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stirring the reaction mixture produced no significant rate increase. 
Two factors are responsible for making this reaction surface- 

controlled. The first is the much faster rate of diffusion possible 
with a colloidal catalyst where the effective Nernst layer thick- 
ness13 is some lo4 times smaller than at  a rotating disk catalyst. 
The second reason lies in the low exchange current density of the 
S202-/S4062- c o ~ p l e . * ~ * ~ ~  Its anodic current a t  the mixture 
potential a t  the gold surface will therefore be small, and so will 
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the catalytic rate if, as seems likely,27 the catalytic mechanism 
involves electron transfer between ferricyanide and thiosulfate ions 
through the gold particles. 
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Spectra of polyatomic molecules and molecular clusters provide a unique opportunity for confronting microscopic and macroscopic 
types of theoretical approaches for the same experimental observables. Traditional spectroscopy of isolated molecules focuses 
on individual eigenstates (their positions and dipole strengths). Macroscopic line shapes on the other hand contain eollective 
coarse-grained information which is the average of many eigenstates. A reduced correlation-function formulation which 
allows a microscopic calculation of spectra without having to consider individual eigenstates is then used. Spectra of large 
polyatomic molecules may be treated with both types of approaches. However, as the molecular size increases, the macroscopic 
approaches become more applicable and much more efficient. In this article some of the existing methods for the calculation 
of fluorescence and absorption line shapes in large anharmonic polyatomic molecules are reviewed. Both time-resolved and 
frequency-resolved spectra are discussed. A macroscopic semiclassical "eigenstate free" procedure is developed and the information 
content of fluorescence spectra is analyzed. 

Introduction 
The calculation of molecular optical two-photon processes 

(fluorescence and Raman spectra and two-photon absorption) in 
large anharmonic molecules is one of the fundamental problems 
in molecular dynamics and spectroscopy. Recent experiments, 
particularly involving ultracold molecules in supersonic beams, 
are yielding accurate and detailed information (both time resolved 
and frequency This creates the need for the de- 
velopment of appropriate theoretical tools that will enable us to 
extract dynamical information from these spectra. 

The calculation of spectral line shapes (and any other response 
function) in macroscopic systems is usually made by correla- 
tion-function methods which are based on a reduced descrip- 
tion.lhZ9 This is the case for pressure broadening in the gas phase, 
line shapes in liquids and solid matrices, etc. One never attempts 
to calculate the exact eigenstates of the macroscopic system. The 
reason is twofold: (1) such a calculation is extremely difficult 
due to the enormous number of degrees of freedom involved, and 
(2) the. experimental broadened line shapes contain highly averaged 
information and do not reveal properties of individual eigenstates. 
The calculation of individual eigenstates of macroscopic systems 
is :herefore neither feasible nor desirable. 

- 
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The analysis of spectra of isolated molecules on the other hand 
is traditionally made in terms of properties of individual molecular 
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eigenstates (level positions and dipole matrix elements).30 Such 
an approach is appropriate for small or intermediate size molecules 
but for large molecules (10 atoms or more) it is impractical. The 
spectra show intramolecular line broadening in which information 
on individual eigenstates is highly averaged. This state of affairs 
is very similar to the behavior of macroscopic systems and it is 
obvious that methods and techniques developed for the latter may 
be adopted toward the treatment of intramolecular line broadening 
of large isolated polyatomic molecules. As a simple demonstration 
of the usefulness of the macroscopic concepts we recall that in 
macroscopic systems we usually consider the density of modes per 
unit volume as a fundamental dynamical quantity whereas in 
molecules we usually look at the total density of states. It is clear 
that, for many spectroscopic and dynamical observables, the former 
quantity is more relevant. When the molecule is large enough, 
its exact size is not so important as far as the behavior of a single 
bond is concerned.31 

In this article we review the various available methods toward 
the calculation of fluorescence and electronic absorption spectra 
of polyatomic molecules. In particular we shall develop an easily 
calculable correlation function procedure which evaluates the 
spectrum in terms of the correlation function of the electronic 
potential energy gap. This in turn may be calculated semiclas- 
sically. The information content of fluorescence spectra is reviewed 
and a unified picture valid from the small molecule to the large, 
statistical limit is presented. 

11. Expressions for Fluorescence Spectra 
In this section we develop the basic correlation-function ex- 

pressions for fluorescence line shapes. We show how both fre- 
quency-resolved and time-resolved observables may be expressed 
in terms of the same four-point correlation function of the dipole 
operator F ( T , , T ~ , T ~ ) .  This is a general feature of two-photon 
processes, since the amplitude for these processes is second order 
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in the dipole interactions V and the cross section (amplitude 
square) will be fourth order in V.17,32,33 

Consider a large polyatomic molecule with a ground electronic 
state la) and an electronically excited state Ib). Within the Born 
Oppenheimer (BO) approximation the moelcular Hamiltonian 
is given by 

H = la)Ha(al + Ib)Hb(bl (1) 
Here 

P; 
H, = c- + V,(Q) v = a, b 

i 2mi 
is the BO Hamiltonian for the uth electronic state, Pi and mi are 
the momentum operator and the mass of the ith nucleus, and Vv(Q) 
is the BO potential surface which depends on the nuclear coor- 
dinates Q. We further assume that the la) and Ib) states are 
coupled by the dipole operator to an external classical electro- 
magnetic field with frequency wL and to the continuum of spon- 
taneous emission modes w,. The total Hamiltonian in the rotating 
frame is given by 

H T  = H + Hi,t(t) (2) 
where the radiation-matter interaction Hint(t) is 
Hint(?) = HL[4(f) exp(ioLt) + 4 * ( 0  exp(-iw~t)l + 

and where 
p,[ast exp(iw,t) + a, exp(-iw,t)] (2a) 

KL  la) (bl + Ib) ( 4 )  (2b) 
P, = p,(la)(bl + Ib)(al) (2c) 

We further define 
V I  Hint(t=O) (3) 

Here pL is the electronic dipole operator which is taken to be 
independent of the nuclear coordinates. 4(t)  represents the am- 
plitude of the external field with #(t=O) = 1. For steady-state 
experiments $ ( t )  = 1 whereas for pulsed experiments l#(t)I2 
represents the temporal profile of the pulse intensity. p, is the 
dipole coupling with the H modes and a: (ad are the usual creation 
(annihilation) operators. pL and p, differ by a simple propor- 
tionality constant and hereafter we take p, = pL = 1. 

We shall be interested in a fluorescence process whereby a 
photon wL is being absorbed and a photon w, is emitted. The 
simplest experiment is a t  steady state ( # ( t )  = 1) in which the rate 
of emission of w, photons is given by34 

Where x is the amplitude for the two-photon transition, i.e. 

