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Generating Function for Electronic Spectra of Poiyatomic Molecules 
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An exact zero-temperature reduced equation of motion is derived for a generating function P(q,t;q') which allows the calculation 
of electronic absorption spectra of anharmonic polyatomic molecules. The present theory is an extension of our previous 
study of vibrational spectra. It allows the direct calculation of quantum electronic spectra without solving for the vibronic 
eigenstates. An easily calculable expression for the absorption spbctrum of a molecule with harmonic potential surfaces including 
equilibrium shifts, frequency shifts, and Dushinsky rotations is derived. 

Generating Function for Electronic Spectra 
The calculation of electronic absorption and fluorescence spectra 

of isolated large polyatomic molecules is one of the most chal- 
lenging problems in molecular dynamics. One reason for the recent 
interest in this problem is the developments in supersonic beam 
spectroscopic techniques of ultracold molecules.14 These create 
the need for a simple method to calculate spectra and fit them 
to experimental data. We have recently developed a generating 
function for the calculation of Vibrational spectra of anharmonic 
molecules.5 In this letter, we extend our derivation to electronic 
spectra involving two potential surfaces. The generating function 
contains the information relevant for the spectrum and allows us 
to develop approximate methods toward its calculation, which are 
not based on the explicit calculation of the vibronic eigenstates. 
A simple expression for the absorption spectrum of harmonic 
molecules is also derived from the generating function. This 
expression (eq 36) is very convenient for numerical computations 
and for extracting information on the potential surfaces from 
experimental spectra. Moreover, this will serve as a starting point 
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for mode coupling calculations of the generating function in the 
anharmonic case. 

We consider a molecule with two electronic adiabatic states 
la) and Ib) and N vibrational degrees of freedom characterized 
by the Born-Oppenheimer Hamiltonian 

(1) H = (a)H,(al + Ib)(w, + H d ( b l  

where 
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Upon substituting eq 1 in eq 13 and rearranging, we finally get 

Here mj and Qj are the mass and Cartesian displacement of the 
j t h  nucleus and Wba is the electronic transition frequency. The 
dipole operator representing the interaction of the molecule with 
the radiation field is given by 

(2) NQ) = M(Q)(la) (bl + Ib) (all 

We shall be interested in calculating the dipole correlation 

Z(t) = (fi(t) p ( 0 ) )  Tr  [exp(iHat)F exp(-iHbt)rp,] (3) 
function 

and the absorption spectrum 

(4) 

Here pa is the canonical equilibrium density matrix of the molecule 
in the la) state, Le. 

(5) 
In analogy with our previous e ~ p a n s i o n , ~  let us introduce the 
electronic generating function 

Pa = exP(-Ha/ k T )  /Tr  [exp(-Ha/ k T)l 

P(q,t;q’) = Tr  [exP(iHat)S(q - Q) exp(-iHbt)S(q’ - Q ) ~ a l  (6) 

Using eq 3 and 6, we immediately get 

I(t) = 1 I d 4  dq’ 49’) P(q,t;q’) (7) 

The generating function therefore plays the role of a joint prob- 
ability for the coordinates to assume the values q’ a t  t = 0 and 
q at time t. It should be pointed out that P is a complex quantity 
and is not a probability. The important property of P is, however, 
eq 7; i.e., P serves as a generating function for molecular electronic 
spectra. 

We shall now derive an equation of motion for P, specializing 
at  supercooled molecules a t  zero temperature. This case is of 
considerable current interest, in particular for supersonic beam 
spectra.’-4 At zero temperature we have 

Pa = I*o)(*oI (sa) 

Hal*,) = Eo~*o) (8b) 

Iq0) being the ground vibronic eigenstate of Ha, i.e. 

Upon the substitution of eq 8 in eq 6, we get 

P(qJ;qO = *O(q)(qlexp[-i(Hb - Eo)tIS(q‘ - Q)I*o) (9) 

so that 
aP/at  = -i*o(q)(qlW, - EO) exp[-i(% - E~)tlG(q’ - Q ) ~ * o )  

(10) 

(q”lexp[-i(Hb - E~)tlG(q’ - Q W o )  
The second factor inside the integration in eq 10 is equal to 
P(q”,t;q’)/\ko(q”). If we write Hb in the conventional differential 
form, we get 

= -i*O(q)Jdd’ (ql(Hb - E0)Iq”) 

We now introduce the ground-state distribution function 

g(q) = l*O(S)l2 (12) 

and rearrange eq 11 in the form 

or alternatively 

where the driving force uj is given by 

and 
u(q) Vb(d - va(q) 

