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ABSTRACT: We calculate the χ(4) optical response of an oriented
photosystem II reaction center of purple bacteria described by the
Frenkel exciton model using nonlinear exciton equations (NEE).
This approach treats each chromophore as an anharmonic
oscillator and provides an intuitive quasiparticle picture of
nonlinear spectroscopic signals of interacting excitons. It provides
a computationally powerful description of nonlinear spectroscopic
signals that avoids complete diagonalization of the total
Hamiltonian. Expressions for the second- and the fourth-order
nonlinear signals are derived. The NEE have been successfully
employed in the past to describe even-order-wave-mixing. Here, we
extend them to aggregates with broken inversion symmetries.
Even-order susceptibilities require the introduction of permanent
dipoles, which allow to directly probe low-frequency intraband transitions of excitons.

1. INTRODUCTION
Nonlinear spectroscopy provides the most valuable informa-
tion about ultrafast electronic and vibronic dynamics in
molecules. Odd-order techniques such as three-wave-mixing
χ(2) (sum- or difference frequency generation) and five-wave-
mixing χ(4) reveal dynamics at interfaces since the signals
usually vanish in the bulk.1−5 Various four-wave-mixing χ(3)-
techniques have been widely used to study light harvesting in
photosynthetic complexes.6−8 Recent studies involved the
combination of visible and infrared pulses to study electronic
and vibrational transitions.9−13

Photosystem II is one of the most prominent photosynthetic
light-harvesting complexes and consists of a large protein
dimer. It absorbs and transfers sunlight energy to the reaction
center, where the excitation energy is converted to chemical
potential energy through fast charge separation.14 The energy
transport from the light-harvesting complexes to the reaction
center and the charge separation inside the reaction center
have been studied by nonlinear spectroscopy. χ(3)-spectros-
copies like photon echoes6,8 have been used extensively to
study the exciton transport inside the light-harvesting
complexes, whereas Stark spectroscopy15 reveals information
about the static dipole moments of individual chlorophyll
chromophores.
The theoretical description of nonlinear optical signals of

photosynthetic aggregates usually employs the sum-over-state
(SOS) approach, where the system is described by its global
eigenstate basis. It should be noted that a system of coupled
harmonic oscillators is linear; all nonlinear signals vanish. This

implies a massive cancellation of a large number of SOS
contributions. For the Frenkel exciton model of molecular
aggregates, the nonlinear exciton equations (NEE) provide an
alternative, more compact description of nonlinear signals,
compared to the SOS approach.16−18 Here, the system is
treated as a collection of anharmonic oscillators such that the
cancellation of harmonic contributions is built in from the
outset, considerably reducing the number of terms. Alter-
natively, the same expressions can also be obtained using
Green function techniques.19 For an aggregate consisting of N
chromophores, the various contributions in the SOS picture
scale as N2 or N(N − 1), while the final response scales as their
difference N. The NEE approach has been successfully applied
to describe four-wave-mixing in photosynthetic com-
plexes.16,20−22

Five-wave-mixing χ(4)-processes have received considerably
less attention than χ(3). Like three-wave mixing, these processes
only appear in systems with broken inversion symmetry and
have been therefore widely used to study electronic and
vibrational dynamics at interfaces23−25 as well as chiral
systems.26−28 Stark measurements15 as well as chiral signatures
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of photosynthetic complexes29−31 suggest that χ(4)-processes
should also be observable. χ(4)-techniques introduce additional
control parameters that may be used to obtain valuable
information about the light-harvesting mechanism and refine
theoretical models of photosynthetic aggregates.
In this paper, we study the reaction center of photosynthetic

bacteria by extending the quasiparticle NEE picture to Frenkel
exciton aggregates with broken central inversion symmetry.
Breaking the inversion symmetry of the electronic wave
functions of the individual chromophores results in permanent
dipole moments. By including them in the NEE, we show that
they generate even-order susceptibilities, which are responsible
for three- and five-wave mixing signals. Three-wave-mixing
signals are described by single-exciton Green functions, while
five-wave-mixing signals are given by both single-exciton Green
functions and an exciton−exciton scattering matrix that
describes their interactions. We find that the permanent
dipoles lead to an additional, nonlocal, anharmonicity in the
NEE, which affects the scattering matrix and the two-exciton
resonances.
The permanent dipole transitions of individual chromo-

