E e( ) ( )L
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(similarly δ* − * = − ̂ ̂e b e b i c k k( / )( )Li Lj Ri Rj ij i j ), the numerator of

expression eq 25 becomes
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(35)

The denominator is given by

Figure 7. Loop diagrams for time-resolved circular dichroism. e and c
represent the valence- and the core-excited states, respectively.

Figure 8. (a) PES for an achiral molecule in its ground state that becomes chiral in its excited state. The two minima indicate the two enantiomers,
and a symmetry-breaking pump can generate a wavepacket with an excess probability of one of them whose average dynamics is displayed in panel
b. A delayed X-ray probe can then selectively probe atoms in the molecule and lead to a tr-XCD following closely the molecular dynamics.
Reprinted from Rouxel et al.32
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The tr-XCD signal is finally obtained by rotational averaging
of eqs 35 and 36. This operation is not trivial when nuclear
dynamics are included because the propagation of the nuclear
wavepacket is usually carried out numerically for a given
molecular orientation in the laboratory frame. Under these
conditions, one cannot use the simple tensor averaging
procedures of Appendix A and must rely on a numerical
averaging: the full solid angle is discretized, and wavepacket
propagation must be carried out for each orientation. The
matter correlation functions are computed for each orientation
and averaged out. When nuclear coordinates are neglected and
only wavepacket dynamics is considered, the numerator, eq 35,
simplifies considerably and rotational averaging gives
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where ρee(t0) are the excited state populations after the actinic
pulse. For example, if the actinic pulse interacts twice, the
averaging tensor I(4) may be used to average the signal.
A simulated tr-XCD trace on formamide is shown in Figure

8c. This molecule is chiral and trigonal planar in its ground
state and is trigonal pyramidal in its first excited state at
approximately 6 eV. The lone pair in the excited geometry
completes the four groups needed to have a chiral carbon, and
the molecule thus becomes chiral in its excited state. The
potential energy surfaces (PESs) along the bending mode
shown in Figure 8a have two minima in the excited state
corresponding to the two enantiomers (molecule bent upward
or downward). Photoexcitation with a circularly polarized UV
beam launches an asymmetric wavepacket in the excited PES,
and the molecule starts oscillating back and forth, as shown by
the expectation value of the bending coordinate depicted in
Figure 8b. Finally, the integrated tr-XCD is displayed in Figure
8c with the probe tuned at the C K-edge. As expected, this
signal follows closely the chiral dynamics of the molecule.32

3.2. X-ray Raman Optical Activity

Raman optical activity (ROA) is widely used in the IR and
visible regimes to measure the vibrational or electronic optical
activity.15,79,80 It has provided a clear signature of the absolute
configuration of small chiral molecules which is important for
drug synthesis and in the secondary and tertiary structure
determination of proteins.
Spontaneous Raman signals can be seen as a scattering event

in which an incoming photon is scattered into an empty mode
of the electromagnetic field.76 In order to create a photon
population in the scattered mode, two orders in the
perturbation by the interaction Hamiltonian are necessary
(one with the ket and one with the bra), and the matter Raman
response functions are thus given by four point correlation
functions. To first order in the multipolar expansion, the

spontaneous Raman signal contains four perturbations in the
electric dipole coupling. This contribution gets canceled upon
taking the difference between opposite polarizations, and the
ROA requires the magnetic dipole and electric quadrupole
coupling. The theory and practical implementation of ROA has
been developed to a large extent by Barron.80

X-ray ROA (XROA) is the X-ray regime extension of the
ROA. So far, theoretical works on XROA are scarce,81 and no
experimental realization has been reported yet. On the other
hand, spontaneous Raman signals have been measured
routinely.82−84 Stimulated and ultrafast extensions are under
development.85−87 In the X-ray community, spontaneous
Raman is often referred to as inelastic X-ray scattering (IXS).
The signal recorded by frequency dispersing the scattered
photons of a single incoming light beam is named X-ray
emission spectroscopy (XES), while the 2D maps recorded at
resonance by scanning the incoming light and dispersing the
scattered photons are know as resonant inelastic X-ray
scattering (RIXS).88 The increased availability of polarization
control at synchrotron and FELs has enabled the chiral-
sensitive version of these technique, XROA, in principle
achievable at many facilities. The main challenge remains the
scattering cross sections of these signals, which are usually
weak, and thus, the even weaker XROA requires long
acquisition time and high stability.
While the formal expressions of the signal reviewed in the

section remain the same as in the lower frequency regime,
XROA exploits the specific characteristics of the X-ray regime.
ROA being an incoherent spontaneous signal, eq 188 in

Appendix B can be used as a starting point. Circularly polarized
light passes through the sample and generates a Raman signal
recorded as a function of the scattering angle; see Figure 9d.

The ROA signal, eq 39, is given by the small difference
between Raman scattering of left and right polarized light.

ω ω θ ω ω θ

ω ω θ

Δ =

−

e e e

e e

S

S

( , , , ) ( , , , , )

( , , , , )
X s s X s L s

X s R s

RAM RAM

RAM (38)

Figure 9. (a−c) Loop diagrams of the XROA signals. Permutation of
the magnetic dipole and electric quadrupole have to be summed over
to calculate the signal. (d) Geometry of an ROA measurement. This
corresponds to an incident circular polarization (ICP) setup.
Alternatively, it is possible to excite the sample with linear polarization
and detect left and right polarization on the detector or to use mixed
schemes with both incident and detected circular polarized light.
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where SRAM is the Raman scattering signal given by the
diagrams in Figure 9a−c and eL/R and es are the polarization
vectors of the incoming and spontaneously emitted photons,
respectively. Similar to XCD, eq 14, the XROA signal is
defined by normalizing the difference, eq 38, with the sum of
the signals with opposite polarizations.89

ω ω θ
ω ω θ ω ω θ
ω ω θ ω ω θ

=
−
+

e
e e e e

e e e e

S
S S

S S

( , , , )
( , , , , ) ( , , , , )

( ( , , , , ) ( , , , , ))

X s s

X s L s X s R s

X s L s X s R s

XROA

RAM RAM
1
2 RAM RAM

(39)

Unlike in the usual ROA literature,89 we have divided the
denominator by 2 to normalize by the average of the achiral
signals and to keep consistence with other signals in this
review.
The XROA signal depends on multiple parameters: ωX is the

frequency of the incident X-rays, ωs is the frequency of the
detected scattered photons, θ is the scattering angle, defined in
Figure 9d, and es is the detected light polarization. Often, no
polarizer is placed in front of the detector. This simpler XROA
signal SXROA(ωX,ωs,θ) is obtained by summing over detected
polarizations and does not depend on the emitted polarization
es. Alternatively, it is possible to use incoming linear
polarizations and detect the amount of left and right
polarization in the scattered light. These two configurations
are often labeled as incident circular polarization (ICP) and
scattered circular polarization (SCP). When both incident and
scattered circular polarization are used, this leads to the dual
circular polarization (DCP) setup. These setups result in
different linear combinations of the same observables.15 Below,
we shall only consider the ICP.
We start by reviewing the XROA expressions. We assume

that the incident pulse propagates along the z axis and that the
scattered Raman signal is measured in the xz plane as shown in
Figure 9d. In an isotropic medium, the entire matter + field
system is cylindrically symmetric and out-of-plane detection
does not carry extra information. Following Appendix B, the
spontaneous Raman signal defined as the change of photon
number emitted in the detected direction reads

∫ μω θ = −
ℏ

⟨ · + · + ∇ · ⟩† † †e m qS dt t t t t t tE B E( , , )
2
Im ( ) ( ) ( ) ( ) ( ) ( )s s s s sRAM

(40)

where expectation values are defined by

⟨ ⟩ = ⟨Ψ | |Ψ ⟩A t t A t( ) ( ) ( ) (41)

Perturbative expansion of the bra and the ket wave functions
contributing to the signal is depicted by the loop diagrams in
Figure 9a−c. The molecular wave function is expanded to first
order in the spontaneous field and to second order in the
incident field. Three terms contribute to the signals, as shown
in Figure 9a−c. Each of these contributions can be written as a
four-point correlation function:
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where X·F stands for μ·e, m·b, or q·(ike) if the interaction is
dipolar electric, dipolar magnetic, or quadrupolar electric. The
leading term of the Raman signal given by interaction with the
electric dipoles only (diagram a) does not contribute to the
ROA signal since it vanishes upon rotational averaging.

Assuming that the X-ray beam is resonant with the core-

excited manifold, we obtain for the three diagrams in Figure

9a−c
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The total Raman scattering signal including interactions to

second order in the multipolar Hamiltonian is obtained by

summing over these three terms as well as the ones obtained

by permuting the magnetic dipole and electric quadrupole

interactions with the electric dipole ones in diagrams D2 and

D3. Orientational averaging of the matter tensor is done with

the I(4) tensor for SD1
and SD2

. I(5) is used to average SD3
.

Finally, the XROA signal is obtained by taking the difference

between the left and right polarizations of the incoming light.
We start by showing how the electric dipole contributions

cancel out. When summing over states, we obtain

μ μ μ μ

μ μ μ μ

⟨ ⟩ · * * − * *
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(46)

The Einstein summation convention is used for the sum over

repeated Cartesian indices. Using the definition of Iijkl
abcd(4) in

Appendix A, eq 46 contains three terms which are proportional

to δ δ ϵ *e e( ) ( )ab cd adz s b s c, δ δ ϵ *e e( ) ( )ac bd adz s b s c, and δ δ ϵ *e e( ) ( )ad bc adz s b s c,

respectively. The first two terms are ∧ *e e( )s s z, which are zero,

and the last term is trivially vanishing because of the anti-

symmetry of ϵadz.
We now turn to the chiral terms. The XROA signal can be

separated into the magnetic dipole and the electric quadrupole

contributions:

ω ω θ ω ω θ ω ω θΔ = +e e eS S( , , , ) ( , , , ) ( , , , )X s s X s s X s sRAM XROA
mag

ROA
quad

(47)

where SROA
mag and SXROA

quad are defined as
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(49)

where G(ω) are the Green’s functions (see Appendix C) and
I(n) is the averaging tensor (see Appendix A). The four terms in
each of eq 48 and eq 49 correspond to the possible
permutations of the chiral interaction in diagrams b and c,
Figure 9, obtained by permuting the position of the magnetic
dipole or electric quadrupole interactions. The signal
calculation can be done in the following steps: calculation of
the field polarization tensor, rotational averaging by contrac-
tion with the I(n) tensors, and calculation of the final observable
by contraction with the matter response tensor. The four field
polarization tensors for SXROA

mag in eq 48 can be simplified using
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Each of the four terms in eq 48 are then obtained by
contracting the field polarization tensors with the rotationally
averaged molecular response tensor. For example, for the first
term, we get
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For detection along the y axis, es = ey (see Figure 9d), this
contribution simplifies to

μ μ μ

μ μ μ μ μ μ μ μ μ= + −

′ ′

′ ′ ′ ′ ′ ′

† †

† † † † † †

c
I m F

i
c

m m m

1

1
30

(3 3 2 )

ijkl
abcd

gc
i

cv
j

vc
k

c g
l

abcd
m

gc
i

cv
i

vc
j

c g
j

gc
i

cv
j

vc
i

c g
j

gc
i

cv
j

vc
j

c g
i

(4) 1

(55)

Detection along X gives

μ μ μ

θ μ μ μ μ μ μ

μ μ μ

= +

−

†
′ ′

†

†
′ ′

† †
′ ′

†

†
′ ′

†

c
I m F

i
c

m m

m

1

1
30

cos ( )(3 3

2 )

ijkl
abcd

gc
i

cv
j

vc
k

c g
l

abcd
m

gc
i

cv
i

vc
j

c g
j

gc
i

cv
j

vc
i

c g
j

gc
i

cv
j

vc
j

c g
i

(4) 1

2

(56)