Equation 14 or 15 together with the initial condition 
P(q70;q’) = g(q)S(q - 9’) (17) 

is our final reduced equation of motion for P. Within the present 
algorithm we calculate the spectrum in three stages: (i) solve eq 
15 together with eq 17 for P, (ii) calculate the correlation function 
Z(t) via eq 7, and (iii) calculate the spectrum via the Fourier 
transform (eq 4). Equation 15, which is purely quantum me- 
chanical, is strikingly similar to the Fokker-Planck equations which 
appear in classical nonlinear dynamicsS and is reminiscent of the 
stochastic (hidden variable) formulation of quantum mechanics6 

In concluding this section, we note the following: (1) For U 
= 0, eq 14 or 15 reduces to our previous equations for the gen- 
erating function of vibrational ~ p e c t r a . ~  (2) Our reduced equation 
of motion, eq 14 or 15, holds not only at  zero temperature but 
whenever the molecule is initially in a pure state. Thus, in 
eq 8a can be any vibronic eigenstate of the la) electronic state. 
In practice, this limit occurs naturally at zero temperature. (3) 
If we expand the solution of eq 15 perturbatively in U, we get the 
conventional cumulant expansion.’ In general, we wish to derive 
a nonperturbative self-consistent solution of eq 15. This can be 
done by use of the mode coupling formalism, as was done in ref 
5 for the vibrational generating function. 

The Harmonic Limit 
We shall now consider the most general case of a harmonic 

molecule with two electronic states including linear displacements 
of the equilibrium positions, frequency changes, and Dushinsky 
rotations. This model has been extensively studied in the past 
in the context of various solid-state and molecular dynamics 

The exact state to state Franck-Condon factors 
are calculable but are quite c ~ m b e r s o m e . ’ ~ J ~  The calculation 
becomes much simpler, however, if we work in the time domain. 
Making lrse of the generating function, we shall derive simple 
expressions for the absorption spectra of polyatomic molecules 
involving matrices whose size is the number of the molecular 
degree of freedom. This form is particularly suited for numerical 
calculations and for fitting potential surfaces to experimental 
spectra. In addition, the present expression for the harmonic 
generating function may serve as a convenient starting point for 
expanding the generating function in the anharmonic case, by use 
of the mode coupling formalism, as was done in ref 5 for vibra- 
tional spectra. 

We consider a harmonic molecule with two electronic states: 
a ground state la) and an excited state Ib). The corresponding 

(6) E. Nelson, Phys. Reu., 150, 1079 (1966); H. Grabert, Phys. Reu. A, 
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(10) R. Kubo, and Y .  Toyozawa, Prog. Theor. Phys., 13, 160 (1955). 
(11) I. I. Markham, Rev. Mod. Phys., 31, 956 (1959). 
(12) R. Englman and J. Jortner, Mol. Phys., 18, 145 (1970). 
(131 S. H. Lin. J .  Chem. Phvs.. 44. 3759 (19661. 

19, 2440 (1979). 

( 1982). 

96, 603 (1954). 
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q ‘ = S q ” + D  (29a) 

q ’ = q “ + D  (29b) 

(30a) 

A and C a r e  diagonal matrices 

AJJ = tanh [‘/z(hw,’’/kT - iwj”t)] 

C, = tanh (‘/ziwJrt) (30b) 

and 

f i j  + 1 
- exp(-iwJ+t)] + 

-[exp(-iw/t) - exp(iwj+t)] 
fij 

f i j  + 1 

N 

We adopt the common spectroscopic notation, whereby we label 
ground-state quantities by a double prime and excited-state 
quantities by a single prime. pi and qj are the dimensionless 
momenta and coordinates corresponding to the normal modes 

P, and QJ being the conjugate momenta and normal coordinates, 
respectively. We further assume that the normal modes q’ and 
q” are related by the following transformation: 

q’ = Sq”+ D (20) 

Here D, q’, and 9’‘ are vectors. D stands for a linear displacement 
of the equilibrium configuration in the two electronic states, 
whereas S is the Dushinsky rotation matrix. Note that S is not 
unitary since 

S J k  = (wJ’/w~)1/2sJk (21) 

where s is the unitary matrix of transformation of the Cartesian 
coordinates, i.e. Q = sQ’I + D. In the absence of Dushinsky 
rotation, S is diagonal, i.e. 