phores have a vanishing transition frequency and are thus
driven by DC fields, and they further couple different excitonic
states within the same exciton manifold. χ(3)-spectroscopic
techniques can observe only the effect of the permanent
dipoles on the single exciton manifold. We show how
intraband transitions in the doubly excited manifold can be
studied with sequences of ultrashort pulses by five-wave-mixing
signals. Simulations are carried out for the photosystem II
reaction center of purple bacteria.

2. NONLINEAR EXCITON EQUATIONS
An aggregate of N two-level chromophores is described by the
Frenkel exciton Hamiltonian

H H H0 d d= + (1)

where

H B B
n

N

n n n0
1

=
=

†

(2)

describes the free chromophores and Bn
† = |1⟩nn⟨0|(Bn =

|0⟩nn⟨1|) are exciton creation (annihilation) operators at site n,
which satisfy the Pauli commutations [Bn,Bm

† ] = δnm(1 −
2Bn

†Bn). Here, |0⟩n (|1⟩n) denotes the ground (excited) state of
the nth chromophore. The chromophores interact via the
dipole−dipole coupling

H d d
i j

i
T

ij jd d
,

=
(3)

with the 3 × 3 matrix rr r( )/i j ij ij
T

ij,
3= . Here, rij = |ri − rj| is

the distance between the ith and the jth chromophore and rij is
the corresponding unit vector. The dipole vector operator is
given by

d ( 0 1 1 0 ) 0 0 1 1i i ii ii i ii i ii
(01) (00) (11)= | |+| | + | |+ | |

(4)

Here, μi
(01) denotes the transition dipole moment, and μi

(00)

and μi
(11) are the permanent dipoles in the ground and excited

state, respectively. Note that these dipoles vanish for
chromophores with inversion symmetry, where the electronic
wave functions are eigenfunctions of the parity operator. The

dipole operator may be alternatively expressed in terms of the
excitation operators

B B B Bd ( )i i i i i i i i
(00)= + + +† †

(5)

with μi = μi
(01) and νi = μi

(11) − μi
(00) represents the difference

between the permanent dipoles in the excited and the ground
state.
Using eqs 3 and 5, the total Hamiltonian (cf. eq 1) finally

assumes the form

H h B B p B B B B( )
mn

mn m n mn m n m n= +† † †

(6)

with

h ( 2 ) 2mn mn m
k

k
T

km m m
T

mn n
(00)= + +

(7)

pmn m
T

mn n= (8)

where we have invoked the rotating wave approximation
(RWA), i.e., neglected terms proportional to Bi, BiBj, Bi

†BiBj,
and their complex conjugates in the dipole−dipole interaction
Hamiltonian in eq 3, and further ignored the constant energy
shift 2∑mnμm

(00)Tβmnμn
(00).

The exciton interaction with classical external fields is given
by the Hamiltonian

Figure 1. Diagrams depicting the different contributions in the NEE.
Time evolves from the past on the left to the future on the right. The
left (right) column shows the diagrams where the signal is generated
by the transition (permanent) dipole moment, respectively. The
dipole moment generating the signal is marked in red. The
corresponding equations are given in eq 39 (eq 40), where the
diagrams from the top to the bottom correspond to the first until the
last term, respectively. Here, the single lines represent the single-
exciton Green’s function with a forward-pointing arrow denoting
Gij(t−t′) = Θ(t−t′)Tr{Bj

†(t′)|g⟩⟨g|Bi(t)} and a backward-pointing
arrow denoting Gij

†(t−t′) = Θ(t−t′)Tr{Bj
†(t)|g⟩⟨g|Bi(t′)}, where

|g⟩⟨g| denotes the ground state of the aggregate. The dashed line
denotes either a forward- or backward-pointing arrow, depending on
the time-ordering. The black dots denote interactions with the optical
fields and transition dipole moments, and the white dots denote
interactions with the infrared fields and permanent dipole moments.
The gray rectangles with a forward-pointing arrow denote exciton−
exciton scattering (cf. eq 20) and a backward-pointing arrow denotes
complex conjugated scattering.
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i
k
jjj y