J + wL + ‘Yb 
2 

Here Jg) and Ig’) are vibronic eigenstates of Ha whereas b )  are 
vibronic eigenstates of the electronically excited molecule (Hb), 
i.e. 

Hak) = Egk) ( 6 )  

Hbb) = Ejb) (7) 

P(g) is the equilibrium population of Ig), Yb is the inverse radiative 
lifetime of the b level, and waB = E,  - E,. Had we known the 
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Equation 15a implies that the two-time correlation function may 
be obtained by starting at state Is), propagating the wave function 
for a time T on the pa surface, and then propagating for a time 
-7 on i;6. The overlap of the resulting wavepacket with the state 
lg) yields the two-time correlation function of the dipole operator. 

We shall turn now to a more detailed experimental observable, 
Le., when we have both time and frequency resolution. Let us 
consider a final state 1s’) with photon 0,. The amplitude of this 
state given that the molecule was in the state Ig). a t  t - --m may 
be calculated from second-order perturbation theory, resulting 
in 

molecular vibronic eigenstates (eq 6 and 7), this would be the end 
of the calculation. The calculation of the molecular eigenstates 
is, however, a formidable task for large anharmonic molecules 
(when FJQ) is not quadratic in Q). We shall therefore rewrite 
eq 4 in a correlation-function form which does not involve explicitly 
the molecular eigenstates. To that end we define the four-point 
correltion function17-32,33 

F(71,T2*73) E ( Vab(O) Vba(71) Vab(72) Vba(73)) 
E Tr[Vab(O) Vba(T1) Vab(72) Vba(73) pql (8) 

where 
V(7) = exp(iH7) Hint(7=O) exp(-iHT) (9) 

pq = exp(-Ha/kT)/Tr exp(-H,/kT) (10) 

and 

is the equilibrium canonical density matrix of the molecule. 
Equation 4 may be rearranged by making a simple Fourier 
transform, in the form21,22g25,32,33 

exP[iwL(72 - 71) + i(ws - OL) 7 - 1/2Yb(71 + 7211 (1 1) 

The expansion of fluorescence spectra in terms of the four-point 
correlation function (eq 8) was first introduced by Hizhnyakov 
and Tehver for impurity spectra in solids,21-22 whereby Va and Vb 
are linearly displaced harmonic surfaces (see eq 43). In eq 11 
the three time arguments of F do not have a fixed order (Le,, r1 
can be either larger or smaller than T + T~ and T + T~ - r2, etc.). 
By changing variables it is possible to rearrange it in the following 
form:17 

I(wL&) = x m d T 1  I T l d 7 2  0 x T 2 d 7 3  [*(71,72,73) F(71,72,73) 
+ q(72J1973) F(7zr7i,73) *(73,T1,72) F(T3,71,72)] + C.C. 

(12) 
where 

* ( 7 1 , 7 2 , T 3 )  = eXp[-iW~T3 - iws(71 - 72) - 1/2Yb(71 + 7 2  - 7311 
(13)  

In eq 12 r3 C 7 2  I r1 and each term corresponds to a specific time 
ordering. This form naturally appears when we do the calculation 
using the density matrix in Liouville space and is particularly useful 
for molecular spectra in condensed phases, whereby external 
broadening mechanisms are significant. A detailed discussion of 
this point as well as the complete diagrammatics ,using the density 
matrix were given e l s e ~ h e r e . ’ ~ , ~ ~  The significance of the four-point 
correlation function may be understood by rewriting it in the form 
F(71972973) = 
xp(g)(glexp(iHbTl) exp[-iHa(Tl - 72)1 exP[-iHb(72 - 73)11g) 
i3 

(14) 
with P(g) (glp,lg). The molecule starts in the initial state Ig). 
At time T~ an wL photon is absorbed; the wave function then 
progresses for a period 72 - 7) on the excited p b  potential surface, 
then for a period of 71 - r2 on the va potential surface, and finally 
for a period - T ~  on Vb The overlap of the resulting wave function 
with the initial vibronic state Ig) gives the four-point correlation 
function. Equation 12 implies that a knowledge of this function 
for all values of T ~ ,  r2, 73 allows us to calculate the fluorescence 
spectrum. 

For comparison, the absorption line shape f(%) is given in terms 
of the two-time dipole correlation function 

The emission rate of w, photons at  time t will be therefore 

Note that the steady-state expression (eq 11) may be obtained 
from this equation by switching the field adiabatically, i.e., by 
taking 

$(T) = exp(c7) -0) < 7 C 0, t - 0 
= 1  r > O  (18) 

and then j(wL,wS,t>O) will be equal to Z(wL,ws). Again by using 
the Liouville space formulation (or changing integration variables 
in eq 17) we may bring it to the form32 

F ( f - ~ ~ , ~ - 7 ~ , 7 ~ - 7 ~ )  W - 7 3 , ~ l - ~ 3 , ~ 2 - 7 3 )  4(r2) +(Q) + 
F(71-73,t-73,72-73) *(71-73,t-73,72-73) 4(72) 4(73) + 

F(72-73,f-73,71-73) *(72-73,t-73,71-73) 4(71) 4(73) (19) 
It should be noted that j(wL,ws,t) is not an experimental observable 
since it implies infinite temporal and frequency resolution which 
is impossible in principle. However, the result of any realistic 
measurement performed on the system Zcxpt may be obtained from 
I by properly convoluting it with a function O(w,7) characteristic 
of the detection device 

Sj(wL,w,+w,t+7) O(w,T) dw d r  (20) 

In concluding this section we note that we have shown how any 
observable in fluorescence is actually probing the four-point 
correlation function F(71,72,73) (eq 8) whereas the absorption is 
probing the corresponding two-time correlation function 
(Vab(o)V&(7)) (eq 1Sa). In the next two sections we shall consider 
methods for the evaluation of F. 

111. The Doorway State Picture 
The doorway state formalism provides a simple visualization 

of fluorescence spectra. It was developed for radiationless tran- 
sitions in intermediate size molecules.34 Let us assume that we 
know the vibrational eigenstates Ig), 1s’) of the ground electronic 
state. The doorway state corresponding to 18) is defined as 

jexpt(wL,ws,t) = 

1s) = cLIg) = I3ti)(jIcLlg) 

Is’) = cLlg’) U)(jlcLlg’) (21b) 

(2 1 a) 
J 

similarly 

Each doorway state is a wave packet of excited molecular states. 
Upon the substitution of eq 21 in eq 8 we get 

F(71,72,73) = (Vab(O) Vbd71) Vab(72) V b a ( T 3 ) )  = 
Cp(g)(S(Tl) ~’(0)) (S’(O)IS(~~-T~)) exp[-iEi373 - iE,?(rl - 7dI 

(22) 

(S’(O)IS(7)) (s’lexp(-iHbs)ls) (23) 