The three other magnetic contributions and the four
quadrupole contributions can be calculated similarly for an
arbitrary scattering angle and detection polarization. These
lengthy expressions are not given in this review and are more
adequately derived using computer algebra systems.
It is also convenient to express the signals using the

polarizabilities defined as63
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where α is the ordinary polarizability and G and A are the
mixed electric−magnetic and mixed electric dipole−quadru-
pole polarizabilities. One should not mistake the mixed
electric−magnetic polarizability ω ω−G ( , )vg

ij
X s and the Green’s

function Gvg(ωs − ωx) that often share the same symbol in the
literature. The second term in each definition corresponds to
cases in which the scattered photon is emitted before the
absorption of the incoming one. Since its denominator cannot
cancel out, it does not contribute near resonance and can be
neglected (this is the rotating wave approximation). Equations
48 and 49 simplify into
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with
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where we have used eq 6. The XROA signal SXROA(ωX,ωs,θ,es),
eq 39, is obtained by normalizing by the achiral contribution:

ω ω θ

ω ω θ ω ω θ= +

e

e e e e

S

S S

( , , , )
1
2
( ( , , , , ) ( , , , , ))

X s s

X s L s X s R s

RAM
achir

RAM RAM

(64)

ω
α ω ω ω ω

α ω ω δ

=
ϵ ℏ

| | − −

× − − ̂ ̂† *

I G

e k k e

1
2

2
( , ) ( )

( , ) ( )

s
X ijkl

abcd
vg
ij

X s vg s x

vg
kl

X s s
a

bc X
b

X
c

s
d

0
3

2 (4)

(65)

Equat ions 60−65 may be used to ca l cu l a t e
SXROA(ωX,ωs,θ,es), eq 39. For nonresonant ROA (ϵ = 0 in
eqs 57−59) and for the specific values of the scattering angle, θ
= 0° (forward scattering), 180° (backward scattering), and 90°,
Barron et al.15,89 have given simple closed form expressions
given by
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In the optical regime,90 a back reflection geometry can
conveniently be used to collect the ROA signal. In the X-ray,
multiple instruments exist to measure inelastic scattering with a
variety of choice regarding the scattering angle. For example,
there exist fixed geometries with a 90° scattering angle91 or
movable spectrometer scanning a range of scanning angles.92

This geometry eliminates the strong background of the
intense incoming X-ray beam. XROA can be complementary to
standard electronic CD: in electronic CD, the valence excited

states are prepared by a direct dipole coupling involving the
ground and the valence states, but for XROA, they are
prepared via two successive interactions involving the core-
excited manifold. This is reminiscent of the complementarity
due to selection rules of IR absorption and Raman spectra.
XROA is thus able to measure the optical activity of states that
are dark for valence excitations. Also, unlike XCD, XROA
depends on the electric quadrupole interactions, even for
randomly oriented molecules, and can probe molecular
chirality when magnetic dipoles are weak, as has been
demonstrated for tris(ethylenediamine) cobalt(III) ion (Co

+en( )3
3 ).65 Examples of XROA spectra on D-tyrosine computed

at the N and O K-edges for a π/2 scattering angle and two
detected polarizations are shown in Figure 10.

We now turn to time-resolved XROA (tr-XROA). First, we
consider a stimulated process in which a delayed probe pulse is
overlapped in the direction of the emitted photon. This is
similar to time domain CARS93 and a chiral-sensitive version
of stimulated X-ray Raman spectroscopy (SXRS).94 Simu-
lations of SXRS signals have shown that the broad bandwidth
of the pump pulse allows us to simultaneously probe many
valence states. For frozen nuclei, a chiral extension to SXRS
could then nicely complement XCD by probing the valence
states’ chirality over a broad frequency range with the added
benefits of elements selectivity and an alternate set of selection
rules.
Alternatively, it is possible to consider the full XROA

process described in this section as a detection of a molecule
prepared in a nonequilibrium state by an actinic pulse. The
signal derivation follows the same steps of the previous section
on tr-XCD and is not discussed in this review. This signal is
named tr-XROA and is defined by

Figure 10. Simulations of ROA spectra at the N and O K-edge on D-
tyrosine. ω is the incoming X-ray frequency and Δω is the Raman
shift. Left column: X polarized detection. Right column: Y polarized
detection. Reprinted from Rouxel et al.81
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where T is the delay between the actinic pulse that triggers the
dynamics (shaded area in Figure 11) and the incoming X-ray
pulse. Γ represents the other parameters of the signal (pulse
durations, central frequencies, scattering angle, and polarized
detection).

As for frequency domain XROA, the signal can be
represented by nine diagrams: an achiral term (Figure 11a),
four magnetic dipole terms (Figure 11b and its permutations),
and four electric quadrupole terms (Figure 11c and its
permutations). The interaction with the actinic pulse can be
treated pertubatively or numerically. Similarly to eqs 43−45,
we now give the expression of the three diagrams in Figure 11,
in the time domain.
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These contributions and their permutations of the chiral
interactions can be used to calculate the time-resolved Raman
scattering truncated at the magnetic dipole−electric quadru-
pole order of the multipolar expansion. If the molecular wave
function |Ψ(T)⟩ can be expanded in an eigenbasis,
diagrammatic rules from Appendix C can be used to calculate
sum-over-states expressions. Otherwise, a numerical wave-
packet propagation may be used to compute the multipoint
correlation function, for example in the presence of nuclear
dynamics.

3.3. Chiral X-ray Four-Wave Mixing

In concluding this section on chiral signals within the
multipolar coupling Hamiltonian, we now discuss the general
chiral four-wave mixing (4WM) signals. Achiral 4WM signals
have proven extremely useful in the optical regime by
spectroscopic techniques such as the photon echo,95 transient
grating,96 and other multidimensional spectroscopy signals.97

The recently developed ultrafast temporally coherent X-ray
sources have triggered extensive theoretical98−100 and exper-
imental101−104 efforts aimed at extending 4WM techniques to
the X-ray regime. All-X-ray 4WM is challenging to implement
while hybrid optical/X-ray techniques have been realized more
readily.105−107

Chiral 4WM (c4WM) techniques are third-order χ(3)

techniques that employ circularly polarized light to generate
signals that only exist in chiral samples.105,108 These are
described by four-point correlation functions that include one
interaction with either a magnetic dipole or an electric
quadrupole transition. Each pulse in an X-ray 4WM process
can be resonant with a different core orbital and, when
combined with the other structural information gained from
chiral-sensitive techniques, can provide unique information on
matter. Since 4WM involves four pulses, the number of
possible polarization configurations greatly increases compared
to lower order techniques.
Given that X-ray 4WM techniques are in their infancy, X-ray

c4WM techniques have not been implemented so far. Lower
frequency c4WM could serve as an inspiration.109−113 Optical
c4WM offers increased sensitivity to chirality and allows us to
follow the time evolution of chirality.
XROA, discussed in the previous section, also fits in the

framework on c4WM by having two interactions with the
incoming beam and two with photon modes initially in the
vacuum state.76 The XROA formalism demonstrated that
multipolar signal expressions become complex as the
interaction order increases. A systematic classification of
c4WM signals is thus needed to describe the numerous
possibilities.
First, c4WM, like its achiral counterparts, is emitted in a

specific phase matching direction. This allows selection of a
subset of contributing diagrams to the detected signals (see
Figure 12) and leads to three families of techniques that are
labeled according to their phase matching condition as

= − + +k k k kI 1 2 3 (79)

= + − +k k k kII 1 2 3 (80)

= + + −k k k kIII 1 2 3 (81)

Figure 12 shows the ladder diagrams corresponding to each
technique. When the multipolar interaction Hamiltonian (eq
10) is used, each vertex can represent either the electric dipole,
the magnetic dipole, or the electric quadrupole. Each of the
diagrams in Figure 12 appears nine times in c4WM by
including all possible permutations of a single chiral interaction
for each pathway. Diagrams with only electric dipole μ·E
interactions represent the achiral contribution to the signal. In
addition, there are four diagrams with a single magnetic dipole
coupling m·B within the interaction pathway and, similarly,
four diagrams with a single electric quadrupole coupling q·∇E.
Abramavicius et al.108 had surveyed the possible config-

urations for linearly polarized pulses and different phase
matching conditions. In the following, we develop this

Figure 11. Loop diagrams of the tr-XROA signals. Diagram a is the
achiral contribution while diagrams b and c are the chiral magnetic
dipole and electric quadrupole ones.
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classification using irreducible tensors.114 This allows us to
clearly identify the pseudoscalar component of the tensor that
contributes to c4WM and to carry out the rotational averaging
of the response tensors.
A generic 4WM signal can be split into an achiral and a

chiral contribution:

Γ = Γ + ΓS S S( ) ( ) ( )4WM achir chir (82)

where Γ represents the different relevant pulse parameters,
typically central frequencies, polarizations, and bandwidths,
and where Schir(Γ) is the c4WM signal. As customary with
multipolar chiral signals, the c4WM signal can be obtained by
measuring the differential signal between left and right
polarized light. We restrict the following discussion to time
domain, heterodyne-detected 4WM signals. The achiral
contribution Sachir

het is given by a four-point correlation function
of the electric dipole operator:76

∫Γ = −
ℏ
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with

μ μ μ μ= −
ℏ

⟨ ⟩μμμμ − − − Ωt t t
i

t t tR ( , , ) ( ) ( ) ( )3 2 1

3

left 3 2 1
i
k
jjj

y
{
zzz

(84)

where the superoperators μ− and μleft are defined in Appendix
C. For brevity, we now drop the arguments of the response
functions and of the incoming fields and focus on the tensorial
nature of the response. Equation 83 then becomes

∫Γ = −
ℏ

· ⊗ ⊗ ⊗μμμμS dtdt dt dt R E E E E( )
2
Im ( )sachir

het
3 2 1 3 2 1 (85)

where ⊗ indicates the direct product and · is the fully
contracted product. The chiral contribution Schiral

het is given by
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where we have omitted the time variable for brevity. The
matter correlation function Rmμμμ is given by

μ μ μ= −
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with similar contributions for the other terms (magnetic dipole
and the electric quadrupole). The chiral contribution can be
greatly simplified by making the slowly varying envelope
approximation.