{
zzzH E t B t B B( )

1
2

( ) h. c.
n

N

n n n n nF Cr
1

= + +
=

† †

(9)

where we have also invoked the RWA for the interaction with
the transition dipole moments and neglected the coupling of
the electric field with the ground state permanent dipole
moment since it does not lead to radiation. We denote the
interactions with the transition and the difference of
permanent dipole moments by E t r tE( ) ( , )n n n= · and

t tE r( ) ( , ) h. c.n n n= · + , respectively. This distinction is
necessary because of the generally different orientations of
the permanent and transition dipole moments. Note that
resonant interactions with the permanent dipoles require lower
frequency (DC or infrared) fields, while resonant interactions
with transition dipole moments involve visible or UV fields.
Even though the permanent dipole of each chromophore is

resonant only for DC fields with vanishing frequencies, they
lead to resonant transitions with finite frequency fields in the
entire aggregate. This can be seen by expressing the
deexcitation operators of individual chromophores Bn =
|0⟩nn⟨1| in terms of the eigenstate deexcitation operators of
the aggregate U Be n en n= , with Uen = ⟨e|1⟩n describing the
overlap of the eigenstate e of the aggregate with the state where
the nth chromophore is excited. The sum over the permanent
dipoles in the excited states is then given by the operator

B B
n

n n n
e e

e e e e
,

,=† †

(10)

with U Ue e n ne n en, = † . Note that while eq 10 represents
transitions within the single-excitation manifold, similar
relations can be obtained for higher manifolds. The permanent
dipole thus leads to intraband transitions, which can be driven
resonantly with the infrared fields. Equation 10 furthermore
shows that these transitions only appear as long as the
difference between the permanent dipoles in the excited and
ground state is finite, which is well known in the DC Stark
shift.
The induced transitions within the nth excitation band can

be investigated by 2n + 1 wave mixing since 2n fields are
needed to reach the nth excitation manifold and go back to the
ground state (or populate the nth excitation manifold), and 1
interaction with the permanent dipole can probe an intra-
manifold transition. χ(3)-spectroscopies involving permanent
dipole transitions can thus reach only the single exciton
manifold. Here, we explore intraband transitions in the two-
exciton states, as revealed by five-wave-mixing signals. We need
to calculate the fourth-order contribution in the electric fields
to dipole operator P(t) = ∑ndn(t)

t B t B B tP ( ) ( ) ( ) h. c.
i

i i i i i
(4) (4) (4)= + +†

(11)

Equation 11 can be calculated in the Heisenberg picture
using the NEE. For our Frenkel exciton model, the hierarchy of
equations can be exactly truncated for three-exciton states and
higher because the Hamiltonian in eq 1 is number-conserving
(provided non-RWA terms in the dipole−dipole interaction
Hamiltonian are neglected). The equations of motion,
following from the Heisenberg picture i B H B,

t m m
d
d

= [ ],
are given by

i
t

B h B B Y B

E t B E t B E t t B

t B Y

d
d

( ( ) ( ) ) ( ) ( )

2 ( )

m mn n mn kl n kl mn kl n

k l l k m m m

m mn kl n kl

, ,

,

= + +

+

+

† †

†
(12)

i
t

B B B B Y Y Y Y

E t B E t B

t t B B

Y E t B E t B

Y E t B E t B

d
d

( ) ( )

( ( ) ( ))

( ( ) ( ) )

( ( ) ( ) )

m n mn kl k l mj nj kl kl nj mj kl kl

n m m n

m n m n

mj nj kl k l l k

nj mj kl k l l k

, , ,

,

,

= + * *

+ *

+

+ * + *

+ *

† †

†

†

†

†
(13)

i
t

Y Y B

E t B E t

t t Y

d
d

( ) ( )(

( ) ( )) ( )