BB‘ 

Here 
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is the projection of the Is) doorway state propagated with the Hb 
Hamiltonian, on IS’). When eq 22 is substituted into eq 11 we 
obtain the steady-state fluorescence rate 
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1(wL9wS) = 2Tcp(g)lcg’g(2 6(w& + wL - w,) (24) 
%B‘ 

where 

c,, = L - d r  ( s (r )~s’ (o) )  exp[-i(E, + wL)r  - 1/2?bT] (24a) 

Similarly, the absorption line shape (eq 15) assumes the form 
?(aL) = 

1 
2R. g 

The time-dependent photon emission rate is given by eq 17 

- ~ p ( g ) ~ m d T  -- exp[-@g + uL)7 - j/ZYbT] (s(r)s(O)) (25) 

where 

Mukamel 

The doorway state picture provides a transparent interpretation 
of two-photon processes. If we wish to calculate a process in which 
the molecule initially at state lg) absorbs an wL photon and emits 
an ws photon into state Ig’) we do the following: We create the 
doorway state Is) of Ig) (eq 21a), let it evolve in time on the 
excited-state potential surface, and find the projection of Is’) on 
I s ( t ) )  (Is’) being the doorway state corresponding to lg’)), Le., 
eq 21b. From this projection we can calculate both the fre- 
quency-resolved and the time-resolved spectra via eq 24 and 26. 
The absorption spectrum may be calculated from eq 25. This is 
a very simple way to treat and interpret spectra of intermediate 
size molecules, quantum beat spectroscopy,  et^.^^ The doorway 
state formalism was subsequently used to develop a semiclassical 
wavepacket method toward the calculation of ( ~ ( t ) l s ’ ( O ) ) . ~ ~  This 
method is based on the approximation (which is exact for harmonic 
molecules) that the wave function remains a Gaussian wavepacket 
a t  all times. Extension of these results beyond the Gaussian 
approximation were made recently.36 

The problem with the doorway state method is that its appli- 
cation requires the knowledge of the exact vibronic eigenstates 
of the ground electronic state Ig) and 1s’). This, in general, is 
very difficult to obtain for large anharmonic molecules. This 
procedure is therefore not truly an “eigenvalue free” spectroscopy, 
and it accomplishes only half of the mission: It relieves us only 
from solving for the excited vibronic states b). Good progress 
has been made in calculating spectra of small molecules with this 
a p p r ~ a c h . ~ ~ ~ ~ ~  

IV. A Complete Semiclassical Calculation of Intramolecular 
Line Shapes. Spectroscopy without Eigenstates 

In the previous section we considered the doorway state for- 
malism which enables us to interpret fluorescence spectra in terms 
of correlation functions of doorway states (s’(O)Is(r)) on the 
excited potential surface. The latter may be evaluated from the 
effective Hamiltonian or semiclassical dynamics on the excited- 
state potential s ~ r f a c e . ~ ~ . ’ ~  In either case this approach requires 
the knowledge of the true molecular eigenstates on the ground 
potential surface (Ig) and lg’)). We shall now present a complete 
semiclassical correlation-function method which enables us to 
calculate the spectra without calculating any molecular eigenstates 
even on the ground potential surface. For the sake of calculating 
spectra of supercooled molecules this is a necessity since the 
calculation of the eigenstates of the ground electronic state (1s) 
and particularly (g’)) is no less difficult than the calculation of 
the vibronic eigenstates of the electronically excited state (li)). 

(35) Heller, E. J. Ace. Chem. Res. 1981,14, 368. Reimers, J. R.; Wilson, 
K. R.; Heller, E. J. J .  Chem. Phys. 1983, 79, 4749. 

(36) Coalson, R. D.; Karplus, M. Chem. Phys. Lett. 1982, 90, 301; J .  
Chem. Phys. 1983, 79,6150. Mukamel, S. J .  Phys. Chem. 1984,88, 3185. 

The complete semiclassical expansion is derived as  follow^:^^,^^*'^ 
We first rearrange eq 8 in the form 

exp-[ i L T 3 d T  U ( T ) ] )  (27) 

where 

U E r b  - (27a) 

U ( T )  = exp(iHa)U exp(-iHa) (27b) 
and exp, are the positive (negative) time-ordered exponentials 

( - i ) 2 1 ‘ 2 d ~  0 I‘d.’ 0 U(r )  U(T’) + ... (27c) 

exp-[iJ‘’di U ( T ) ]  = 1 + i&“dr U(s )  + 
( i )2XT’dr  L‘dr’ U(T’) U(T)  + ... (27d) 

U(T)  is the electronic energy gap which evolves in time on the 
ground-state potential surface (Ha). It is a key quantity responsible 
for the absorption and fluorescence line profiles. When U = 0, 
i.e., va = iib, the va and i ib  surfaces are parallel and the absorption 
and emission spectra will consist of a single line (no vibrational 
progressions). It is the functional dependence of U on nuclear 
coordinates and its time evolution which determine the fluorescence 
spectrum. Equation 27 may now be used to generate a simple 
and easily calculable expression for the four-point correlation 
functions F(71,72,73). This is done by expanding it to second order 
in U and then making the cumulant expansion (second-order 
cumulant expansion). The electronic transition frequency wbe can 
always be modified to include ( U ) ,  so that without loss of gen- 
erality we choose ( U )  = 0. We then get 

F(71,72,73) = exP[iwba(r1-72+73)1 exp[-g(r,) - d73)  - 
g(72-71) - g(73-72) d r Z )  + g(73-Tl)l (28) 

where g(r) may be expressed in terms of the spectral density J(7)  

J ( 7 )  = (U(0)  U ( T ) )  = Tr[U exp(iHar)U exp(-iH,r)p,] (29) 

i.e. 

J ( w )  being the Fourier transform of J ( T ) ,  i.e. 
1 

J ( w )  = - ] - J ( T )  exp(-iwT) d r  
27  -- 

The microscopic information that enters the spectrum, within this 
approximation, is contained in the spectral density J(w) which 
is related to the two-point correlation function of the energy gap 
(U(0) U(s) ) .  We should point out that proceeding along the same 
lines it is easy to derive a corresponding expression for the two-time 
correlation function appearing in the absorption line shape Z(wL) 
(eq 15)), Le. 

The calculation of the fluorescence spectrum thus involves two 
steps: the first is to calculate the spectral density (eq 29) and the 
second is to perform the triple Fourier transform (eq 11 or eq 19) 
and get the spectrum. We shall consider now both steps in detail. 