= (wJr/wJf?‘/2sJ9k (22) 
The generating function (eq 6) can be written in the form 
P(q”,t;q”) = Z-’ (q”lexp(-iHbt)Iq”) (ij”lexp(iHar)lqr’) 

where 
(23) 

(24) r = t + i h / k T  

Z is the ground-state partition function 
N 

j-1 
z = r I [ f i j ( f i j  + l)]’JZ (25) 

with f i j  the mean occupation number of the j t h  mode, i.e. 

f i j  = [exp(hwj”/kT) - 11-’ (26) 

The matrix elements in eq 23 may be easily evaluated from the 
relation1s 

(4Iexp(-AH)lq) = 

= ( 2 r  sinh WA)-’/~ exp{-’/,(tanh YzwA) X 

(4 + 4Y - ‘/4 (coth YZWA)(Q - 4)? 
H,, being the Hermite polynomials and A is a complex number. 
The first matrix element in eq 23 is obtained from eq 27 by taking 
A as it and q = q’, The second matrix element is obtained by 
taking A = -it + h / k T  and q = q”. When these are substituted 
in eq 23, we get 

P(q”,t;q”) = 7 lPl-’/2 

Zl-I*j(t) 
j -  1 

expl-’/4(9’+ 9?C(q’+ 4 1  - Ml’- Q3“’- 431 x 
exp{-Y4(q” + q”)A(q” + 4”) - Y4(qr’- q”)A-I(q”- 4”)) (28) 

q’and q’on the right-hand side are related to qr’and q”via the 
transformation 

where 
wj+ = W j t  + w.” 

J 

wj- = wj f - Wj ” (31b) 

pjj = W j ” / W j ’  (32) 

p is a diagonal matrix 

and IpI is its determinant 
N 

lpl = rI(Wjt’/Wj’) 
/= 1 

(33) 

The IpI factor comes from the transformation from Cartesian to 
dimensionless coordinates. 

Equation 28 is our final result for the generating function for 
harmonic molecules. We shall now use this result to calculate 
the dipole correlation function I (?)  for the special case whereby 
p does not depend on Q, Le., p ( Q )  = 1 in eq 7. We then have 

Z(t) = $1 dq” dq” P(q”,t;q”) (34) 

To that end we first make use of eq 29 to transform q’and q’to 
q” and q/’and then change variables to q“+ $’and q”-  q” and 
make use of the Gaussian integration formulaI5 

p / 2  

MilZ 
$dX exp(-XTPX + 2 F q )  = - exp(qTPq)  (35) 

Here X and q are N-component vectors, XT and qT are their 
transpose, and P is an N X N matrix. This results in a closed 
expression for I ( ? ) ,  in terms of A ,  C ,  p, and 9 (eq 30-32). 

= I x ( W 2  exp[F(t)l (36) 

X(t) = WVG (36a) 

(36b) 
1x1 stands fo: the determinant of x, and bT and ST are the 
transpose of D and S ,  respectively. The other matrices appearing 
in eq 36 are 

GJk = Y4{(fiJ + l)z[exp(iw;t) - exp(-iwJ+t)] + 

where 

F(t) = bT[ W1 - A-l]D 

fi;[exp(-iw;t) - e~p(iw,+t)])6,~ (37a) 

(37b) 

V =  (SAP)-’ + C1 (37c) 

D = A S I D  ( 3 7 4  

W = A + 9 C S  

Equation 4 together with eq 36 is our final result for the absorption 
line shape. Note that the calculation involves multiplying and 
inverting N X N matrices, where N is the number of degrees of 
freedom, and we do not need to perform summations over indi- 
vidual vibronic eigenstates. Evaluating the spectrum in the time 

(1 5) R. Kubo, Statistical Mechanics”, North-Holland, Amsterdam, 1971. 
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domain is much more convenient than performing summations 
over individual Franck-Condon factors14 and provides the most 
straightforward means of fitting structural factors to experimental 
spectra. Equation 36 can be alternatively written in the form 

Z(t) = exp[F(t) - y2 Tr (In x)] (38) 

In this form, the connection with the spectral density formalism16 
is more transparent. In the absence of Dushinsky rotation, i.e. 
when eq 22 holds, all the matrices involved are diagonal and Z(t) 
is factorizable in the form 

N 

xj and Fj being the diagonal elements xjj and Fjj, respectively. 
If in addition the molecule is initially cold ( T  = 0), we further 
have 

( c o ~ + ) ~  exp(iwj-t) - (w;)~ exp(-iwj't) 
Xj(t) = 4w. 'a . f f  (40a) 

F,(t) = - D? (40b) 

J J  

and 
wjff[exp(iujft) - 11 

wj+ exp( iwj ' t )  - wj- 
Z(t) = rIZj(t) 

j =  1 

where 

(39) Equations 38-40 may be used to conveniently calculate spectra 
of supercooled polyatomic molecules. Equation 28 forms the basis 
for a mode coupling solution of eq 14 for anharmonic  molecule^.^ 
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A method is outlined to determine the dipolar contribution to the isotropic chemical shift for substrates attached to a lanthanide 
shift reagent. The procedure is illustrated for Ln(dpm)3(py)2 complexes, with Ln = Ho, Tb. The difference between the 
calculated dipolar contribution to the shift and the experimental shift is about 10%. The discrepancy can be accounted for 
by small nondipolar shift contributions and/or assumptions concerning the molecular structure. 