ϵ=E t t( ) ( )i i i (88)
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where ϵi is the polarization of the ith pulse and where ui = ±1
depends on the chosen phase matching direction. The vectors
(u1, u2, u3) = (− 1, 1, 1), (1, −1, 1), (1, 1, −1) represent the kI,
kII, and kIII techniques, respectively. The chiral contribution to
the signal then becomes
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where we have defined Ftuvw = (t ⊗u ⊗v ⊗w).
To single out the chiral response, we consider the

rotationally averaged tensor and define cancellation schemes
that eliminate the achiral contributions. Irreducible tensor
algebra is a powerful tool for accomplishing this goal, and the
contraction between irreducible tensors can then be written as

∑· = −
τ

τ τ
−T U T U( 1)

JM

M JM J M

(92)

where J is the irreducible tensor rank and τ is the seniority
index.115 Only the J = 0 rotational invariants survive the
rotational averaging, and the contraction reduces to a sum over
the J = 0 contributions. For a rank 4 tensor constructed from
direct products of rank 1 tensors, there are three rotational
invariants:

= {{ ⊗ } ⊗ { ⊗ } } = · ·= A B C D A B C DT 1
3
( )( )ABCD

J 0
0 0 0 0 (93)

= {{ ⊗ } ⊗ { ⊗ } } = ∧ · ∧= A B C D A B C DT 1
3
( ) ( )ABCD

J 0
1 1 1 0

(94)

Figure 12. Ladder diagrams for the kI, kII, and kIII four-wave mixing
signals. Each interaction can be either with an electric dipole, a
magnetic dipole, or an electric quadrupole coupling, for a total of nine
diagrams for each of the ones displayed.
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where A, B, C, and D can be either an electric dipole μ or a
magnetic dipole m interaction for the response function or the
electric and magnetic field polarizations for the field tensor. It
follows from eq 92 that the contraction with field tensor of the
rotationally average response implies only the J = 0
components. For example, the first term in eq 91 reduces to
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and similar terms exist for the other permutations μmμμ,
μμmμ, and μμμm.
The quadrupolar response involves rank 5 tensors which can

only have two irreducible scalars:
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The second term of eq 91 becomes
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Calculation of the RJ=0 and FJ=0 tensors allows us to single out
all the independent possible c4WM techniques and give them a
clear algebraic meaning.
c4WM signals can be extracted from the total 4WM signal

by cancellation of the achiral component. CD and ROA only
involved a single incoming beam, so a single cancellation
option was possible. For c4WM, each of the four beams can be
either left or right circularly polarized, leading to four types of
c4WM signals denoted α, β, γ, and δ for each phase matching
direction (ki = kI, kII, or kIII). Altogether, we get 12 possible
schemes; see eqs 100−103.114
The four polarization schemes are given by

α = −S S L L L L S R R R R( ) ( , , , ) ( , , , )chir 4WM 4WM (100)

β = −S S L R L R S R L R L( ) ( , , , ) ( , , , )chir 4WM 4WM (101)

γ = −S S L L R R S R R L L( ) ( , , , ) ( , , , )chir 4WM 4WM (102)

δ = −S S L R R L S R L L R( ) ( , , , ) ( , , , )chir 4WM 4WM (103)

where the arguments of S4WM(es,e3,e2,e1) indicate the polar-
ization of pulses Es, E3, E2, and E1. The other parameters
(phase matching choice, beam parameters and delays, etc.) are
kept implicit.
X-ray 4WM techniques are still in their infancy and so are

chiral 4WM techniques across the whole electromagnetic
spectrum. Current technical developments make them feasible,
and they will offer new ways to probe molecular chirality. Two-
dimensional spectroscopy in the IR or the optical regime has
offered unique time domain probes of energy transfer by
coherence coupling between molecular excitons. Its chiral
extension will be able to follow the flux of chirality within a

molecular system, with the notable advantage of using a site-
and element-specific probe for X-rays.

4. CHIRAL SIGNALS IN THE ELECTRIC DIPOLE
APPROXIMATION

The chirality-sensitive techniques presented so far rely on the
multipolar expansion truncated at the magnetic dipole/electric
quadrupole level to generate pseudoscalar quantities. As a
consequence, these signals constitute a small contribution on
top of a strong achiral signal. We now discuss chiral signals that
exist even at the electric dipole level and are, thus, stronger.
Such signals generally involve a higher order perturbation in
the incoming fields (SFG) or complex-valued electric dipoles
(ionization-related signals).
4.1. Sum Frequency Generations (XSFG)

Even-order susceptibilities χ(2n) usually vanish in centrosym-
metric media such as ensembles of randomly oriented
nonchiral molecules. Most applications of these techniques
therefore use molecules in anisotropic environments116 where
the signal originates only from locations where the
centrosymmetry is broken, making it a sensitive probe of
molecules at interfaces. Additionally, χ(2n) does not vanish in
ensembles of chiral molecules which lack inversion symmetry,
even upon rotational averaging. Since the parity operation
interchanges the two enantiomers, the molecular ensemble is
not inversion-invariant117 and even-order signals can be
observed in the bulk. χ(2) is finite and has been measured in
randomly oriented ensembles of chiral molecules.117

Second-order chiral signals such as second-harmonic
generation (SHG), sum frequency generation (SFG), and
difference frequency generation (DFG) do not vanish within
the electric dipole approximation and do not require the
magnetic dipole and electric quadrupole. This makes these
chiral signals easier to detect, since they are comparable in
magnitude to their nonchiral counterparts.
In the following, we discuss the SFG process obtained by an

X-ray probe. The discussion can be easily adapted to DFG or
SHG. A typical SFG pulse configuration uses an infrared pulse
to excite a molecular vibrational coherence followed by an off-
resonant broadband visible pulse that stimulates the SFG
process. A similar configuration involving a visible pump and
an X-ray probe to study valence electronic coherence can be
introduced. An all X-ray technique would involve very short-
lived double-core holes that may prove difficult to detect. The
change in the transmitted X-ray pulse intensity is recorded vs
the delay between the two pulses.
In the SFG process, Figure 13, the molecule interacts once

with a pump field with frequency ωpu and once with a probe
field at frequency ωpr and finally emits a photon at the sum
frequency ωpu + ωpr. In XSFG, ωpu is resonant with a valence

Figure 13. Loop diagrams for the SFG signals. Panels a, b, and c
represent the spontaneous incoherent, the stimulated, and the
spontaneous coherent SFG signals, respectively.
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excitation and ωpr is either a resonant or off-resonant core
excitation. The loop diagrams representing the resonant SFG
signal are given in Figure 13. SFG experiments can be carried
out in the frequency domain or in the time domain. In the
frequency domain, two plane waves with frequency ω1 and ω2
and wavevectors k1 and k2 are incident in a material and
generate a wave at the sum frequency ωs = ω1 + ω2 in the
phase matching direction ks = k1 + k2.
As discussed in Appendix B, the homodyne-detected signal

can be split into coherent and incoherent components. The
incoherent signal originates from single molecules and thus
scales as the number of molecules N. The starting point for the
signal is given by eq 185. In order to generate an observable
photon, that is, create a diagonal elements in the density matrix
of the detected photon mode, both the bra and the ket of the
molecule must undergo an SFG process, as displayed in
diagram 13a. To second order in the incoming fields, we get
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The incoherent signal, eq 104, is given in the time domain.
The frequency domain signal is obtained by using plane wave

for the fields E1 and E2: − = ω− −E Et t( ) e i t t
2 2 2

( )2 2 and

− − = ω− − −E Et t t( ) e i t t t
1 2 1 1

( )1 2 1 .
We now turn to the coherent signal which is phase-matched,

scales as N2, and can be recast as a modulus square of an
amplitude.
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where * = ωE et e( )s s s
i ts is the spontaneous field emitted from

the SFG process in the direction ks = k1 + k2. Finally, the
heterodyne SFG signal is given by
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The SOS expression for eq 105 is

∑
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ω ω
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The nonlinear response function introduced in eqs 104−106
vanishes in an isotropic achiral ensemble. Rotational averaging
of the third rank response function in eqs 105 and 106 is
obtained by contraction with the I(3) tensor

μ μ μ μ μ μ μ μ μ⟨ ⟩ = ϵ ϵ = ϵ · ×λ λ λ
λ λ λΩ

1
6

1
6

( )i i i i i i i i i1 2 3 1 2 3
1 2 3

1 2 3 1 2 3

(108)

where we have omitted the time arguments for brevity. The
contraction of the Levi−Civita tensor and the response tensor
give μ μ μ μ μ μϵ = · ×λ λ λ

λ λ λ ( )1 2 3

1 2 3
, where the indices i1, i2, and

i3 get contracted with the electric field components. Thanks to
the triple product, this averaging leads to a pseudoscalar that is
thus sensitive to chirality in isotropic media. Orientationally
averaged second-order signals provide an excellent probe for
molecular chirality. They are relatively strong compared to
other chiral-sensitive signals since they are of low order both in
the perturbative expansion in the exciting fields and in the
multipolar expansion.
Using eq 108 in eq 106 allows us to write the signal as an

overlap integral in the time domain between chiral matter and
field responses:

∫ μ μ μω =
ℏ

⟨ · × ⟩

* · − × − −

† †

E E E

S dtdt dt t t

t t t t t t

( )
2
Im ( ) ( ( ) (0))

( ) ( ( ) ( ))

sSFG 6 2 1 left 2 left 1 left

het 2 2 1 2 1 (109)

All even-order chiral techniques similarly involve an overlap
between chiral response functions and a chiral field that does
not vanish in the electric dipole approximation. This
observation has led to the introduction111,118−120 of nonlinear
chiral techniques in the frequency domain and in the optical
regime. Since SHG is forbidden even in optically active liquids
because of the symmetry of the susceptibility over its last two
indices, one must rather consider SFG and DFG spectros-
copies.118 Higher even-order nonlinear signals have been
considered121 as well.
Recently, Smirnova et al.18,122,123 have proposed an

approach that makes further use of the even-order nonlinear
susceptibilities to detect molecular chirality. Their approach
goes as follows: the rotational averaging in eq 108 introduces a
Levi−Civita symbol acting on the incoming fields. This means
that, at second-order perturbation in the electric dipole
Hamiltonian, the field tensor reduces to a triple product of
the electric field, which is a pseudoscalar.
The field correlation functions appearing in eq 109 were

introduced as a hierarchy of field pseudoscalars h(n). For
example, in the frequency domain, the field correlation in eq
105 is

ω ω ω ω ω ω= * + · ×E E Eh ( , ) ( ) ( ( ) ( ))s
(3)

1 2 1 2 2 2 1 1 (110)

The h(3) field correlation function appears in the chiral-
sensitive χ(2) signals. Since χ(2)(2ω,ω,ω) which is responsible
for SHG vanishes, the SFG or DFG processes are mandatory
to use h(3) as a probe of molecular chirality. Smirnova et al.
proposed to used higher even-order response functions for
which the HHG processes linked to h(2n+1) no longer vanish.
For example, the lowest nonvanishing order probing the χ(4)

nonlinear susceptibility is the h(5)(2ω,ω) field correlation
function given by

ω ω ω ω ω ω ω= * · × ·E E E E Eh (2 , ) (2 ) ( ( ) ( ))( ( ) ( ))(5)

(111)

A simple experimental setup was proposed to probe these
chiral nonlinear responses by using two noncollinear fields,
each of them made of fields with central frequency ω and 2ω
incident on a gas target of chiral molecules.122 The practical
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implementation of this excitation scheme requires the
handedness of the field to be maintained within the interaction
region, thus introducing constraints on the phases of the
incoming pulses. Probing a chiral sample with a varying field
ellipticity within the interaction region leads to a vanishing of
the chiral signal. The setup demonstrated by Ayuso et al.122

uses two noncollinear pulses and, thus, generates an
interference grating within the sample. Both the intensity
and the ellipticity of the interference field are then modulated.
By a careful control of the incoming field phases, both gratings
can be superimposed to ensure that the intensity maxima
correspond to the same ellipticity. This has been coined as the
locally and globally chiral field.122 Spontaneous and coherent
signals then originate from an interference term between the
even-order chiral amplitudes and a lower odd-order achiral
amplitude; see Figure 14a and b: |χ(4)E*(ω) × E(ω)(E(ω)·

E(ω)) + χ(1)E(2ω)|2 ∼ χ(4)χ(1)h(5). This process can also be
considered within the context of HHG emission (see section
4.3), where the incoming strong fields generate all even-order
responses in parallel. This approach has led to the measure-
ment of a giant asymmetry ratio (up to 200%) when combined
with an HHG measurement (chiral HHG is discussed in
section 4.3).
So far, chiral SFG has been limited to visible or IR incoming

pulses. HHG detection has extended these concepts from this
field into the EUV regime, but little has been done with EUV
or X-ray incoming pulses. X-rays can offer a window to local
chirality through its element sensitivity.
4.2. Photoelectron Circular Dichroism

In the previous section, we have demonstrated how the
observation of even-order harmonics in isotropic ensembles is
a signature of molecular chirality. These signals originate from
purely electric dipole coupling, which makes them strong
compared to their magnetic counterparts. Another possibility
to construct chiral signals within the electric dipole
approximation is by using complex valued electric dipole
transitions, that are typically present in ionization pro-
cesses.124,125