( ( ) ( ))

mn mn kl mn kl kl mk nl mn kl k

l l k mk nl mn kl

k l kl

, , ,

,

= +

+

+ (14)

with the tetradic matrices

h hmn kl mk nl mk nl, = + (15)

p2mn kl mn mk nl mn mn kl, ,= (16)

h hmn kl mk nl mk nl, = (17)

and

mn kl nm nk ml, = (18)

Ymn = ⟨BmBn⟩ denotes the double exciton variables. Here, we
neglect pure dephasing terms, which allows us to factorize
products of excitation operators like ⟨Bm

†Bn⟩ = ⟨Bm
†⟩⟨Bn⟩ and

⟨Bm
†BnBk⟩ = ⟨Bm

†⟩Ynk in the source terms on the right-hand-
side. Note that this factorization is not performed for the left-
hand side and the first term on the right-hand side of eq 13
since these terms describe the free evolution of the permanent
dipole. In eqs 12−14 and hereafter, we adopt the Einstein sum
convention, i.e., repeated indices are to be summed over.
These equations of motion can now be solved iteratively for

increasing numbers of field interactions. A detailed derivation
is provided in Appendix B. Equation 11 shows that the signal
can either be generated by the dipole transition operator or the
permanent dipole. The respective processes are depicted in the
left and right columns in Figure 1 and the solutions are given
in eqs 39 and 40. The nonlinear response is formulated in
terms of the two-exciton scattering matrix, which satisfies the
Bethe−Salpeter equation32

( ) ( ) ( ) ( ) ( )0 0 0= + (19)

where ( ) is the two-exciton Green’s function and ( )0
denotes the free two-exciton Green’s function of the harmonic
system (ignoring the anharmonicities). The scattering matrix
thus describes the correction to the free two-exciton Green’s
function added by the anharmonicities of the chromophores. It
can be calculated using eq 38 and is given by
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p

p

( )

(1 ) (2 ) ( )

(2 )

mn kl

mn mk nl mn mn mn kl

kl kl

,

0 ,
1= [ ]

(20)

The interaction between the static dipole moments leads to a
nonlocal nonlinearity. Therefore, the scattering matrix is
tetradic with size N2 where N is the number of chromophores
in the aggregate. By neglecting the interaction between the
static dipole moments pmn, the scattering matrix reduces to the
known result16 for coupled two-level systems, and the matrix
scales as N × N

( ) ( )mn kl mn kl mm kk, 0 ,
1= (21)

3. DETECTING TWO-EXCITON COHERENCES
To observe the role of the permanent dipole transitions in the
coherence between the two-exciton states, we focus on the

signal generated by the permanent dipole moments (right
column in Figure 1 and eq 44). Four temporally well-separated
short visible pulses are sent into the sample, and the infrared
signal emitted by the permanent dipoles is heterodyned. We
focus on the signal stimulated by a fifth infrared pulse in the
phase-matching direction ks = k1 + k2 − k3 − k4, as shown in
Figure 2a. The emitted radiation can be alternatively detected
in the near-infrared using electro-optic sampling.33,34 Figure 2b
depicts the energy level scheme for the photosystem II reaction
center shown in Figure 3. The delay time variables are listed in
Figure 2c. The three ladder diagrams for the signal, using the

RWA, are shown in Figure 2d. Blue arrows involve the
transition dipoles, and red arrows involve permanent dipoles.
The signal is finally given by

t t t t t t t t E E E E( , , , ) ( , , , )mijkl m i j k l4 3 2 1
(4)

4 3 2 1 4, 3, 2, 1,= * *
(22)

where χmijkl(4) (t4,t3,t2,t1) denotes the nonlinear response of the
reaction center, given in eq 44, and Eα,i is the scalar product of
the polarization of the αth pulse with the transition dipole
moment μi, and m is the scalar product of the polarization of
the measured infrared field with the permanent dipole νm.
A Fourier transform over the delay time t2 reveals two-

exciton ωfg resonances and a Fourier transform over the delay
time t4 shows the coherence between different two-exciton ωf f ′
and single-exciton ωee′ states induced by the permanent
dipoles. Figure 4 shows the corresponding 2D spectra of an
oriented aggregate for different polarization directions of the
infrared field