The spectral density may be easily evaluated in the classical 
limit by using standard semiclassical  procedure^.^^^^^-^^ We 

(37) Warshel, A.; Stern, P. S.; Mukamel, S. J .  Chem. Phys. 1983, 78, 
7498; In “Time-Resolved Vibrational Spectroscopy“; Atkinson, G. H., Ed.; 
Academic Press: New York, 1983; p 41. 
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Figure 1. The spectral density J(w) for a two-level absorber in a rigid 
(solidlike) cluster. The cluster size (N) is indicated in each panel."' 

calculate a sufficiently long classical trajectory on the ground 
potential surface and get U(T) U(Q(T)), Q(T) being the nuclear 
coordinates at time T.  We then decompose U(T) in a Fourier series 

U(T) = $Wj exp(iwjT) (33) 

Assuming that we can replace the average over initial points in 
phase space by considering a single long enough trajectory, we 
get 

J(T) = lim LJmexp( iwT) l j  dT1 U(T1) exp(iwT1)I2 dw (34) 

so that 

T 

~ - m  T -m 0 

JC(.) = ClUj(z[exp(iwj7) + exp(-iwj~)] (35) 
J 

and 

gc(T) &'dT1 (T  - T~)J (T)  = 

uj 2 -XI+ ([exp(iwjr) - iwjT - 11 + [exp(-iwj.r) + iwjT - 11) 
J w j  

(36) 
where the subscript c stands for classical. Note that using eq 35 
we have 

J(-W) = J(w) ( 3 7 4  

(38) k e n s ,  P. H.; Wilson, K. R. J.  Chem. Phys. 1981,74,4877. Berens, 
P. H.; White, S. R.; Wilson, K. R. J.  Chcm. Phys. 1981, 75, 515. Fredkin, 
D. R.; Komomicki, A.; White, S. R.; Wilson, K. R. J. Chem. Phys. 1983,78, 
1077. 

(39) Noid, D. W.; Koszykowski, M. L.; Marcus, R. A. Annu. RN. Phys. 

(40) Islampour, R.; Mukamel, S. J.  Chem. Phys. 1984,80, 5487; Chem. 
Chem. 1981.32, 267. 

Phys. Lett. 1984, 107, 239. 

A (UT-') 

/ \  

Figwe 2. The absorption lines shape 7 for a two-level absorber in a rigid 
cluster."' The calculations were made with eq 15 and J(w) of Figure 1. 

whereas the quantum spectral density should obey the fluctuation 
dissipation theorem, i.e.18J9933 

A = WL - ~ b .  

J(-w) = exp(-Aw/kT) J (o)  (37b) 

We can generate an improved approximation for J(w) by defining 
the quantity 

K(W) = 1 

1 + exp(-ho/kT) (38) 

and introducing a semiclassical approximation for J(w) which 
satisfies the fluctuation dissipation theorem, i.e.33*37*40 

Jsc(w) = 2K(W) Jc(w) (39) 

we then get 

gsc(T) = -~21-1 (K,[exp(iwj7) - iwjr - 11 + u j 2  

I W j  

(1 - ~ ~ ) [ e x p ( - i w ~ ~ )  + iwjT - 111 (40) 

K(w~) .  In the high-temperature (classical) limit K j  - 
and g,(T) reduces to gc(7). At zero temperature Kj - 1 .and 

We have calculated the electronic spectrum of a two-level 
consisting 

where K j  

we simply neglect the negative frequency part in eq 40. 

molecule (the 'absorber") embedded in a 

(41) Dietz, G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E. J .  Chem. 
Phys. 1981,74,6511. Hopkins, J. B.; Powers, D. E.; Smalley, R. E. J.  Phys. 
Chem. 1981,85,3739. 

(42) Amirav, A.; Even, U.; Jortncr, J. J.  Phys. Chem. 1982, 86, 3345. 
(43) Vernon, M. F.; Krajnovich, D. J.; Kwok, H. S.; Lisy, J. M.; Shen, Y. 

R.; Lec, Y .  T. J .  Chem. Phys. 1982,77,47. Lisy, J. M.; Tramser, A.; Vernon, 
M. F.; Lec, Y .  T. J .  Chem. Phys. 1981, 75, 4133. 

(44) Felker, P. M.; Zewail, A. H. Chem. Phys. Lett. 1983, 94, 448, 454; 
J.  Chem. Phys. 1983, 78, 5266. 
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Figure 4. The absorption line shape f for a two-level absorber in a 
nonrigid cluster with N perturbers.@ The calculations were made with 
eq 15 together with J ( w )  of Figure 3. A = wL - wh. 

loss of information takes place. First, the molecular eigenstates 
are grouped together to form J(w) ,  and for large clusters J(w)  
becomes practically continuous. The traditional spectroscopic 
information is then coarse grained and lost under the envelope 
of J(w). Moreover, the spectrum f(w,) is not always sensitive to 
the details of J(w). An extreme example is the Markovian limit 
in which the observed line width of f(wL) is much narrower than 
the spectral width of J(w).  (See, e.g., the infinite cluster in Figures 
3 and 4 where the line width of ?(w,) is -0.4 cm-' whereas the 
spectral width of J(w) is -200 cm-I.) In this case, we have (on 
the time scale relevant for the line broadening) 

J(7) = I; a(?) (41a) 

where 
I; = *J(o=O) 

g(7) = f 7 

(4 1 b) 

(4 1 c) 

so that 

and 

w (an-') w (an-') 

F i e  3. The spectral density J(w) for a two-level absorber in a nonrigid 
(droplike) cluster. The cluster size (N) is indicated in each panel.* 

of perturbers which do not interact directly with the radiation field, 
as a function of cluster size. The model applies, e.g., to the 
supersonic beam spectra of van der Waals clusters of polyatomic 
molecules with rare gas perturbema Both rigid (solidlike) and 
nonrigid (dropletlike) models for the clusters were considered. The 
rigid model consists of a one-dimensional "solid" whereby the 
perturbers form a harmonic chain and the absorber is located at 
the center. We further assume that the force constant between 
the absorber and its two neighbors changes upon excitation. In 
Figure 1 we show the spectral density J(o) for rigid clusters with 
various sizes (2,4, 8, 20,40, and an infinite numbers of pertur- 
bers), and in Figure 2 we show the corresponding line shape 
functions obtained by substituting J(w)  in eq 15,30, and 32. J(w) 
was calculated both exactly by using eq 29 and semiclassically 
(eq 39) and the results are practically the same. The nonrigid 
model for clusters consists of one absorber + several perturbers 
in a finite volume, with no interaction among the perturbers but 
a repulsive exponential interaction between the absorber and the 
perturbers. In Figure 3 we display J(w) for the nonrigid (dro- 
pletlike) clusters with 2, 4, 8, 20, and an infinite number of 
perturbers. We also show the semiclassical calculation (which 
for this model does not depend on cluster size). In Figure 4 we 
show the corresponding line shapes ~ ( w L )  obtained by substituting 
J(w) of Figure 3 in eq 15, 30, and 32. 