As the incident photon energy is increased, it becomes
possible to photoionize one of the core electrons via a bound
to continuum transition involving a single or multiple photons.
Multiphoton ionization processes can be induced by visible or
UV circularly polarized light.126,127 Single-photon photo-
ionization occurs in the deep UV or soft X-ray regimes and
offers element selectivity, as routinely used in X-ray photo-
electron spectroscopy (XPS).128,129 Using synchrotron or
tabletop light sources, it has been shown that angular resolved

photoelectron spectroscopy (ARPES) displays an asymmetry
between two enantiomers or ionization of chiral or aligned
molecules with left and right polarized light.130−132 The
asymmetry of ARPES is the basis for the photoelectron circular
dichroism (PECD) technique.133,134 Numerical calculations
demonstrated that around a 10% asymmetry ratio, eq 112,
could be reached.135 Much higher asymmetry ratios up to
100% have also been reported.136

A detailed review of PECD at synchrotrons has been written
by Powis.135 Here, we only survey the fundamental aspect of
the theory and then introduce recent developments in time-
resolved measurements. The PECD signal is defined by135,137

θ
θ θ

θ
=

−
S E

S E S E
S E
e e

( , )
( , , ) ( , , )

( , )
L R

PECD
PE PE

ARPES (112)

where E is the ionized electron energy and θ is its scattering
angle with respect to the incident photon. Similarly to CD and
ROA, PECD is a good signature of molecular chirality when
considering a randomly oriented ensemble. Otherwise, the
signal may not vanish in oriented achiral samples and can also
be of interest. This normalization can lead to important
fluctuation in the angular region with low ARPES signals, and
sometimes, max(SARPES(E,θ)) is preferred.
Before discussing PECD, we briefly summarize how

photoemission signals can be computed. So far, signals in
this review were defined by the integrated change of photon
number; see Appendix B. However, the observable current is
linked to the integrated change of electron number on the
detector; that is

∫θ =S E dt
d
dt
Ne( , , )L pPE (113)

where Np is the electron number operator for an electron with
momentum p. The procedure used in Appendix B to express
the signal in terms of a matter observable can be repeated by
using the minimal coupling interaction Hamiltonian:

= − ·p AH t t( ) ( )int x (114)

where we use the p·A coupling and p = ∑jpj is the many-body
momentum operator. Since the free-electron field is initially in
the vacuum state, the photoelectron signal requires expansion
to one additional order in the interaction Hamiltonian and can
be expressed as a homodyne coherent signal:

∫

∫

=
ℏ

′ * ′ ⟨ ′ ⟩

=
ℏ

*⟨ Ψ ⊗ Ψ Ψ ⟩

Ω

−
Ω

p A A p p

A p

S dtdt t t t t

dt t t t t

e( , )
2

( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )N p N

PE 2

2
1

el

2

(115)

where Ω indicates rotational averaging over the molecular
degrees of freedom and e is the incoming electric field
polarization. Simulation of PE signals requires the evaluation of
matrix elements ⟨ Ψ ⊗ Ψ | | Ψ⟩− p t( )N p N1

el between the non-
ionized molecular states and the ionized states. The ground
state is a standard linear combination of Slater determinants
over molecular orbitals. The final state is a direct product of
the N − 1 molecular eigenstate and the quasi-free electron
wave function Ψp

el.
Dyson orbitals138,139 can be effectively used to represent

these matrix elements. Expressing explicitly the matrix element
as a function of the many-body coordinates, we have

Figure 14. Loop diagrams of the two interfering pathways leading to
the observation of the χ(4) signal.
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In eq 116, the sum for i ≠ j corresponds to an Auger
process: the light−matter interaction occurs on the orbital j
through the matrix elements of pj, and then orbital i is ionized.
We neglect this contribution in the following and only consider
the second term for i = j for photoemission: the ionized orbital
is the one that interacts with the incoming field. Using the
Dyson orbitals defined as

∫
Φ

= { } Ψ { } * Ψ−

x

x x x x x x x xN d d d

( )

... ... ( ... ... ) ( ... )

d

N N
N

N
N

1 I 1
1

1

(117)

the matrix element can be recast as a single electron matrix
element between the ionized electron wave function and the
molecular Dyson orbital:

∫⟨ Ψ ⊗ Ψ | | Ψ⟩ = Ψ * Φ = ⟨Ψ | |Φ ⟩− p x x p x pd ( ) ( )N p N p d p d1
el el el

(118)

When completely neglecting the molecular potential for the
free electron, its wave function becomes a plane wave eip·x and
the photoemission signal becomes the square of the Fourier
transform of the Dyson orbital. However, approximating the
ionized electron as a plane wave does not capture the chiral
response of the molecular ensemble, and a corrected
approximation must be used in order to take in account the
disturbance due to the chiral molecular potential.140 For an
electron with momentum p in a spherical potential, the
Schrodinger equation can be exactly solved and the
eigenfunction is

∑Ψ = * ̂ ̂i R Y p Y rr( ) (pr) ( ) ( )p
lm

l
pl lm lm

CW

(119)

where Rpl(pr) is the radial Coulomb wave function that can be
expressed as an 1F1 hypergeometric function.140 To account for
the nonspherical potential, the expansion is written in a similar
manner:

∑Ψ = * ̂r ri Y p f( ) ( ) ( )p
p

lm

l
lm lm

(120)

The matrix element A(t)·⟨Ψp|p|Φd⟩ now assumes the form

∑ϵ μ·⟨Ψ | |Φ ⟩ = · * ̂A pt A t i Y p( ) ( ) ( )p
d

lm

l
lm lm

p

(121)

where

∫μ = ℏ∇ Φr r rd f i( )( ) ( )pplm
lm

d
(122)

All quantities can be expressed in the irreducible basis and the
rotational averaging is then carried out using the Wigner
matrices, leading to

∑ μ

⟨ ·⟨Ψ | |Φ ⟩⟩

= − ϵ * ̂ Ω Ω
σ μ
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(123)

By integrating over all angles and using some angular algebra,
we can express the signal in the following form:

∑π θ= −
ℏ =

p eS B P( , )
4

(cos )i
j

pij j pPE 2
0

2

(124)

where θp is the angle between the photoionized electron
momentum and the Z axis, Pj is a Legendre polynomial, and
the coefficients Bpij are defined by
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(125)

Using the symmetry properties of the −C i i
j
1 1
0 Clebsch−Gordan

coefficient, we obtain the following relationships:

=B 0p01 (126)

= − −B Bp p11 11 (127)

= −±B Bp p12 02 (128)

This indicates that (1) no P1(cos θp) term can be observed
with linear polarization, (2) the coefficient of P1(cos θp)
changes sign for opposite circular polarization, and (3) the
coefficients of P2(cos θp) have the same value for opposite
circular polarization.
It can also be shown that μ μ≠ ⃗ → ≠ −B 0p s

plm
s
plm

11 ,
indicating that Bp11 is nonvanishing only for non-centrosym-
metric systems, i.e. chiral molecules. Hence, the numerator of
the PECD signals depends only on SPE(p,eL) − SPE(p,eR) =
2Bp11P1(cos θp), and the denominator becomes (SPE(p,eL) +
SPE(p,eR))/2 = (2Bp10P0(cos θp) + 2Bp12P2(cos θp))/2. The
normalized PECD signal can be finally written as

θ

θ θ
=

+
pS

B P

B P B P
( )

2 (cos )

(cos ) (cos )
p p

p p p p
PECD

11 1

10 0 12 2 (129)

Molecular chirality is embedded in the coefficient Bp11, eq
125, and appears both in the spatial profile of the Dyson orbital
Φd(r) and in the multipolar expansion of the ionized electron
wave function. Thus, the asymmetry in PECD signals
originates from both the bound and the continuum states’
chirality. At high momenta, the photoelectron escapes quickly
the molecular ion potential and is not impacted by its
asymmetry. This consideration indicates that PECD should
vanish at high energy, and different mechanisms have been
proposed to account for PECD observations in the X-ray
domain.141,142 Numerous demonstrations of PECD have been
reported in both the EUV143−146 and soft X-ray147−149

regimes.
Time-resolved PECD (tr-PECD) with X-rays is now

becoming possible with the availability of XFEL sources with
polarization control. Ultrafast measurements of PECD are also
being developed using sources from the IR to the EUV
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regimes.150 The asymmetry in tr-PECD can originate from the
nuclear chiral geometry and from electronic chiral currents.151

tr-PECD has recently been measured on photoexcited
fenchone at the C K-edge at FERMI.152 It has also been
used to investigate the chiral fragment of trifluoromethyloxir-
ane upon photolysis with an X-ray pump at 698 eV.153,154

While tr-PECD demonstrations are still scarce, many ultrafast
achiral photoelectron spectroscopies have been re-
ported,155−157 and tr-PECD with femtosecond resolution is
going to become increasingly available.
There are three ways to measure the dichroism by ultrafast

time-resolved PECD: the differential photoemission can be
obtained on the ionizing probe polarization (like in static
PECD), on the pump polarization (photoemission of the
asymmetrically populated excited state), or both.
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For an achiral system in the ground state, scheme I (eq 130)
vanishes if the pump pulse is linearly polarized, and it is thus
more suitable for measuring the dynamics in chiral systems. On
the other hand, the use of a chiral pump (schemes II and III,
eqs 131−133) are adequate to study achiral systems that
acquire chirality in their excited state. Chiral pumping favors
the excitation of given enantiomers in the excited PES.
The combination of PECD measurements with quantum

control schemes is another intriguing possibility. Goetz et al.57

have demonstrated the possibility to optimize the PECD
asymmetry ratio in the UV regime. Such a scheme can also be
envisioned in the time domain by using an optimization
routine on a pump pulse followed by tr-PECD as a probe.
4.3. Chiral High Harmonic Generation

High harmonic generation is a physical process in which a
photoionized electron gets accelerated by the ionizing field and
then recollides with the parent ion, thus generating photons at
high harmonics of the initial ionizing photon. It has been a very
prolific field in the past decades158 and can be used as a source
of XUV light. HHG sources can reach the attosecond regime
and have the advantage of being tabletop techniques. Their
energy limitation is constantly evolving, with sources now
reaching the carbon (∼300 eV) and oxygen (∼500 eV) K-
edges.45,159 These sources can readily be used as an incident
field for many of the ultrafast techniques discussed in this
review. One limitation is that the generation of CPL HHG
light necessitates the use of elliptically polarized driving pulses,
which dramatically reduces the HHG efficiency.160 Circularly

polarized HHG pulses have been successfully produced, and
constant progress is being made toward higher quality and
higher fluences of CPL.161−166

Recently, it has been observed that the HHG process itself
has different yields for opposite enantiomers.36,167−172 The
yield difference in the high harmonics intensities allows us to
define another observable of molecular chirality, chiral HHG
(cHHG). cHHG often relies on a bichromatic ω − 2ω strong
field to drive the HHG process introduced in section 4.1 and
displayed in Figure 14. Using the same type of driving field, the
Cohen group has analyzed the HHG from molecules with
multiple stereogenic centers with a deep-learning algorithm.173

We first briefly review the standard approach to calculate
achiral HHG signals, give a generalized expression for HHG
from molecules, and then discuss the aspects specific to
molecular chirality. Spontaneous coherent HHG signals can be
expressed as an amplitude squared:

∫ω μ∝ ⟨ ⟩ωS dte t( ) ( )i t
HHG

2

(134)

In the three-step process model proposed by Lewenstein et
al.,175 the material correlation function is expanded to first
order in the incoming field. This interaction corresponds to the
ionization of an electron while the final transition electric
dipole corresponds to its recombination.
In HHG the electron between the two events is driven by

the strong ionizing pulse. Thus, we introduce the field-free
propagator U0(t′,t0) and the strong field propagator Uv(t,t′).
Following the diagram in Figure 15, the matter correlation
function becomes

∫
μ

μψ μ ψ

⟨ ⟩ =

′⟨ | ′ − · ′ ′ | ⟩† E

t

dt t U t t U t t t U t t t

( )

2Im ( ) ( , ) ( , )( ( )) ( , ) ( )
t

t

v0 0 0 0 0 0
0

(135)

The propagation with Uv(t,t′) can be solved numerically or
analytically if some simplifying assumptions are made. Further
analytical developments are achieved within the strong field
approximation that neglects the atomic or molecular potential
on the free electron and using a plane wave basis for it. Uv(t,t′)
can be calculated as a Volkov propagator:174

′ | + ′ ⟩ = | + ⟩τ τ− ∫ +′p A p AU t t t t( , ) ( ) e ( )p A
v

i d1
2 ( ( ) )t

t 2

(136)

where ⟨r|p + A(t)⟩ = ei(p+A(t))·r.