W t t t t( , ) d d ( ,0, ,0)ei t t
4 2

0
4 2 4 2

( )4 4 2 2= +
(23)

Here, we have neglected the effects of permanent dipole
interactions on the scattering matrix. Therefore, the remaining
anharmonicity is local, and the scattering matrix can be
expressed according to eq 21. This approximation is justified
due to the weak permanent dipole moments, which lead to low
interaction energies that are negligible in comparison to the
two-exciton energies. The 2D spectra depict the two-exciton
resonances along the y-axis and the intraband coherences along
the x-axis. Hamiltonian parameters are given in Table 1 in
Appendix A. The number of intraband coherences increases at
higher two-exciton frequency Ω2, since only downward (in
energy) transitions with the permanent dipole moment
generate a signal. The dependence of the resonances on the
measured polarization direction reveals information about the
direction of the permanent dipoles as well as the composition
of single and double excitons in terms of the excitations of the
individual chromophores. Transitions between two states
within the same band are allowed only if both states share at
least one common excitation of the same chromophore.
Figure 4 shows that the double- and single-exciton

coherences exhibit considerable spectral overlap but always
possess the opposite sign of their resonances, depending on
their origin from either the first or the last two ladder diagrams
in Figure 2d, respectively. This can be seen in peak A in the
middle column of Figure 4. The second and third rows in that

Figure 2. (a) Four temporally well-separated optical pulses followed by an infrared pulse that stimulates the signal are sent into the sample. (b),
energy levels of the photosystem II reaction center shown in Figure 3. There are 6 single-exciton eigenstates (e) and 15 two-exciton eigenstates ( f)
(c) The pulse sequence and time delays. (d) Three ladder diagrams describing the signal. Blue arrows denote interactions of optical pulses and
transitions with the transition dipole moment μi, and the red arrow denotes interaction with infrared pulses via permanent dipole νi.

Figure 3. Photosystem II reaction center complex consists of six
chlorophylls and is described by the Frenkel exciton model. The y-axis
is pointing slightly toward the reader while the x-axis is pointing
slightly away. Data taken from the 5MDX PDB structure.35
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column reveal that this peak is given by the sum of a double-
and single-exciton coherence with opposite sign. The peak
possesses the same sign as the single-exciton coherence but
changes the sign on its tail due to the contribution of the
double-exciton coherence. This behavior can be explained by

the shorter lifetimes of the double-exciton states, which lead to
smaller but broader double-exciton coherences.
The largest difference between double- and single-exciton

coherences is for Ω2 = 30114 cm−1. The corresponding
resonances along Ω4 are marked as peaks B, C, and D in the
middle column of Figure 4. Looking at the spectra for the
isolated double- and single-exciton coherences in the second
and third rows, respectively, we can identify peaks B and D
with double-exciton coherences and peak C with a single-
exciton coherence. Note that the single-exciton coherence C
shows up along multiple two-exciton resonances since the two
contributing single-exciton states can be reached through all of
the respective double-exciton states. This difference can be
understood by looking at the diagonal elements of the
scattering matrix ( )ii{ }, which describes the anharmonicity
of the aggregate, which in our case is given by the fact that
double excitations of a single chromophore are disallowed. The
scattering matrix is depicted in Figure 5b. Its strongest peaks
are located at the central two chromophores and belong to the
same two-exciton resonance as peaks B−D in Figure 4. This
two-exciton resonance ωf d13

= 30,114 cm−1 lies very close to the
sum of the two single-exciton frequencies ωe d3

= 14,892 cm−1

and ωe d6
= 15,225 cm−1, (ωe d3

+ ωe d6
) − ωf d13

≈ 3 cm−1. One might
expect that this double exciton state is mainly given by the
direct product of these single exciton states. However, looking
at the single-exciton Green’s function in Figure 5a shows that