A close examination of Figures 1-4 results in the following 
observations. For small clusters both J(w)  and f(wL) consist of 
a series of isolated discrete lines. In these cases, the information 
content of the spectra is simply the line positions and their strength 
(dipole matrix elements). This is the traditional way of analyzing 
molecular spectra. As the cluster size increases, however, there 
is a gradual loss of information and the spectrum probes global 
properties (envelopes consisting of many transitions) rather than 
individual lines. Our calculations enable us to monitor how this 

where 

r 5 yZYb + f (42a) 

In the Markovian limit which is common in macroscopic line 
broadening f(wL) carries therefore very little information and 
assumes a simple Lorentzian form. It is clear from our calculations 
that the spectral density method is particularly useful for large 
clusters (and large molecules) where many eigenstates contribute 
to the spectrum and the loss of information is substantial. In these 
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Figure 5. The energy gap U(T) for methylbenzene at zero temperature 
calculated by a classical t r a j e ~ t o r y . ~ ~  
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U(T) of Figure 5: (A) semiclassical calculation (eq 40 together with eq 
15); (B) classical calculation (eq 36 together with eq 15); (C) an alter- 
native classical calculation. For details see ref 37. A = wL - wh. The 
three spectra were normalized to have the same intensity of the funda- 
mental 0-0 band.37 

unnecessary. 
In Figure 5 we display U(T) as calculated classically for me- 

thylbenzene using realistic potential surfaces for I?a and Tb. _In 
Figure 6 we show the corresponding absorption line shape I.37 
Calculation A uses the fluctuation dissipation theorem (eq 40 with 
xi = l), and calculation B uses the classical J(w) (eq 40 with K~ 

= l/*). Figure 6C results from an alternative classical approx- 
i m a t i ~ n ~ ~  obtained by writing p(7) = exp[ijidT1 U ( T ~ ) ]  where 
U(T) is shown in Figure 5. The classical correlation function of 
p is then calculated resulting in the line shape. This calculation 
is nonperturbative in U(T) but it cannot be easily modified to 
incorporate the fluctuation dissipation theorem. We note that 
line shapes B and C are symmetric [I(-A) = I(A)] ,  as they should 
be in the high-temperature limit and only in line shape A I(-A) 
= 0 as the zero temperature spectrum should be. Moreover, line 
shapes B and C contain hot combination bands (e.g., the 200-cm-' 
feature) which should not exist at  zero temperature. These are 
totally suppressed in line shape A. It is clear that the spectral 
density method A is most adequate for the calculation of nonlinear 

E 

I, 
'-r 

Figure 7. The sixth overtone line shape of 2,3,5,6-tetradeuteriobenzene 
calculated via the spectral density methodss (eq 15 together with eq 40), 
T = 300 K. The spacing between divisions on the frequency axis is 20 
cm-'. (A) is calculated by using a model calculation for U. (B), (C), 
(D), and (E) correspond to U(T) reduced by factors of 2, 3, 5 ,  and 8, 
respectively, with respect to (A). The figure illustrates the strong non- 
linear dependence of the line and shape on the magnitude of the energy 
gap U(T). This model corresponds to a pure dephasing contribution to 
the line width. 

I II "OK 

Figure 8. Temperature dependence of the overtone line shape A of Figure 
47. The spacing between divisions on the frequency axis is 20 cm-'. 

spectra of large ultracold polyatomic molecules. 
It is possible to use the spectral density toward the calculation 

of overtone line shapes as ~ e 1 1 . ~ ~ - ~ ~  In this case we choose la) 

(45) Bray, R. G.; Berry, M. J. J. Chem. Phys. 1979,71,4909. Reddy, K. 
V.; Heller, D. F.; Berry, M. J. J. Chem. Phys. 1982, 76, 2814. 
(46) Swofford, R. L.; Long, M. E.; Albrecht, A. C. J. Chem. Phys. 1976, 

75, 179. Burberry, M. S.; Albrecht, A. C: J. Chem. Phys. 1979, 71, 4631. 
(47) Henry, B. R. In "Vibrational Spectra and Structure"; During, J. R., 

Ed.; Elsevier: New York, 1981; Vol. 10. 
(48) Scherer, G. J.; Lehmann, K. K.; Klemperer, W .  J. Chem. Phys. 1983,, 

78, 2817. Altman, R. S.; Marshall, M. D.; Klemperer, W. J. Chem. Phys. 
1983, 79, 57. 
(49) Wong, J. S.; Moore, C .  B. J. Chem. Phys. 1982, 77,603. 
(50) Wong, J. S.; Macphail, R. A.; Moore, C. B.; Straws, H. L. J .  Phys. 

Chem. 1982,86, 1478. 
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and Ib) to be two “local mode” states and Q are the rest of the 
nuclear coordinates. Equation 15 then accounts for a pure de- 
phasing ( Tz) contribution to the overtone line shape. The lineshape 
A in Figure 7 is the sixth C H  overtone of 2,3,5,64etradeuterio- 
benzene calculated by modeling the C H  stretch as a Morse os- 
cillator whose parameters (dissociation energy and characteristic 
length) depend parametrically on the nuclear configuration in the 
vicinity of the C H  b ~ n d . ~ ’ J ~  Calculations B, C, D, and E are 
obtained by assuming a smaller coupling and dividing U of Figure 
7A by 2, 3, 5, and 8, respectively. This illustrates the highly 
nonlinear dependence of the line shape on U(T). In Figure 8 we 
show how line shape A of Figure 7, calculated at  300 K, is affected 
by reducing the temperature. A strong temperature dependence 
is obtained and the broadening disappears as T -+ 0. 

We are now in a position to consider the second stage of the 
calculation, Le., performing the triple integration (eq 11 or 19). 
One possibility is to perform the integrations numerically, which 
is feasible but quite tedious. There exists, however, an alternative 
procedure which allows us to obtain Z(wL,ws) much more con- 
veniently. Let us consider the following model system of a 
molecule with two linearly displaced harmonic surfaces: 

(43a) 

The Journal of Physical Chemistry, Vol. 89, No. 7, 1985 

N 

j = 1  
Ha = x h w j ( P :  + Q t )  

and 
N 

j-1 
Hb = Ha + X h ~ j A j Q j  (43b) 

where 
21wJ;I 

Mukamel 

(44) 

and 
fij = [exp(hwj/kT) - 13-’ (45) 

Note that Pi and Qj are the dimensionless momentum and co- 
ordinate of thejth oscillator. vj and wj are the Fourier components 
and frequencies of U(T) of our original anharmonic molecule (see 
eq 33). 