Introduction 
Since Hinckley's first report' of the use of lanthanide shift 

reagents (LSR), the chemical shifts induced in isotropic solution 
by LSR have been exploited extensively to determine magnetic 
susceptibilitites and/or structure parameters of the complexes 
involved.24 However, uncertainties in the interpretation of the 
results arise from assumptions made, for example that the Fermi 
contact contribution to the observed shift is negligible or that the 
magnetic susceptibility tensor x of the complex is axially sym- 
metric. 

Two possible experimental ways of separating the dipolar and 
Fermi contact contributions to the observed shifts are to study 
the temperature dependence of the shift5 or to measure x of the 
complex by solid-state6 or liquid-state7 methods. Theories for 

(1) Hinckley, C. C. J .  Am. Chem. SOC. 1969, 91, 5160. 
(2) For some reviews with references, see: Inagaki, F.; Miyazawa, T. Prog. 

Nucl. Mugn. Reson. Spectrosc. 1981,14,67. Webb, G. A. Annu. Rep. NMR 
Spectrosc. 1975, 6, 1. Reuben, J. Prog. Nucl. Mugn. Reson. Spectrosc. 1973, 
9, 1. 

(3) Cramer, R. E.; Dubois, R.; Seff, K. J.  Am. Chem. Soc. 1974,96,4125 
and references therein. 

(4) Shelling, J. G.; Bjornson, M. E.; Hodges, R. S.;  Taneja, A. K.; Sykes, 
B. D. J .  Mugn. Reson. 1984, 57, 99 and references therein. Faller, J.  W.; 
Blankenship, C.; Sena, S .  J .  Am. Chem. Soc. 1984, 106, 793. 

(5) Bleaney, B. J .  Mugn. Reson. 1972,8,91. Bleaney, B.; Dobson, C. M.; 
Levine, B. A.; Martin, R. B.; Williams, J.  P.; Xavier, A. V. J.  Chem. Soc., 
Chem. Commun. 1972, 791. Stout, E. W., Jr.; Gutowsky, H. S. J.  Mugn. 
Reson. 1976, 24, 389. 

(6) Horrocks, W. D., Jr.; S i p ,  J. P., 111 Science 1972, 177, 994. 

separating the contributions have been developed:-9 but they have 
often involved the assumption of an axially symmetric x, an 
assumption which is invalid in most In this letter 
a method is presented to evaluate the dipolar contribution to the 
shift without knowledge of molecular angles and susceptibility 
components, but taking into account the nonaxial character of 
x .  The dipolar contribution to the LSR-induced shifts is related, 
via the magnetic susceptibility tensor, to the electric quadrupolar 
or magnetic dipolar splittings which occur in the high-field NMR 
spectra of such c~mplexes .~  The method may be demonstrated 
by a study of shifts and quadrupolar splittings of the para deuteron 
in complexes of pyridine-d5 with Tb(dpm), and Ho(dpm),, where 
dpm = dipivalomethanato. It is well established2v3 that, in the 
presence of excess pyridine, the Ln(dpm),-pyridine complex is 
completely in the form Ln(dpm)3(py)2 and that free and bound 
pyridine are in rapid exchange. Under these circumstances the 
observed shifts 6 and the quadrupolar splittings v are given by 

( lb)  
v = XfVf + Xbvb (1b) 

6 = xfsf + xb6b 

(7) Domaille, P. J. J .  Am. Chem. SOC. 1980, 102, 5392. Domaille, P. J.; 
Harlow, R. L.; Ittel, S .  D.; P e t ,  W. G .  Inorg. Chem. 1983, 22, 3944. 

(8) Reilley, C. N.; Good, 8. W.; Allendoerfer, R. D. Anal. Chem. 1976, 
48, 1446. 

(9) Reuben, J.; Elgalvish, G. A. J .  Mugn. Reson. 1980, 39, 421. 
(10) Cramer, R. E.; Seff, K. Acru Crystullogr., Sect. E 1972, 828, 3281. 
(1 1) Horrocks, W. D., Jr.; S i p ,  J.  P., 111; Luber, J. R. J.  Am. Chem. Soc. 

1971, 93, 5258. 
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