Figure 4. 2D χ(4) spectra of the photosystem II reaction center, given by the imaginary part of the signal W( , )4 2{ } (cf. eq 23). All optical
fields are polarized along the y-axis, while different polarizations of the infrared field are shown in the columns. Left column: x-polarized signal. Ω2
reveals double-exciton ωfg frequencies (marked as blue lines on the right side) while Ω4 shows the intraband single-exciton ωee′ and two-exciton ωf f ′
resonances. The aggregate orientation is shown in Figure 3. The first row shows the imaginary part of eq 23, the second row shows the contribution
due to the two-exciton ωf f ′ intraband transitions (cf. first ladder diagram in Figure 2d), and the third row shows the contributions from the single-
exciton ωee′ intraband transitions (cf. second and third ladder diagram in Figure 2d). Middle column: same but for the y-polarized signal. Right
column: same but for z-polarized signal.

Figure 5. (a) Imaginary part of the diagonal elements of the single-
exciton Green function. The y-axis shows the single-exciton
resonances (black horizontal lines) while the x-axis shows the
decomposition of the single-excitons into chromophore excitations.
Higher single-exciton energies are mostly concentrated on PD1/ PD2
since those are the most strongly coupled chromophores. (b)
Imaginary part of the diagonal elements of the scattering matrix.
The black horizontal lines depict the two-exciton resonances. The
scattering matrix depicts the interaction between chromophore
excitations due to the disallowed double excitation of a single
chromophore.
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these two single-exciton states possess a strong overlap in the
central two chromophores, which would lead to disallowed
double-excitations. This explains why the scattering matrix also
strongly peaks at these chromophores. Consequently, this two-
exciton state cannot be described as a direct product of two
single excitations and is therefore entangled in the single-
exciton decomposition

f c e e,
e e

f e e13
,

, ,13
| = |

(24)

where c 1f e e, ,13
< for all e, e′ and |e, e′⟩ denotes the direct

product of two single-exciton states. This can also be seen in
Figure 6b, which shows the decomposition of the two-exciton
resonances in terms of direct products of single-exciton states.
The permanent dipole transitions in the two-exciton band can
be expressed in terms of the permanent dipole transitions in
the single-exciton band through

c cff
e e e

f e e f e e ee
, ,

, , , ,= *
(25)

Therefore, the intraband coherences coincide if both f and f ′
are given by direct products of two single-exciton states. A
difference in the behavior of intraband coherences in the
double- and single-exciton band thus indicates entanglement of
the respective double-exciton states reflected by their
decomposition into direct products of single-exciton states.
The polarization dependence of the peaks can reveal

information about the relationship of the different permanent
dipoles. The single-exciton coherence peak C in Figure 4, for
example, results from a transition between the third and sixth
single-exciton state (from the bottom). Figure 5a shows that
both states are mainly located at the PD1 and PD2
chromophores. Therefore, the peak intensities for different
polarization directions are mainly given by the difference
between the permanent dipole moments of chromophores PD1
and PD2. The dipole moment directions are given in Table 2 in
Appendix A. The same single-exciton coherence also
contributes to peak A. Peak A has a contribution from an
intraband coherence between the two two-exciton states ωf d15

=
30249 cm−1 and ωf d9

= 29909 cm−1 and is also mainly given by
the difference of the permanent dipoles of the chromophores
PD1 and PD2. This can be seen by examining the overlap of
these two states in Figure 6a. There is a strong overlap at the

two double-excitations PD1/ChlD2 and PD2/ChlD2 with
approximately the same value but opposite sign. Therefore,
the permanent dipole contribution from ChlD2 cancels out and
the difference between the permanent dipoles at PD1 and PD2
remains. The same polarization dependence can be observed in
peak D, which corresponds to the two two-exciton states ωf d13

=
30,114 cm−1 and ωf d2

= 29,672 cm−1. Peak B corresponds to a
coherence between the two-exciton states ωf d13

= 30,114 cm−1

and ωf d9
= 29,909 cm−1 and its polarization dependence is

mainly given by the permanent dipoles of the chromophores
PD1, PD2, ChlD2, and PheoD2.