Figure 15. Loop diagrams for the HHG process. (a) Diagram for an
atom or molecule initially in the ground state. (b) Diagrams for a
molecule in an excited population (a = b ≠ g) or coherence (a ≠ b)
prior to interaction with the pulse triggering the HHG process.
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Assuming that the atom is initially in its ground state g and
introducing the ionization energy = − −I E Ep g

N
g
N 1, the signal

can be recast as

∫ ∫ μ μ
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(137)

where ∫ τ τ′ = + + − ′′p p AS t t d I t t( , , ) 1/2 ( ( ) ) ( )
t

t
p

2 . This

highly oscillatory integral can prove challenging to calculate
numerically. This problem has been solved by Lewenstein et al.
by using a saddle point analysis.175

In molecules, the ionized system has its own dynamics that
potentially interacts with the ionized electron. Additionally, the
molecular wave function is now a many-body wave function,
and eq 135 becomes

∫μ μ

μ

ψ

ψ

⟨ ⟩ = ′⟨ | ′

⊗ ′ ′ | ⟩

†t dt t U t t U t t

U t t U t t t

( ) 2Im ( ) ( , ) ( , )

( , ) ( , ) ( )

t

t
N

I

v
N

0 0 0

0 0 0

0

(138)

w i t h ψ χ φ⟩ = ∑ | ⟩| ⟩t t( ) ( )N
a a

N
a
N

0 0 a n d

ψ χ φ⟩ = ∑ | ⟩| ⟩− − −t t( ) ( )N
i i

N
i
N1 1 1 are the neutral and ionized

molecule wave functions, respectively. Note that |ψN(t0)⟩ is not
necessarily the molecular ground state, and generating a HHG
process on a molecule excited by an actinic pump is an
interesting possibility to optimize the HHG yield or the chiral
asymmetry. Equation 138 is obtained within the strong field
approximation for the free electron and, thus, neglects its
interaction with the ionized molecules. Expanding in the
adiabatic states (see section 6), the molecular HHG signal
becomes

∫ ∫∑μ μ
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χ φ χ φ

χ φ χ φ
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where ∫ τ τ′ = + + −

− − ′
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′p p AS t t d E E t
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Finally, by writing explicitly the integrals over the normal
coordinates and using the definition of the Dyson orbitals, see
eq 118, we get

∫ ∫∑
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Equations 134−140 can be used to compute HHG spectra
from a molecular system. In particular, eq 140 is suitable for
molecules experiencing nonadiabatic nuclear dynamics. Using
circular polarization for the driving strong field, opposite
enantiomers display an asymmetry in the HHG yield. Similarly
to PECD, the asymmetry can take its origin in the bound state
geometry through the Dyson orbitals and in the ionized
electron propagator. The former is accounted for in the
discussed formalism while the latter would require a more
accurate propagator for the electron than the Volkov one and

would include the asymmetric Coulombic potential of the
parent ion.

5. CHIRAL SIGNALS BASED ON THE ORBITAL
ANGULAR MOMENTUM OF LIGHT

Over the past few decades, the control of the spatial profile of
laser beams has greatly improved. This control encompasses
the variation of both the amplitude and the polarization in
space. Many spatial shaping techniques have already been
implemented in the X-ray regime. This has led to the
development of a large variety of beams such as vector
beams176 (e.g., radial and azimuthal polarizations) and vortex
beams.177,178 The latter, also named twisted beams179 or OAM
(orbital angular momentum) beams,180 possess a chirality that
can interact with and discriminate chiral molecules. Vortex
beams are defined by a screw-type wave front that twists along
the beam propagation as displayed in Figure 16. They are

eigenstates of the OAM operator = − ∂
∂L iz z
, where z is the axis

of propagation of the beam. The eigenvalue of the beam is
called the topological charge l, and the incoming field assumes
the form

= φE r El r z( , ) ( , )eil (141)

where (r, φ, z) are the cylindrical coordinates and the explicit
form of E(r,z) depends on the vortex beam generation process.
Examples of vortex beams include the Laguerre−Gauss
(LG)181,182 and the hypergeometric-Gaussian (HGG)183−185

beams. A more general OAM-carrying beam can be
constructed as a linear combination of eigenstates of Lz and
can display complicated wave fronts.
Different strategies have been adopted to generate X-ray

vortex beams. Spiral Fresnel zone plates (FZPs) act as
diffractive X-ray lenses and can generate vortex
beams183,185−188 with nanofocusing capabilities. Other dif-
fractive optics geometries such as fork dislocation gratings189

have also been used to generate OAM in X-ray beams.
Alternatively, transmission optics such as spiral phase plates178

have also been recently implemented at energies as high as 8.2

Figure 16. Top row: representation of the electric field polarization in
right and left circular polarized light (RCPL and LCPL, respectively).
Middle and bottom rows: helical wave fronts of OAM beams with L =
+1, −1, +3, and −3.
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keV but remain limited to low OAM values. Finally, the use of
deformable mirrors190 is another technique to spatially shape
X-ray wave fronts, although it has not been used to generate
vortices yet. For the latter, the OAM-inducing optics have been
designed in order to sustain the high peak power of XFEL
radiation.
Given the vortex beam novelty, considerable research has

been dedicated to their generation and characterization at
various frequency regimes. Early applications include tele-
communication (by using the OAM as a physical layer in
multiplexing191) and laser-assisted surface processing.192,193

More general information on optical vortex beams and their
applications can be found in refs 194 and 195. The interaction
between the OAM of light and molecular chirality has only
gained interest recently. It was noticed by Cohen et al.196 in
2010 that spatially shaped chiral light can engage efficiently
with molecular chirality. However, the effect was poised by the
difficulty to generate a relevant phase twist at optical
wavelength with respect to typical molecular sizes. The
diffraction limit of X-ray beams allows for a focusing down
to Ångström-sized beams, and a helical wave front can be
generated within a few nanometers, which make them most
promising for local probes of chirality. Core-resonant
excitations are also highly localized spatially.
5.1. General Considerations on Vortex Beams

Various quantities originating from geometrical or physical
considerations can characterize the twisted nature of a vortex
beam. The geometric quantities are the vorticity ω and the
helicity H, defined by

ω = ∇ ∧r rE( ) ( ) (142)

∫ ω= ·E rH dr ( )
(143)

The vorticity and helicity of the magnetic field and the vector
potential can be defined in a similar way and are connected to
the electric field ones through the Maxwell equations. These
quantities can be defined for any vector fields and have long
been used in fluid mechanics.
From physical considerations, the total angular momentum

of a beam is given by

∫= ϵ ∧E BdJ r0 (144)

∫=ϵ ∧ ∇ + ∧ = +r E A L Sd E Ar( ( ) )i i0 (145)

where ∫= ϵ ∧ ∇L E r Adr( ( )i i0 is the OAM of the beam197,198

and S = ϵ0∫ drE ∧A is its spin angular momentum (SAM). E
and A are the gauge-invariant transverse component of these
fields. For plane waves, the SAM can be recast as

∫ω= ϵ | | − | |rS d E E( /(2 )) ( L R0
2 2, where EL and ER are the

amplitude of left and right circularly polarized light. Thus, S/ℏ
= nL − nR is a measure of the difference between the number of
left (nL) and right (nR) circularly polarized photons within the
beam.
Starting with Maxwell’s equations, Lipkin199 has shown that

the following chiral local quantity is conserved:

μ
=

ϵ
·∇ ∧ + ·∇ ∧E E B BC

2
1
2

0

0 (146)

This quantity, known as the optical chiral density, defines a
pseudoscalar. Being conserved, the chiral density satisfies a
continuity equation:

∂
∂

+ ∇Φ =C
t

0C (147)

where

μ
Φ = ∧ ∇ ∧ − ∧ ∇ ∧E B B E

1
2

( ( ) ( ))C
0 (148)

is the chiral density flux.200 The chiral density C is the local
version of the helicity H, eq 143, summed over electric and
magnetic contributions.
Finally, vortex beams can also be characterized by their

topological charges q,201,202 which measure the phase increase
of the field around a closed loop enclosing the vortex:

∮π
φ φ

φ
= ∂Φ

∂→+∞
q d

r
lim

1
2

( , )
r (149)

where Φ(r,φ) is the incoming field phase. For the common
case of light vortices with a complex amplitude proportional to
e±ilφ for the angular component (Φ(r,φ) = ±lφ), the
topological charge is q = ±l. The topological charge is closely
linked to the OAM of light, and it can be shown that OAM
normalized to the beam power is equal to the topological
charge of the beam.
The first part of this review was dedicated to the use of the

SAM of X-rays to probe chiral molecules. Their OAM offers
new avenues for the design of chiral signals. The spatial
variation of the incoming fields can either be taken as a whole
or expanded in multipoles. In the former case, spectroscopic
signals can be recast in terms of transition matrix elements of
current and charge densities (eqs 190−195) using the minimal
coupling Hamiltonian (eq 11). This level of theory has various
merits over the multipolar Hamiltonian. First, the transition
matrix elements bear a clear physical meaning in real space
using simple operators, unlike transition multipoles, which are
mathematical constructions obtained by a Taylor expansion
and become increasingly more elaborate at higher orders.
Second, the transition current and charge densities implicitly
contain all multipoles via nonlocal response functions and
avoid the tedious sums over the contributing multipoles to the
chiral signals.
Indeed, this description becomes increasingly more advanta-

geous over the multipolar approach when the incoming field is
strongly varying across the molecule. Finally, the minimal
coupling description retains the full spatial profile of the matter
multipoint correlation function and the incoming electro-
magnetic fields. The signals are recast as an overlap integral
over space, suggesting the possibility to optimize this quantity
by spatial shaping of the incoming field.
The price to pay for these advantages is that the matter

transition matrix elements are now tensor fields instead of
simple tensors. The extraction of transition current and charge
densities from ab initio quantum chemistry packages requires
some extra efforts, and the signal calculations require a higher
numerical cost.
Before discussing specific applications of the nonlocal

formalism, we show how the minimal coupling Hamiltonian
introduces the spatial variations of the field into the signal
expressions. To first order in the incoming fields, one gets
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∫
Γ =

ℏ
′ ′ * ′ ′ ⟨ − ′ ′ ⟩−

S

dtdt d d t t t tr r A r A r j r j r

( )
2
Re ( , ) ( , ) ( ) ( ) ( )

abs
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(150)

At third order in the incoming field, we obtain

∫
Γ =

ℏ
*

× ⟨ ⟩− − −

S

dtdt dt dt d d d d t t t t

t t t

r r r r A r A r A r A r

j r j r j r j r

( )
2
Re ( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( ) ( )

abs

4 3 2 1 3 2 1 3 3 2 2 1 1

left 3 3 2 2 1 1 (151)