Equation 43 represents an effective harmonic molecule whose 
number of modes (N) is equal to the number of Fourier com- 
ponents of U(T) .  For this model system, the second-order cu- 
mulant expansion is exact and F ( T ~ , T ~ , T ~ )  is given rigorously by 
eq 28.21,22333-56 In other words, the approximate spectrum of the 
original anharmonic system (eq 1 )  is equal to the exact spectrum 
of our effective harmonic system (eq 43). The latter can be easily 
evaluated from eq 4 and 5 since the eigenvalues and eigenstates 
of the harmonic system are known. We have thus converted the 
calculation of the spectrum to that of an effective harmonic system 
whose number of degrees of freedom (N) is equal to the number 
of Fourier components of U! The fluorescence spectrum is then 
given by 

[ ( W L , ~ ~ )  = CP(n) l (mlx(E,  + wL)ln)12 S ( ~ L  - w, + E,  - Em) 
n.m 

(46) 
where 

Here In) and Im) are eigenstates of Ha (eq 43a) whereas (k) are 

(51) Nagy, P. J.; Hase, W. L. Chem. Phys. Lett. 1978,54, 73; 1978, 58, 

(52) Heller, D. F.; Mukamel, S. J .  Chem. Phys. 1979, 70, 463. 
(53) Siebert, E. L.; Reinhardt, W. P.; Hyna, J. T. Chem. Phys. Lett. 1982, 

92, 455. Hutchinson, J. S.; Reinhardt, W. P.; Hynes, J .  T. J .  Chem. Phys. 
1983, 79, 4247. 

482. 

(54) Sage, M. L.; Jortner, J. Adu. Chem. Phys. 1981, 47, 293. 
(55) Mukamel, S.; Islampour, R. Chem. Phys. Lett. 1984, 108, 161. 
(56) Fujimura, Y.; Lin, S. H.  J .  Chem. Phys. 1979, 70, 247; 1979, 71, 

3733. 

eigenstates of Hb (eq 43b). (mlk) and (kln) are factorized as 
products of Franck-Condon factors of the various modes 

N 

j = 1  
(kin) = n ( k j l n j )  (46b) 

and (kjln ) and (mjJkj )  are the usual Franck-Condon factors of 
displaced harmonic oscillators.s6 The energies E, are given by 

N 

j- 1 
E ,  = Cwjnj  (46d) 

and similarly for E,,, and Et. The summation over intermediate 
states Ik) in eq 46a may become quite tedious for systems with 
a large number of degrees of freedom (N) or for large detunings 
(Raman spectra) where the number of terms is very large. The 
summation can be carried out, however, explicitly in the time 
domain by using the cumulant expansion.”-33 For a single mode 
( N  = 1) we have 

(mlx(E)ln)  = --iJ-dr exp(iET)(mlX(T)ln) (47a) 

When the molecule is initially in the ground state ( n  = 0), we have 

(mlx(T)lo) = * 1 f l ~ ) 1 “ ‘  exP[ $$T)] (47b) 

where 
A 

2112 AT) = -[exp(-iw.r) - 11 (47c) 

For the more general case, we get 

( 4 7 4  
where we have taken m k n. (For n > m we may use the sym- 
metry (m(X(-T)n) = (nlX(T)lm)*). For N > 1 we simply write 

where (mjlxj(7)lnj) (mlX(-T)ln) given by eq 47d with n, m,  w ,  
and A replaced by nj, mj, wj, and Aj, respectively. Our semiclassical 
procedure thus consists of running a classical trajectory for the 
actual anharmonic molecule to find the Fourier components of 
U, which define the effective harmonic system ( N ,  Aj, and wj ) .  
The fluorescence spectrum is then calculated with eq 46 or 47. 
A different method for evaluating eq 46 is the transform me- 
thod21.22-24325 which is based on expanding Z(wL,ws) in successive 
orders of phonon numbers (single-phonon transitions, two-phonon 
transitions, etc.). The method was developed for the displaced 
harmonic model (eq 43), and the present work shows that it can 
be used for anharmonic systems as well, via the effective harmonic 
system. 

One problem with this semiclassical approach lies in its “all 
or nothing” character, i.e., once we get F ( T ~ , T ~ , T ~ )  we have the 
entire spectrum Z(wL,ws), the full dispersed emission for any value 
of the excitation frequency wL. It would be both helpful and 
convenient to be able to solve for “one wL at  a time” (i.e., fix wL 
and get the entire dispersed fluorescence for that particular wL). 
This will greatly reduce the computational effort since we are often 
interested only in a few values of wL. Formally, this can be done 
in a straightforward way by introducing the polarizability operator 
of the la) electronic state, i.e. 
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where x was defined in eq 5 .  Defining further 

We can write eq 4 in the forms7 

a(wL,r) exp(iHa7) a(wL) exp(-iHa7) (48b) 

I(WL,~,) = X I d T  ( a t ( w ~ )  4 ~ ~ ~ 7 ) )  exp[i(ws - ~ L ) T I  (49) 

Equation 49 formally accomplishes our goal: a(wL,7) and the 
correlation function (at(wL) a(wL,7 ) )  depend only on the exci- 
tation frequency wL. The emission frequency w, enters solely in 
the Fourier transform exp[i(w, -%)TI. We can therefore evaluate, 
in principle, the correlation function of a for a fixed value of wL 
and then solve for the entire w, dependence of the dispersed 
fluorescence. The problem with this procedure is that the po- 
larizability operator a is a complicated quantity since it involves 
the inverse of the Hamiltonian (see eq 4) and requires the 
knowledge of the entire vibronic spectrum of Ha. 

There is one limiting case in which a may be evaluated in a 
simple way. This occurs in the case of Raman spectroscopy in 
which the excitation frequency is tuned very far off resonance from 
any molecular transition (Le., the detuning wL - wba is very large 
compared with all other energy parameters in the problem). In 
this case, wL is the dominant factor in the denominator of eq 5 
and we may write 

The polarizability correlation function (eq 49) may then be 
evaluated by the same method developed for the spectral density 
(Le., eq 34 with Ureplaced by a). It is also possible to improve 
approximation (50) by a peturbative expansion of eq 5 in Ha/(wL 
- wh).24 The calculation of a Raman spectrum is therefore 
equivalent in complexity to that of an ordinary infrared spectrum39 
where wL - w, plays the role of the frequency. A Raman spectrum 
is not so sensitive to the structure and dynamics of the electron- 
ically excited state and probes mainly properties of the ground 
electronic state. This form (eq 49) may be further applied to 
fluroescence spectra (Le., when wL is resonant with a molecular 
transition) by developing efficient computational methods toward 
calculating the polarizability. 

Another problem which may be easily addressed within our 
formalism is the effects of incoherence in the radiation field on 
the fluroescence spectra. Up to this point, we have assumed that 
the field wL is fully coherent. Partial or complete incoherence 
in the radiation field may be straightforwardly incorporated in 
these results by assuming that the field pulse envelope function 
4 ( ~ )  has some stochastic character and performing the necessary 
average over the stochastic ensemble. This average will be denoted 
by (...). 