4. CONCLUSIONS
Using the quasiparticle picture represented by the NEE, we
calculated the second- and fourth-order susceptibilities of the
oriented photosystem II reaction center. Permanent dipole
moments in the interaction between chromophores and fields
induce intraband transitions that generate infrared signals. The
NEE expresses the nonlinear response of molecular aggregates
in terms of single-exciton Green functions and exciton−exciton
scattering matrices. This treatment avoids diagonalization of
the entire system Hamiltonian and is thus computationally
advantageous for large aggregates. Additionally, it provides a
physical picture of the nonlinear response in terms of
scattering quasiparticles.
We have shown how five-wave mixing can be used to reveal

the effects of permanent dipole moments on the two-exciton
states. Our signals provide information about both the
permanent dipole moment directions and the composition of
two-exciton states. A difference in the observed behavior
between single- and double-exciton coherences emerges due to
entanglement in the two-exciton states when decomposed into
products of single-exciton states. We considered a sample of
oriented molecules. Furthermore, the permanent dipole
moments lead to a chiral response of the rotationally averaged
samples. The chiral response of molecular aggregates will be a
natural extension of this study.
We have focused on the intraband coherences introduced by

the permanent dipole moments. The diagrams in Figure 2
could also be used to study two-exciton transport or other two-
exciton dynamics like diffusion. Double excitations of single
chromophores can be implemented easily in the current
formalism.16 Studying two-exciton coherences where the lower

Figure 6. (a) Two-exciton states decomposed in terms of chromophore excitations. The two-exciton states are numbered according to increasing
energy. Here, we assumed large energy gaps for doubly excited chromophores, which means that we can disregard these double excitations, leading
to a total number of 15 two-exciton states. (b) Two-exciton states decomposed in terms of products of single-exciton states |e, e′⟩. The single-
exciton energies are numbered according to increasing energies. The matrix entries are more localized in this representation since chromophore
excitation entanglement due to the single-exciton states is hidden in this basis.
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two-exciton state is localized at a single chromophore could
reveal information about exciton−exciton fusion time-scales
which is the first step toward exciton−exciton annihilation.
The presented theory could furthermore be extended to the
case of weak exciton−phonon coupling and disorder, which
will include the effects of transport on the two-exciton
manifold. So far, it is not clear whether the NEE16−18 or the
Green function technique19 is more suitable for this general-
ization. Including exciton−phonon coupling and disorder will
lead to broader intraband coherence peaks due to the increased
dephasing times. Comparing the widths to those of the two-
exciton coherences can provide additional information about
the pure dephasing rates in the two-exciton manifold.

■ APPENDIX A

Hamiltonian Parameters
Hamiltonian parameters are given in Table 1. Dipole moment
directions are given in Table 2.

■ APPENDIX B

Solution to the Nonlinear Exciton Equations
Since the molecules are assumed to be initially in the ground
state, the zeroth order contribution in the fields to both single-
and two-exciton variables vanishes. The first-order contribu-
tion to ⟨Bm⟩ is given by

B t G t E( ) d ( ) ( )m mn n
(1) = (26)

w i t h t h e s i n g l e - e x c i t o n G r e e n ’ s f u n c t i o nÄ
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ( )G t i t ht( ) ( ) expnm

i

nm
= . Note that here and in

the following Einstein’s sum convention is used. Higher-order
corrections to the single- and two-exciton variables can now be
found iteratively by coupling them to lower-order corrections.
All relevant orders are given by
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Here, we have introduced the two-exciton Green’s functionÄ
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Equation 27 can be used to express the second-order
response as

t t t G t t G t t t E tP ( ) d d ( ) ( ) ( ) ( )m mn nk n k
(2) =

(32)

The third-order correction to the single exciton variable can
be calculated analogously to the case of four-wave mixing.16

Combining eqs 29 and 28 and ignoring the last term, we have

B t G t B

B E B E

( ) d d ( ) ( )