The spatial variation of the beam now enters as overlap
integrals over space between the current densities and the
vector potential envelopes.
5.2. Enhanced Dichroism with Optimized Fields

Tang and Cohen196,203 have generalized CD, eq 14, to include
beams of opposite parity instead of restricting it to left and
right circular polarization. Within the electric dipole−magnetic
dipole approximation, they were able to link the observed
dissymmetry factor Schir to the field chirality C, eq 146, and the
matter linear chiral response, eq 58:

ω α
Γ =

−
+

=+ −

+ −
S

A A

A A
C G
U

( )
( )

2 Im
Ime

chir 1
2 (152)

where Schir is normalized by the achiral contribution and Ue =
ϵ0|E|

2/2 is the local time-averaged electric energy density. A+
and A− are the absorption at frequency ω measured using
beams with opposite parities. The numerator of eq 152 clearly
shows that the dissymmetry factor increases with the field and
the matter chirality. It immediately follows that minimizing the
incoming field intensity leads to larger asymmetry ratio, at the
expense of an overall weaker total signal. The vortex beams can
be used to maximize the dissymmetry factor by maximizing the
field chirality C at a fixed incoming energy density.
In the optical regime, one can safely truncate the multipolar

expansion at low orders given the small molecular size
compared to the incoming wavelength. This is also what
limits the interaction of optical vortices with chiral molecules,
since most molecules within a large optical beam do not
experience the twisted wave front over their spatial extension.
Alternatively, one can rely on near-field phenomena to
generate subwavelength vortices.204 Tighter focus can be
achieved in the X-rays, and it will be interesting to describe the
vortex complex amplitude as a single entity. Thanks to the
short wavelength of X-ray photons (∼0.1 to 10 nm), they can
achieve focusing and spatial variations at the molecular
scale.205,206 The minimal coupling Hamiltonian, eq 11, retains
the complete spatial profiles of the exciting fields.
Alternatively, one can consider schemes involving multiple

pulses whose interferences generate the desired chiral spatial
variation. For example, Cohen et al.196 proposed to use two
counter-propagating circular polarized light to enhance
chirality. This allows us to maximize the dissymmetry ratio,
but it does so mostly for molecules located in regions where
the field intensity is weak. In this configuration, the maxima of
C are located in places where the field intensity is minimal.
Additionally, this scheme relies on the use of a partially
reflecting mirror, which is difficult to implement in the X-ray
regime where grazing incidence is typically used for mirrors.
In previous work,60 we demonstrated how the minimal

coupling Hamiltonian allows us to generalize Tang and
Cohen’s result, eq 152, for spatially varying beams. We restrict

our description to resonant interactions where the σA2 term in
eq 11 can be neglected. The molecular linear response, eq 150,
then only involves current density operators through the
interaction Hamiltonian Hint = ∫ drj(r)·A(r). The current
density is an operator, eq 13, that can be readily computed by
ab initio calculations. It can be partitioned into divergence-free
(transverse) j⊥ and curl-free (longitudinal) j∥ components
using the Helmholtz decomposition:

= + ⊥j r j r j r( ) ( ) ( ) (153)

The transverse part can be written as the curl of an auxiliary
field j⊥(r) = ∇ ∧a(r). The chiral contribution to eq 150 then
originates from crossterms involving j∥(r) and a(r):

∫
Γ =

ℏ
′ ′ * ∇ ∧ ′ ′ ⟨ − ′ ′ ⟩

+ ∇ ∧ * ′ ′ ⟨ − ′ ′ ⟩

−

−

S

dtdt d d t t t t

t t t t

r r A r A r j r a r

A r A r a r j r

( )
2
Re ( , ) ( , ) ( ) ( ) ( )

( , ) ( , ) ( ) ( ) ( )L

chir

2 left,

,

(154)

One can readily notice that the chiral contribution to the
signal is an overlap spatial integral over a chiral field tensor
A*(r,t) ⊗ ∇ ∧ A(r′,t′) and a chiral matter tensor ⟨aL(r) ⊗
j−,∥(r′)⟩. The chiral field tensor is reminiscent to Lipkin’s chiral
invariant C, eq 146. In order to optimize chiral signals with
spatially shaped pulses, one must then aim at maximizing this
overlap, that is, tune the field local chirality to match the one of
the matter. In order to calculate signals from a molecular
ensemble, one must rotationally average the matter tensor
field, which can be a demanding task in the most general
case207 that can be tackled numerically.208

Other approaches to chirality based on the polarization P
and the magnetization M densities are also possible. These
involve the electric and magnetic field through the following
coupling Hamiltonian:

∫= − · + ·rP r E r M r B rH d ( ) ( ) ( ) ( )int (155)

where we have neglected the diamagnetic contribution209,210

for simplicity. This coupling is obtained from the minimal
coupling one, eq 11, by using the Power−Zienau−Woolley
canonical transformation211 eiS/ℏ with S = ∫ drP(r)·A(r) and

using that = + ∇ ∧∂
∂j r M rt t( , ) ( , )P t
t
r( , ) . This transformation

has been extensively used, especially as a starting point for a
multipolar expansion. However, if one wants to include all
multipoles and use the complete vector fields, the polarization
and the magnetization densities are not trivially calculated at
the ab initio level, since their expressions are not uniquely
defined. The current density operator, in contrast, can be
calculated in a simple manner from the many-body molecular
eigenstates expanded in a molecular orbital basis. Additional
studies are called for to clarify the nature of Lipkin’s chiral
density C expressed in the various formulations of electro-
magnetism.
5.3. X-ray Helical Dichroism

So far, we have discussed how OAM-carrying beams can
engage with molecular chirality in a different way than SAM-
carrying beams. Elaborate beam profiles can be created to
maximize the overlap between the matter and the field
chiralities. The simplest approach, readily achievable exper-
imentally, is to use twisted beams carrying a single OAM value.
Transfer of the OAM of light to trapped ions has been
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studied,212,213 and it was demonstrated that the OAM interacts
with bound electrons. By analogy to circular dichroism, which
observes the absorption difference for opposite SAM, the
difference in absorption for opposite OAM, +l and −l, named
helical dichroism (HD) has been proposed.214 Various
measurements on nanosystems have been reported214−216 in
the optical range but none on molecules. Optical HD on
molecules is difficult due to the necessity to generate a phase
vortex relevant on molecular sizes. X-rays can readily overcome
this difficulty thanks their ability to be focused down to a few
nanometer spot size.217 A demonstration of X-ray HD has
been made at the synchrotron SLS on Fe-diMe(tpy)3 at the Fe
K-edge.218 In the X-ray, spiral Fresnel zone plates were used to
generate vortex beams with OAM L = ±1 and ±3, and the X-
ray absorption spectrum (XAS) was measured both in
transmission and in total fluorescence yield (TFY) modes.
Figure 17 shows a schematic of the experimental apparatus.
Further experimental efforts at the carbon K-edge are ongoing,
making the technique a promising chiral X-ray spectroscopy.

Since an important transverse spatial phase vortex of the
electromagnetic field is required, the electric dipole approx-
imation is not sufficient to describe the interaction of matter
with the OAM. We shall use the minimal coupling
Hamiltonian to derive the HD signal. The minimal coupling
Hamiltonian fully captures the spatial variation of the incoming
beam. A multipolar approach is also possible,219 but its
truncation at the quadrupolar order does not account for
possibly large field variations. The HD signal is defined as the
differential XAS between the +l and −l OAM beams
normalized by the average of the two XAS:

ω
ω ω
ω ω

=
−
+

+ −

+ −
S l

A A

A A
( , )

( ) ( )

( ( ) ( ))
l l

l l
HD 1

2 (156)

Unlike for the SAM of light, the OAM values are not restricted
to ±1 values and the HD signal now depends on l that can take
an arbitrary value among the natural integers.
The absorption signals in eq 156 can be expressed using eq

150 in the frequency domain beams and by summing over
molecular eigenstates:

∫∑ ω ω ω
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Assuming monochromatic beams and using the definition of
the Liouville space Green function, Appendix C, the signal can
be recast as

∑ω
ω ω ω ω
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(158)

where the d transition matrix elements are given by the
integrated transition current multiplied by the vector potential:

∫= · ±r r A rd d lj ( ) ( , )ij ij (159)

This signal is similar to the standard absorption calculated in
the electric dipole approximation, but the transition matrix
elements are now replaced by overlap integrals between the
transition current density matrix elements and the vortex
beams’ spatial profiles. The HD signal, SHD(l,ω), is chirality-
induced; that is, it vanishes in achiral media. It can be shown as
follows. When taking the difference between left and right
OAM, the difference in absorption for each state can be
expressed as

∫

∫
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Using the symmetry − = − − =l l lA r A r A r( , ) ( , ) ( , ), we
obtain

∫ω ω− ∝ ′ * ′ ⟨ ′ ⟩

− ⟨ − − ′ ⟩

+ − Ω

Ω

r r A r A r r r

r r
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The matter quantity ⟨ ′ ⟩ − ⟨ − − ′ ⟩
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gc cg gc cg
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vanishes for achiral molecules but is finite for chiral molecules.
HD is thus induced by chirality.
The explicit computation of the HD signal on a molecule

requires definition of the beam profile of the vortex beams.
The LG and HGG beams are two basis sets commonly used
and corresponding to experimentally generated beams. The
spatial profiles of the LG beams propagating along the z axis
are given by
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The transverse spatial extent of the wave is described by the

beam width = +w z w z z( ) 1 / R0
2 2 with w0 being the beam

waist. = +R z z z z( ) /R
2 is the radius of curvature, π λ=z w /R 0

2

is the Rayleigh length, and (2p + |l| + 1) atan(z/zR) is the
Gouy phase. HGG beams generated by Fresnel zone plates can

Figure 17. Setup to measure X-ray HD:218 spiral Fresnel zone plates
are used to generate a helical wave front. The absorption signal can
then be detected in transmission (detector D1) or in total
fluorescence yield (TFY, detector D2). The pinhole (P) and the
order sorting aperture (OSA) ensure the quality of the generated
OAM beams.
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be obtained from a Fraunhofer diffraction and are given near
focus by
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where f is the focal length of the Fresnel zone plate and R is the
beam radius on focus.
An alternative approach to HD using the multipolar

expansion has been introduced by Andrews et al.219,220 They
had shown that the magnetic transition dipole does not
contribute to the HD signal by calculating the absorption cross
section in the multipolar coupling, truncated at the
quadrupolar term. They showed that the OAM of light has
an observable effect only when the light carries also a SAM.
Nonetheless, the HD signal may be finite without the use of
the SAM of light at higher orders in the multipolar expansion.
The electric dipole−electric quadrupole contribution to the
absorption spectrum is given by
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Upon computing the gradient in cylindrical coordinates, terms
of the form ileφ appear in the transition amplitude and lead to
an l-dependent signal.
A more general use of vortex beams can employ beams

carrying both an OAM and a SAM. The resulting circular-
helical dichroism (CHD) signal defined by

ω
ω ω

ω ω
=

−

+
+ −

+ −
S l

A A

A A
( , )

( ) ( )

( ( ) ( ))
L l R l

L l R l
CHD

, ,
1
2 , , (165)

where AL,+l(ω) is the absorption of a left-polarized +l OAM
beam and AR,−l(ω) is that of a right-polarized beam with −l
OAM.
Simulated X-ray CD, HD, and CHD spectra on L-cysteine at

the sulfur K-edge (2.48 keV)221 are displayed in Figure 18.
This work highlights the necessity to create a phase vortex
relevant at molecular sizes. The asymmetry ratio, eq 156, is
maximum for molecules situated at the center of the twisted
beam. For large spot sizes, most molecules are off the beam
axis and experience a lower asymmetry ratio which weakens
the HD signal upon averaging over all molecules within the
interaction volume.
Finally, we note that time-resolved HD (tr-HD) can be

formally defined in a similar way as tr-XCD, eq 25:

ω τ
ω τ ω τ

ω τ ω τ
=

+ −

+ + −‐
−S l

A l A

A l A l
( , , )

( , , ) ( , )

( ( , , ) ( , , ))
l

tr HD
,R

1
2 (166)

tr-HD has not been reported yet and constitutes an interesting
future extension of the HD technique.