Let us consider a simple stochastic model for 4(r),  Le., assuming 
that the frequency wL undergoes a stochastic modulation so that 
in eq 2a we set32v58 

This is the conventional phase diffusion model for laser radi- 
ation. Here 40(t) is the external pulse envelope (40 = 1 for a 
steady-state experiment), and 6w(t) denotes a stochastic Gaussian 
modulation of the phase of the field with (6w) = 0. We then get 

(52) (4(7) 4(7')) = 40(7) 40(7') S(7-7') 

where 

S(7-7') = e ~ p [ - J ' ~ ' ' ' d ~ ,  x 7 ' d r 2  (6w(O) 6 w ( r 2 ) ) ]  (53) 

We shall further define 

S(W) = -LJmd7 exp(iwr) S(7) 
27r -- 

(57) Born, M.; Huang, K. -aDynamical Theory of Crystal Lattices"; Oxford 

(58) Sue, J.; Mukamel, S .  Chem. Phys. Lett. 1984, 107, 398. 
University Press: London, 1954. 
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Figure 9. The quantum beat patternS* of a ten level system excited by 
a pulse with duration T = 15. Shown is the time-resolved photon 
emission rate ( ( I (wL,w, , f ) )  (eq 54b) integrated over 0,). The incoherence 
of the field was introduced by a Lorentzian profile for S(w) with fwhm 
(r) indicated in each panel. The quantum beats are averaged as r 
increases but are not lost completely. For r 2 10 they remain un- 
changed. 

Equation 19 will then be modified by replacing the 4 ( ~ )  4(7') 
factors on the right-hand side by (4(r )  4(7')) (eq 52). As for 
the steady-state observables (eq 11 or 12), they will be modified 
by multiplying F(T1,72,73) by S(r3).  When this is done we can 
rewrite these equations in the 

and 

where Io and Io are the previous results for a coherent field (6w 
= 0) and ( I )  and ( I )  represent these quantities averaged over 
the stochastic field. The entire effect of field fluctuations is 
therefore simply to convolute the line shapes with S(w). 

In Figures 9 and 10 we consider a typical quantum beat pat- 
t e r ~ ~ ~ ~ ~ ~ ~  in an experiment where we have only time a?d no fre- 
quency resolution of the scattered light, Le., we observe (I(wL,w,,t)) 
integrated over w,. We have studied the effects of laser field 
incoherence by performing the convolution (eq 54). S(w) was 
taken to be a Lorentzian whose fwhm (r) is indicated in each 
paneL5* As r increases, the quantum beat pattern broadens and 
undergoes averaging. This averaging, however, attains a limiting 
value and for r 2 10 the beat pattern remains the same. It is 
also clear from eq 54 that the shorter the light pulse, the less 

(59) Lahmani, F.; Tramer, A.; Tric, C. J .  Chem. Phys. 1974,60,4431. 
Frad, A.; Lahmani, F.; Tramer, A.; Tric, C .  J.  Chem. Phys. 1974,60,4419. 

(60) Van Der Werf, R.; Schutten, E.; Kommandeur, J. Chem. Phys. 1975, 
11 ,  281; 1976, 16, 125, 151. 
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Figure 10. The effect of the pulse duration (1“) on the quantum beat 
spectrum (eq 54b); (A) coherent excitation, T = 1; (B) effect of field 
incoheren on (A) (eq 54b) with I? = 10, T = 1; (C) coherent excitation, 
T = 5; (DY effect of field incoherence on (C) (eq 54b) with r = 10, T 
= 5 ;  (B) and (D) should be compared with the r = 10 panel of Figure 
9 for which all other parameters are the same except T = 15. It is clear 
that, as the excitation pulse becomes shorter, the effect of incoherence 
decreases. 

effective will be the averaging due to the incoherence. The reason 
is that, for short pulses, the doorway state does not have sufficient 
time to evolve during the pulse and the molecular state following 
the pulse is simply the doorway state Is)  regardless of any inco- 
herence. This effect is demonstrated in Figure 10 which uses the 
same parameters of Figure 9 but with shorter pulses ( T  = 5 and 
T =1 compared with T = 15 in Figure 9). r = 10 was taken in 
all cases. It is clear that the averaging in panel D ( T  = 5 )  is much 
more significant than that of panel B ( T  = 1) of Figure 10. 

In summary, eq 54 interpolates all the way from the coherent 
driving whereby S(o) = b(o) and ( I ( o L , t ) )  reduces to 10(wL,t), 
to the complete incoherent excitation (S(w) N constant). I t  is 
clear that the quantum beat pattern is averaged as the degree of 
incoherence increases, and this averaging depends crucially on 
the duration of the excitation pulse. We have also shown that 
the quantum beats do not necessarily disappear in the extreme 
incoherent limit. 

V. Discussion 
The information content of spectra of small molecules is usually 

viewed as static in nature and is traditionally treated in thefre- 
quency domain (level positions, dipole strengths). For spectra 
of large macroscopic systems a dynumical (correlation function) 
viewpoint is more appropriate and they are usually treated in the 
time domain. Large polyatomic molecules and molecular clusters 
which are “intermediate” in size provide us with a unique op- 
portunity to approach the problem from both ends and to bridge 
the gap between the macroscopic and the microscopic approaches. 
This “freedom of choice” of approach and level of description 
allows us to adopt different terminologies and concepts in de- 
scribing the same phenomena. In this section we shall briefly 
summarize the various methods (some of which were described 
here in detail) for the theoretical description of molecular 
fluorescence spectra. 

( i )  A Complete Description. In a complete description, we solve 
for the exact molecular vibronic eigenstates. The result of any 
spectroscopic measurement (absorption, fluorescence, etc.) may 
then be interpreted in terms of the level p i t i o n s  and the transition 
dipole matrix elements. Equations 4 and 5 give the fluorescence 
spectra using these quantities. In this picture, there is no dynamics 
involved in the spectrum and this is a completely static viewpoint. 
Such an approach is feasible only for small enough systems and 
is impractical for large anharmonic molecules. 

(ii) Effective Hamiltonian Techniques. Reduction over States. 
This is similar to method i and we still consider eigenstates as the 
quantities of interest. However, in many situations we have a 
natural zero order basis set in which there are some “relevant” 
states which participate directly in the radiative processes and one 
or many manifolds (quasicontinua) of states which enter indirectly 
into the radiative processes. Examples for the latter types of states 
are triplet manifolds in electronically excited states, the quasi- 
continuum in intramolecular vibrational redistribution and 
multiphoton processes,61 etc. The effective Hamiltonian allows 
us to project these continua and include their effects by adding 
complex parts to the Hamiltonian. This results in a reduced level 
of description where the reduction is over the “irrelevant states”. 
The usuage of the effective Hamiltonian, when the level scheme 
is appropriate, allows us to treat systems with large numbers of 
states relatively easily. The price is that the effective Hamiltonian 
is non-Hermitian and some care needs to be made in handling 
its eigenstates. Detailed expressions for fluorescence spectra using 
the effective Hamiltonian are available.34 

(iii) Doorway State Techniques. Using this approach, described 
in section 111, we consider explicitly the vibronic eigenstates of 
the ground electronic state but treat the excited state approxi- 
mately (effective Hamiltonian, semiclassical propagator, etc). This 
method brings us halfway into ”eigenstate free” spectroscopy since 
only the ground vibronic states need to be c a l c ~ l a t e d . ~ ~ - ~ ~  

( iv)  Semiclassical Approach. Pure Dephasing. Our semi- 
classical approach of section IV focuses on the fluctuations in the 
electronic energy gap U(T) as the source for the structure in 
molecular line shapes. Here we consider explicitly only the 
two-level electronic system; all the nuclear degrees of freedom 
are a bath. The line broadening in absorption and fluorescence 
is then viewed as a pure dephasing process. No vibronic ei- 
genstates need to be calculated. 