( )( ) ( )

( ( ) ( ) ( ) ( ))

n nm r

mr kl

k l l k

(3)
1 2 1

(1)
1

1 2 1 2 ,

(1)
2 2

(1)
2 2

= *

× [ ]

+ (33)

To simplify this expression, we introduce the (tetradic)
scattering matrix Γ(t)

t t

t t t t

d ( ) ( )

( ) ( )( )

0

= + (34)

( ) ( ) ( )( )0 = + (35)

Table 1. Hamiltonian Parameters hmn in eq 7 in Wave Numbers cm−1a

PD1 PD2 ChlD1 ChlD2 PheoD1 PheoD2
PD1 15,080 158 −27.3 −41.8 −4 12.6
PD2 158 15,015 −46.8 −22 15.1 −3
ChlD1 −27.3 −46.8 14,800 3.5 43.5 −2.2
ChlD2 −41.8 −22 3.5 15,010 2.4 41.7
PheoD1 −4 15.1 43.5 2.4 14,950 1.5
PheoD2 12.6 −3 −2.2 41.7 1.5 14,850

aData taken from Gelzinis et al.15

Table 2. Dipole Moment Directions in D Taken from
Gelzinis et al.15

μx μy μz νx νy νz
PD1 1.08 −3.74 2.05 0.32 −1.07 1.07
PD2 −0.66 3.73 2.24 −0.13 1.15 1.15
ChlD1 −0.33 4.06 1.67 0.29 1.34 0.73
ChlD2 0.11 −4.04 1.74 −0.36 −1.31 0.75
PheoD1 1.65 −0.55 −2.92 0.84 0.10 −0.99
PheoD2 −1.77 0.19 −2.90 −0.89 −0.19 −0.93
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w i t h t h e z e r o - o r d e r G r e e n ’ s f u n c t i o n

t iG t G t( ) ( ) ( )nm kl nk ml0 , = describing the two-exciton Green’s

function of a harmonic system ( 0)= .
The double-exciton Green’s function ( ) can be expressed

through the zero-order Green’s function ( )0 using the

Dyson series

( ) ( ) ( ) ( )0 0= + (36)

which leads to

( ) ( ( )) ( )0
1

0= (37)

This result can then be used in eq 35 to calculate the scattering
matrix, which is given by

( ) ( ( )) ( ( ))0
1

0
1= (38)

Using the scattering matrix, the five-wave mixing χ(4)-signal
originating from the mth transition dipole moment can be
obtained from
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The radiation emitted by the mth permanent dipole is given
by
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The first two terms only contain one interaction with the

permanent dipole which generates the signal, the first in the

single- and the second in the double-exciton manifold. The last

two terms contain three interactions with the permanent

dipole moment. The first (second) column in Figure 1

connects the terms of eq 39 (eq 40) to diagrams.
Since the radiation frequency emitted by the transition

dipole moments is much higher than that emitted from the

permanent dipole moment, both signals can be readily

separated by the observed frequency regime. If the generated

signal is heterodyned with an infrared field, the contribution

from the transition dipole moments in eq 39 can be neglected

and the signal is given by

t t t t t t tE P( , , , ) d ( ) ( )4 3 2 1 inf
(4){ } = ·

(41)

t t B B td ( ) ( )m m m
(4)= { }†

(42)

where denotes the real part. The phase-matching direction

ks = k1 + k2 − k3 − k4 for the time-ordered pulses is chosen by

selecting the terms in eq 40 where the complex conjugated

optical fields are the third and fourth pulses in the sequence of

optical fields. We obtain

t t t t t t t t E E E E( , , , ) ( , , , )mijkl m i j k l4 3 2 1
(4)

4 3 2 1 4, 3, 2, 1,= * *
(43)

with
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Here, tij = ti + ti−1 +...+ tj denotes the sum over time intervals
from the ith to the jth interval, Eα,i is the scalar product of the
polarization of the αth pulse with the transition dipole moment
μi, and m is the scalar product of the polarization of the

measured infrared field with the permanent dipole νm.
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