5.4. Chiral X-ray Diffraction

As a last technique of this review, we discuss chiral-sensitive
opportunities using X-ray diffraction (XRD) schemes. It is
well-known that static XRD has an ambiguity that cannot
distinguish experimentally randomly oriented enantiomers.222

In structure reconstruction, this limitation is often circum-
vented by combining the XRD measurement with other chiral-
sensitive signals, e.g. CD, or by using oriented samples. The
advent of ultrafast time-resolved XRD (tr-XRD) at XFELs is
offering new avenues to probe chirality with X-rays in a
diffraction setup. For example, Giri et al. have recently
shown223 how charge migration in chiral epoxypropane can
be monitored using tr-XRD. Additionally, the use of OAM
beams combined with XRD could generate new approaches to
design chiral-sensitive XRD signal. It this section, we recall why
beams without OAM cannot generate a static chiral-sensitive
XRD and how the OAM beams can generate a chiral version of
XRD.
The interaction Hamiltonian, eq 11, simplifies far from

resonance where we can only retain the σA2 contribution. X-
ray diffraction (XRD) is well described by that coupling, and
the use of a scattered monochromatic beam leads to the
following expression for the XRD signal:

∫ϵ ϵ σ∝ | · | − ·q r rS d( ) ( )e q r
s

i
XRD X

2
2

(167)

where q = ks − kX is the momentum transfer between the
incident X-ray wavevector kX and the scattered one ks. |ϵX·ϵs|

2 is
the Lorentz polarization factor. Since the coupling Hamil-
tonian contains AX·As, the incoming ϵX and scattered ϵs field
polarizations do not engage with the scalar charge density and
XRD cannot have a chiral component originating from the

Figure 18. Simulation of X-ray CD, HD, and CHD spectra at the S K-
edge on L-cysteine. Reprinted from Ye et al.221
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SAM of light. Additionally, usual X-ray beams for XRD are
assumed to be plane wave and thus do not carry an OAM.
OAM beams offer the potential to design chiral XRD

techniques. With spatially varying beam, the XRD signal is
given by

∫ω

σ σ

=
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ℏ
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When the coherent signal is simulated for an assembly of
coherent scatterers, the two-point correlation function of
charge densities can be factorized over molecules:

∫ σ∝ ⟨ ⟩ ·r r A rS l F d lq q( , ) ( ) ( ) ( , )e riq
XRD 2 X

2

(169)

where F2(q) is the structure factor of the lattice. ⟨σ(r)⟩ is the
expectation value of the charge density operator which reduces
to σgg(r) for molecules in the ground state. The vortex beam
AX(r,l) radial profile depends on the way the beam has been
generated. In the absence of long-range order, e.g. molecules in
the liquid or gas phase, the structure factor in eq 169 vanishes
upon isotropic averaging over molecular orientations. The
XRD signal is then dominated by the single molecule term:

∫ σ σ∝ ′⟨ ′ ⟩ * ′ · − ′r r r r A r A rS l d d l lq( , ) ( ) ( ) ( , ) ( , )e q r r
X

i
XRD X

( )

(170)

For a molecule in the ground state, the expectation value
reduces to ⟨σ(r)σ(r′)⟩ = σgg(r)σgg(r′).
OAM X-ray beams have the potential to add a chiral

contribution to the XRD signal and, thus, break Friedel’s law,
which states that the XRD pattern is always centrosymmetric
even if the sample is not. This holds because XRD patterns are
amplitudes squared of the Fourier transform of the electronic
charge density σ(r), which is a real function. The real nature of
the charge density imposes the symmetry σ(q) = σ*(− q), and
the XRD signal can then be written as SXRD(q) = |σ(q)|2 =
σ(q)σ*(q) = σ*(− q)σ(− q) = SXRD(−q).
This simple statement has profound consequences on the

determination of chiral structures since XRD cannot trivially
distinguish between opposite enantiomers. The added chiral
contribution from X-ray OAM could allow XRD to
discriminate enantiomers in structure determination.

6. SIMULATION STRATEGIES FOR X-RAY CHIRAL
SIGNALS

Most signals presented in this review are expressed in terms of
multipoint correlation functions that can be expanded in
molecular eigenstates. Transition matrix elements of the
electric dipoles, magnetic dipoles, electric quadrupoles, and
current density operators must be computed to simulate a
signal on a given molecule.
In this section, we discuss ab initio computational strategies

commonly used to compute X-ray chiral signals. These signals
require the computation of core-excited states and their
transition multipole moments. The available methods include
multiconfigurational self-consistent field (MCSCF) approaches
such as RASSCF (restricted active space self consistent
field),224,225 density functional theory such as TDDFT (time-
dependent density function theory),226−229 perturbation

theories including the ADC (algebraic-diagrammatic con-
struction methods) schemes, and coupled pair theories such
as EOM-CC (equation-of-motion coupled-cluster).230−234

Numerical strategies for optical chiral signals have been
extensively discussed by Crawford et al.235 while the
computation of core-excited states has recently been reviewed
by Norman et al.236

Some specific care must be used to calculate higher order
multipoles with acceptable precision. In any ab initio
calculation involving various multipoles, one must keep in
mind that only the first nonvanishing transition multipole,
typically the electric dipole, is origin invariant. This origin
invariance is recovered when calculating observables such as
spectroscopic signals that typically involve multipoint
correlation functions of transition matrix elements.237 How-
ever, the basis truncation needed to numerically simulate
signals is another source of origin variance that must be
addressed. More explicitly, in the multipolar Hamiltonian, also
known as the length gauge and labeled by the superscript r, the
origin variance of the first three multipoles is given by

μ μ+ =O a O( ) ( )ij
r

ij
r

(171)
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2ij

r
ij
r
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(172)

μ μ μ+ = − ⊗ + ⊗ + ·q qO a O a a a( ) ( )
3
2
( )ij

r
ij
r

ij ij ij

(173)

where O is an arbitrary origin of coordinates, usually taken
within the molecule, and a is a translation from that origin.
The transition matrix elements involved in the computation

of X-ray signals can be divided into bound to bound and
bound to continuum type. The former dominate the few eV
regime around the absorption edges. This includes pre-edge
transitions as well as the main absorption peaks at and above
the edge. Such transitions are well treated by keeping an orbital
basis set to describe the core excited states. However, many-
electron effects play an important role in these highly excited
states, and multideterminantal wave functions are usually
needed to achieve accurate eigenstates.
Time-dependent density functional theory (TDDFT)

approaches have been widely used to compute XCD
spectra.238−242 Kimberg et al.239 have carried out a
comparative study of Hartree−Fock and DFT approaches for
various amino acids in the soft X-ray regime (C, N, and O K-
edges). The CAM-B3LYP exchange-correlation functional has
been used to compute XCD spectra on L-alanine.240 Takahashi
et al.242 have studied the basis set and gauge dependence of
DFT methods for serine and alanine in the soft X-ray regime.
For post Hartree−Fock methods, the ground state and the

valence excited manifold can be calculated at the MCSCF level
(multiconfigurational self-consistent field method) after
geometry optimization of the molecular structure. At this
stage, it is important to select an active space that is large
enough to capture all the occupied and unoccupied orbitals
that can be involved in both the valence and the core
transitions over the desired energy range. A consistent active
space of the valence excited manifold and the core excited one
should be kept in calculating transition matrix elements
between the many-body states. Thus, the core orbitals involved
in the considered transitions are translated into the active
space and frozen to double occupancy. Once the valence
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excited manifold has been calculated, the computation can be
repeated with the core orbital frozen with a core hole.
Typically, for K-edge calculations, the 1s orbital is rotated in
the active space used for the previous valence excited state
calculation and frozen to single occupancy. For L-edge
calculations that involve the 2p orbitals, the three orbitals are
rotated into the active space and their occupancy restricted to
five electrons.
Finally, Coriani et al.234 have recently shown that EOM-CC

and CC-RSP (CC response theory) using a restricted EOM-
CC operator230 can produce XCD molecular spectra. They
observed a significant gauge origin dependence. A good
agreement with other theoretical approaches such as CC-RSP
or TDDFT was achieved, but comparison with experimental
spectra still proved challenging. The amount of available
experimental spectra is still sparse, even for the simplest
technique, XCD, and this is a bottleneck for the improvement
of computational techniques.

7. CONCLUSIONS AND OUTLOOK
Chirality is a fundamental property of molecular structures
which is further connected to numerous applications.
Spectroscopic techniques sensitive to chirality provide useful
structural information. Chiral techniques have thus long been
used with great success in the infrared and visible regimes but
have a weak magnitude. Considerable efforts have been made
to increase their strength. Intense, ultrashort X-ray sources
have undergone a rapid development over the past decades,
and further progress is on the horizon. X-rays have a long
history of resolving atomistic structures, and their use to
investigate molecular chirality on ultrafast time scales is an
attractive recent development.
In this review, we broadly survey chiral techniques involving

X-ray or EUV pulses. We have classified them into three
categories based on the required X-ray/molecule coupling:
signals based on magnetic dipole and electric quadrupole
interactions, signals solely based on the electric dipole
interaction, and signals based on interaction with the OAM
of light. The field of X-ray chiral spectroscopy is still at an early
stage, with some of the simplest signals such as XCD only
implemented quite recently on a few systems. This review
provides closed form expressions for many signals. Simulations
for a variety of systems should provide guidelines for the
design of exciting experiments.
X-rays can selectively probe specific elements within a

molecule and thus reveal how the noncentrosymmetry of the
electron distribution is localized in space. This element
selectivity further allows us to study how fast a chiral
disturbance propagates within a molecule. The ultrashort
time-duration of EUV and X-ray pulses down to the
attosecond regime helps monitoring ultrafast electron dynam-
ics happening within a much shorter time frame than the
subsequent nuclear dynamics. X-rays have long been used for
structure determination, and the development of chiral-
sensitive X-ray diffraction techniques could lead to absolute
configuration determination.
The field of X-ray chirality, and in particular ultrafast X-ray

chirality, is quite new. Nonetheless, numerous experimental
realizations offer the perspective of a rich future making use of
the variety of techniques presented in this review. Among
multipolar signals, experiments have so far used XCD as an
observable.49,69−72,243,244 Deep UV experiments244 have
reached the femtosecond time scale with a high level

sensitivity, counteracting the low signal magnitudes (∼ −10 4

mOD). Extensions to higher energy regimes for femtosecond
tr-XCD will make great use of the polarization control available
at FELs. Signals which exist in the electric dipole
approximation have also experienced a great leap forward
over the past few years, both those relying on high
harmonics34,36,122,169−171,173,173,245 and those relying on photo-
ionization.133,134,144,150,154 Giant asymmetry ratios, possibility
reaching 100%, have been reported. Minimal coupling signals,
relying on the incoming beam OAM, also offer an exciting
avenue185,218,246 to probe molecular chirality, with asymmetry
ratios in the 1−10% range. These are made possible by the
spatial coherence of X-ray sources and progress in the making
of diffractive optics that generate them. The extra control of
the X-ray OAM offers additional parameters to observe the
higher asymmetry ratios that are typically observed in XCD
measurements. More interestingly, the signal dependence on
the OAM values contains new physical information to be
explored. Finally, the detection of photoelectron OAM is also
an intriguing recently proposed direction.247

APPENDIX A. ROTATIONAL AVERAGING OF TENSORS
An n-th rank tensor T is rotationally averaged using the
averaging tensor I(n).63 Here, we give the tensor expressions of
the rotationally averaged tensors up to rank 5. Expressions for
arbitrary ranks can be found in ref 63. The averaging procedure
can be seen as a projection over a basis of isotropic tensors.
Rank 2 and 3 averaging tensors are simple since the basis of
isotropic tensors is one-dimensional and they are built from
the Kronecker δij and the Levi−Civita symbols ϵijk giving

δ δ= λ λI
1
3 i i

(2)
1 2 1 2 (174)

λ λ λ= ϵ ϵI
1
6 i i i

(3)
1 2 31 2 3 (175)

For higher rank tensors, there are more linearly independent
isotropic tensors. I(4) and I(5) are given by
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where δ and ϵ are the Kronecker and Levi−Civita symbols,
respectively.
For example, the fourth-rank tensor involving one magnetic

interaction and three electric ones is averaged as

μμμ μμμ⟨ ⟩ = ⟨ ⟩λ λ λ λ
λ λ λ λΩm mI( ) ( )i i i i i i i i

(4)
1 2 3 4 1 2 3 4

1 2 3 4
1 2 3 4 (178)
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where we used the Einstein summation convention for the
Cartesian in indices i1, i2, i3, and i4 and ⟨···⟩Ω stands for
rotational averaging.