( v )  Master Equation Approach. Reduction over Degrees of 
Freedom. Usually, in a large molecule, we have many selection 
rules 2nd only few nuclear degrees of freedom are optically active. 
The rest serve as a bath which induces intramolecular relaxations. 
It is suggestive therefore to derive relaxation equations for the 
active “system” modes and to incorporate the effects of the bath 
via relaxation terms ( T1 and T2 relaxation processes). This ap- 
proach is fundamentally different from the previous ones since 
it involves reduction over degrees of freedom. It is very similar 
to what is done in matrix spectroscopy or collisional line broad- 
ening. Such an approach was developed for infrared multiphoton 
processes61 and for the dispersed fluorescence in supersonic beams.4 
In the limit of fast intramolecular relaxation, the spectrum fac- 
torizes into a product of an absorption line shape times an emission 
shape from a fully relaxed molecule in the electronically excited 
state. T h e  calculation of the spectrum greatly simplifies in this 
case since it is a simple product of two single-photon processes. 
Recent evidence for the applicability of the master equation ap- 
proach to intramolecular line shapes was found in tetrazine and 
tetrazine-argon complexes.62 

(v i )  Random Matrix Approach. Statistical Spectroscopy. 
Random matrix methods have been suggested by Wigner in the 
context of nuclear spectroscopy and nuclear reaction theory.63@ 

(61) Mukamel, S.  J .  Chem. Phys. 1979, 70, 5834; 1979, 71, 2012, Adu. 
Chem. Phys. 1981, 47, 509. 

(62) Levy, D. F., private communication. Ramaekers, J. F.; Van Dijk, H. 
K.; Langelaar, J.; Rettschnick, R. P. H. Furuduy Discuss. Chem. SOC. 1983, 
75, 183. 

(63) Porter, C. E. ‘Statistical Theory of Spectra-fluctuations”; Academic 
Press: New York, 1965. 
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The idea is to try to characterize the spectra in terms of ensembles 
of Hamiltonians with simple statistical properties of their matrix 
elements. The statistical properties of the resulting eigenvalues 
and eigenvectors are then analyzed and compared with the ex- 
periment. This approach had remarkable success in nuclear 
physics. The statistical properties of interest are connected with 
properties of “n level distribution functions” such as distributions 
of level spacings, fluctuations in spectra, etc. Several attempts 
were made recently to apply these ideas to molecular absorption 
spectra.6Mg An interesting open question is whether, by making 
some simple assumptions regarding the distribution of molecular 
frequencies, anharmonicities, etc., it will be possible to predict 
and characterize fluorescence spectra in a statistical way. 

The present summary shows that intramolecular relaxation and 
dephasing, as reflected in fluorescence line shapes, are subjective 

(64) Brody, T. A.; Flores, J.; French, J. B.; Mello, P. A.; Pandey, A.; 
Wong, S .  S .  M. Reu. Mod. Phys. 1981, 53, 385 and other references cited 
therein. 

(65) Chaiken, J.; Gumick, M.; McDonald, J. M. J .  Chem. Phys. 1981,74, 
117; 1981, 74, 123. 

(66) Abramson, E.; Field, R. W.; Imre, D.; Innes, K. K.; Kinsey, J. L. J .  
Chem. Phys. 1984,80,2298. 

(67) Buch, V.; Gerber, R. B.; Ratner, M. A. J .  Chem. Phys. 1982, 76, 
5397. 

(68) Haller, E.; Koppel, H.; Cederbaum, L. S. Chem. Phys. Lett. 1983, 
101, 215. 

(69) Mukamel, S.;  Pandey, A.; Sue, J. Chem. Phys. Lett. 1984,105,134. 
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quantities which depend on our level of theoretical description. 
In methods i and ii the spectrum is static and carries no dynamical 
information. Method iv interprets the spectra as pure dephasing. 
In method v the key quantities are TI  and T2, relaxation processes, 
and in method vi the information is purely statistical. All these 
approaches are useful and there is no contradiction among the 
various interpretations. The right approach should be adopted 
depending on the level of information contained in the experiment 
which depends on molecular size, degree of excitation, experi- 
mental resolution, etc. There is no point in interpreting a simple 
Lorentzian line in terms of millions of unresolved eigenstates. A 
question that is often raised is whether a particular intramolecular 
line shape arises from dephasing ( T2) or relaxation of population 
( T I )  processes. The present analysis shows that this question has 
no significance unless we specify our level of de~cription.’~ The 
same line stape can be interpreted in a variety of ways and the 
convenience and the information content should dictate which 
approach to choose. 
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Vibrational Overtone Spectra of Methyl-Substituted Silanes 
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Absorption spectra between 12 800 and 18 200 cm-l have been recorded for gaseous CH3SiH3, (CH3&3iH2, (CH3)3SiH, 
and (CH3),Si by using intracavity photoacoustic detection with CW dye lasers at 1-cm-’ resolution. Transitions corresponding 
to the AvCH = 5,6,7 overtones of the C-H stretch and AvsiH = 8 and 9 overtones of the Si-H stretch can be assigned. These 
can be described appropriately in a local-mode representation with spectroscopic constants consisting of an effective harmonic 
frequency and a diagonal anharmonic constant. The spectra consist of additional features, many of which can be assigned 
as combinations with the local-mode oscillator. Comparison of the C-H and Si-H stretching overtones are made with those 
observed id CHI and SiH4. 

Introduction 
High-energy molecular vibrational states have received con- 

siderable recent attention, partly because of their potential role 
in photochemical reactions that possibly could be driven in a 
mode-specific direction.14 Vibrational excitation in the visible 
spectral region can be detected in liquids with thermal lensing 
techniques’ and in gases with photoacoustic methods5 Previous 
photoacoustic studies of the Si-H stretch in our laboratory have 
revealed several interesting results.&* First, the Si-H stretch is 
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very well described as a local-mode oscillator in SiH4, SiD3H, 
SiHC13, and SiH2C12. The transition energies show a remarkable 
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