APPENDIX B. SPECTROSCOPIC SIGNALS
We now review the first-principles calculation of spectroscopic
observables. A photon detection event can always be viewed as
the change of photon number in the photon modes that the
detector is sensitive to.248 Since camera shutters are typically
slow compared to ultrafast molecular dynamics, signals are
given by the time-integrated photon number change:

∫Γ =S dt
d
dt
N( ) s

(179)

where Γ represents all the experimental control knobs that can
be varied in a specific experiment. The time integration can run
to infinity since we assume to detect all photon during the
ultrafast process. We have assumed an ideal detector sensitive
to a single photon mode s. For real detectors, one has to
convolute this response to a single mode with the instrument
response function in k space (finite detector size), frequency
domain (bandwidth of detection of the detector pixel), in
polarization (polarization resolve detection or not).249 In many
cases, this gating procedure can be reduced to a few variables
depending on the experimental setup.
We next show how the heterodyne, the homodyne coherent,

and the homodyne incoherent signals can be obtained from eq
179 for the three Hamiltonians given in eqs 9−11. We start
with the simplest dipolar Hamiltonian. The expectation value
of the photon number change can be calculated using the
Heisenberg equation:
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The photon signal thus becomes

∫ μΓ = −
ℏ

⟨ · ⟩†r r E rS dtd t( )
2
Im ( ) ( , )s (181)

Various detection modes can be described starting with this
expression. If a classical field is present in the s mode, the
expectation value over the quantum operator †Es can be
expressed simply as a function of the classical field:
⟨ ⟩ = *†E E r t( , )s het . In this heterodyne detection mode, the
photon emitted from the process with the matter interferes
with an external local oscillator and gives the heterodyne
signal:

∫ μΓ = −
ℏ

* ·⟨ ⟩rE r rS dtd t t( )
2
Im ( , ) ( , )het het (182)

where the time variable on ⟨μ(r,t)⟩ arises by taking the
expectation value at time t.
Homodyne detection is achieved by detecting the

spontaneously emitted photons into initially unoccupied
modes. In this case, the Fock state of the electromagnetic
field is the vacuum before the experiment and the interaction
populates the s mode that can be detected. It is then clear that

the signal in eq 181 vanishes at this order and one must
perform a perturbative expansion to first order in the
spontaneous mode:
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where “left” and “right” stand for the left and right interactions
on the density matrix.76 Subscripts L and R are often used in
the literature. Here we use “left” and “right” to avoid
ambiguities with the left and right polarizations. They are
used to ensure that a photon population in mode s is created.
The electric dipole operator is localized on each molecule.

Hence, the spatial dependence of μ(r) for equivalent molecules
is

∑μ μδ= −
α

αr r r( ) ( )
(184)

where α denotes molecules and rα is the position of molecule
α. The correlation function in eq 183 contains terms involving
a single molecule (homodyne incoherent signals) or two
molecules (homodyne coherent signals).
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where ω= ℏ ϵ/2s s
2

0 and N is the number of scatterers in the
process that can be directly related to the molecular
concentration. To obtain eqs 185 and 186, we have summed
over all polarizations of the spontaneous field. The F2(Δk)
function is the structure factor and will be discussed in the next
section.
We now provide the signal expressions for these three

detection modes for the other two interaction Hamiltonians.
For the multipolar Hamiltonian, we have
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Finally, we give the signal computed by the minimal
coupling Hamiltonian. In this coupling, the final interaction
can be either with the charge density or with the current
density. The latter leads to signal expression similar to the
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electric dipole coupling but takes into account the full spatial
extension of the incoming beam and thus avoids using a high
order multipolar expansion. The former contributes mostly off-
resonance and leads to all the diffraction-like observable.

∫Γ = −
ℏ

* ·⟨ ⟩A jS N dtd t r tr r( )
2
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where Ain(r,t) is the diffracted incoming beam. It is worth
noting that heterodyne-detected diffraction has not yet been
implemented and that this detection scheme would solve the
phase problem occurring in structure reconstruction.250 The
one-molecule signals are given by
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Finally, the two-molecule homodyne-detected signals are

∫Γ =
ℏ

Δ ⟨ ⟩ω jS F dtd tk r r( )
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Re ( ) e ( , )s
i tj

hom,co 2
2

2 left

2
s

(194)
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APPENDIX C. PERTURBATIVE EXPANSION OF
SPECTROSCOPIC SIGNALS
In Appendix B, we have reviewed the observables relevant for
the calculation of most spectroscopic signals. The signals
usually require the calculation of the expectation value of an
operator X defined as

ψ ψ ρ ρ⟨ ⟩ = ⟨ | | ⟩ = = ⟨⟨ | ⟩⟩X t t X t X t X t( ) ( ) ( ) Tr( ( )) ( )
(196)

The first equality is the standard expectation value calculated
from the wave function in Hilbert space. For a given order n of
perturbation, one has to expand the bra at order m, expand the
ket at order n − m, and them sum over m. The second equality
provides the expectation given as a function of the density
matrix. The density matrix formulation allows a proper
treatment of relaxation and avoids summing over the bra and
the ket perturbative order. This comes at the expense of nested
commutators from the Liouville−von Neumann equation that
dictates the time evolution of the density matrix. Finally, the
last term gives the expectation value in Liouville space, that is
the Hilbert space spawned by the density matrix seen as a
vector.
The time evolution of the wave function is given by the

following propagators:

ψ ψ| ⟩ = | ⟩τ τ− ℏ ∫t t( ) e ( )
i d H( )

0t
t

0 (197)

ρ ρ= τ τ− ℏ ∫ [ •]t t( ) e ( )
i d H( ),

0t
t

0 (198)

ρ ρ| ⟩⟩ = | ⟩⟩τ τ− ℏ ∫t t( ) e ( )
i d ( )

0t
t

0 (199)

The exponential operators are a symbolic notation defined
by their Dyson series:
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To n-th order, a given perturbative expansion will be the
sum over 2n terms. Moreover, the electric field contributes with
either positive or negative frequencies at each interaction. It is
thus convenient to introduce a diagrammatic representation for
each term contributing to the signal. For a given signal,
diagrams can be written in the wave function formalism or in
the density matrix formalism. The former are represented by
loop diagrams, taking their origins from the Keldysh loop
formalism, and the latter are given by ladder diagrams. Ladder
diagrams have the advantage to be fully time-ordered and to
naturally be able to include relaxation by tracing out the bath
degrees of freedom in the total density matrix. On the other
hand, loop diagrams are more suitable for numerical
propagation in between perturbative interactions since they
rely on a Hilbert space picture. For example, such numerical
propagations are better suited for molecules experiencing
nuclear dynamics or evolving in a nonperturbative strong field.
We now summarize the rules to translate a diagram into a

sum-over-states expression.
Ladder diagram in time domain:

1. Time goes from bottom to top; the two straight lines
represent the ket and the bra of the molecular density
matrix.

2. Fields are split in two contributions F(r,t) =
∫ dωdkF(k,ω)ei(k·r−ωt) and F*(r,t) = ∫ dωdkF(-
k,ω)*e−i(k·r−ωt). Arrows pointing to the right are
interaction with F(r,t), and arrows pointing to the left
are interactions with F(r,t)*. In the dipolar coupling, F =
E, in the multipolar coupling F = E, B, or ∇E, and in the
minimal coupling F = A.

3. Each interaction vertex gives an interaction with a
transition matrix element: electric dipole μij, magnetic
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dipole mij, electric quadrupole qij, current density jij, or
current density σij.

4. Each interaction on the left introduces a factor i/ℏ and a
factor −i/ℏ on the right.

5. Intervals between interactions introduce a Liouville-

space propagator θ− = − τ τ− ∫ℏt t t t( ) ( )e d
0 0

( )i
t
t

0 0 ,
where τ( )0 is the noninteracting Liouvillian. Matrix
elements of −t t( )0 (shown in Figure 19d) are

θ− = − ω− − −Γ −t t t t( ) ( )eab
i t t t t

0 0
( ) ( )ab ab0 0 , where Γ a b

describe the relaxation of |a⟩⟨b|.
Ladder diagram in frequency domain:

1. Similar rules to the time domain case applied except for
the following ones.

2. Pointing left arrows are F*(k,ω), and pointing right
arrows are F(k,ω).

3. Propagators are ω ω= − ℏ + Γi( ) 1/( / )0 and
ω ω ω= − + Γi( ) 1/( )ab ab ab .

4. Frequency variables are cumulative along the diagram.
For example, in Figure 19 and in the dipolar coupling,

diagram a gives a contribution (i/ℏ)μca·E(r,t) and diagram b
gives (−i/ℏ)μcb·E*(r,t). In the minimal coupling, the σA2

interaction interacts twice with the field at a given vertex and
diagram c gives σℏ · *r A r A ri t t t( / ) ( , ) ( , ) ( , )ca i d .
Finally, we introduce loop diagram rules based on a wave

function approach. More details can be found in the
literature.251

Loop diagram in time domain:

1. The left branch represents the evolution of the ket, and
the right branch, the one on the bra. Unlike ladder
diagrams, the interactions are not time-order on different
branches but are time-ordered within a branch.

2. Arrows pointing to the right are interactions with F(r,t),
and arrows pointing to the left are interactions with
F*(r,t).

3. Rules 2, 3, and 4 of time domain ladder diagrams are
kept.

4. Intervals between interactions introduce a Hilbert space

propagator θ= τ τ− ∫ℏ
′

G s s( ) ( )e d ( )i
ts

ts
0 , where τ( )0 is the

noninteracting Hamiltonian and = − ′s t ts s is the

propagation time interval between ts and ′ts . Matrix
elements of G(s) over field-free molecular eigenstates are

θ= − − ℏG s t t( ) ( )e iE s
0

/a . Alternatively, the propagator
G(s) can be treated numerically for the propagation.

5. The last interaction at the observation time t is
conventionally chosen to be occurring from the left.

Loop diagram in frequency domain:

1. Rules 1, 2, 3, and 5 of time domain loop diagrams are
kept.

2. Propagation on the left branch provides the iG(ω)
propagator. The right branch provides −iG†(ω). The
fi e l d - f r e e p r o p a g a t o r i s g i v e n b y

ω ω= − ℏ + ϵ −G H i( ) ( / )0
1.

3. The frequency arguments of the propagators in a branch
are cumulative. The ground state frequency Eg/ℏ is
added to all propagators’ arguments.
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