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Because of their sub picosecond temporal resolution, coherent Raman spectroscopies have been
proposed as a viable extension of spontaneous Raman thermometry, to determine dynamics of mode
specific vibrational energy content during out of equilibrium molecular processes. Here we show that the
presence of multiple laser fields stimulating the vibrational coherences introduces additional quantum
pathways, resulting in destructive interference. This ultimately reduces the thermal sensitivity of single
spectral lines, nullifying it for harmonic vibrations and temperature independent polarizability. We
demonstrate how harnessing anharmonic signatures such as vibrational hot bands enables coherent Raman
thermometry.
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Ever since the Raman effect was first discovered, the
classical description of the scattering process has empha-
sized the temperature dependence of the Raman cross
section, being activated through the polarizability modu-
lations generated by the structural fluctuations with respect
to the equilibrium state [1]. While this classical picture
captures the essence of the physical process by predicting
larger Raman signals at higher temperatures, it fails
to provide a quantitative description of the measured
responses. Indeed, it does not account for the temper-
ature-dependent Stokes and anti-Stokes line intensities, nor
does it predict a nonvanishing (Stokes) response as the
temperature approaches absolute 0 K. This discrepancy can
be attributed to the low occupation numbers typically
associated with thermal excitations [2], revealing the
quantum nature of vibrational levels. Temperature mod-
ifications can also alter the optical polarizability [3,4], for
example, by inducing phase transitions, density changes or
anisotropic fluctuations, ultimately affecting the intensity,
position, and widths of the Raman lines [5–10]. Under low
light excitation regimes [11], the ratio of Stokes (IS) and
anti-Stokes (IAS) line intensities is linked to the temperature
by the equation: ðIS=IASÞ ¼ ðν3S=ν3ASÞeðℏω0=kBTÞ, with νS ¼
νR − ν0 and νAS ¼ νR þ ν0 indicating the frequencies of
Stokes and anti-Stokes emissions. This serves as a powerful
noncontact tool for extracting the equilibrium temperature
of the investigated sample, being routinely applied for
the characterization of gas flames, liquids, solid state

compounds [12,13], as well as for studying relaxation
processes [14–16] and thermal transport [17,18].
Early observation of an asymmetry between the vibra-

tional response in the red and in the blue side of the
spectrum (corresponding to lower and higher frequency
probe pulses relative to the pump) measured by stimulated
Raman spectroscopy (SRS) experiments [19] has been
interpreted in terms of Stokes and anti-Stokes temperature
dependent ratio, in line with the spontaneous Raman (SR)
scenario, advancing a straightforward application of SRS
for thermometry [20]. Theoretical contributions [21] clari-
fied that, in striking contrast with SR, the same (thermal)
populations concur to the generation of red- and blueshifted
SRS components, which hence cannot be compared to
extract the temperature.
Here, we build on a diagrammatic framework to dissect

the different processes that concur to the generation of
nonlinear Raman responses [22,23], studying how the
thermal distribution affects the measured signals. SRS
accesses the vibrational spectrum, combining a narrowband
Raman pump (RP) and broadband probe (PP) [24–26]: the
interaction of the sample with PP spectral components
shifted by one vibrational quantum with respect to the RP
stimulates vibrational coherences, which in turn modulate
the macroscopic polarizability, generating Raman bands on
top of the probe spectrum [27,28]. Coherent Raman
spectroscopy (CRS) is also exploited to probe vibrational
excitations directly in the time-domain [29–32]: a femto-
second RP stimulates vibrational coherences, which are
then recorded by scanning the time-dependent transmis-
sivity via a broadband PP [33–36], a scheme known as
impulsive stimulated Raman scattering (ISRS). Adding a
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femtosecond Actinic pump, temporally preceding the RP-
PP pair, turns SRS and ISRS into powerful pump-probe
schemes, which represent ideal tools to track structural
changes in ultrafast photochemical or photophysical proc-
esses [37–48].
In order to have a closer comparison with spontaneous

Raman spectroscopy, we focus on frequency-domain SRS.
The diagrams describing the radiation-matter interactions
responsible for the signal generation of the former, indeed,
coincide with a subset of the latter’s. SRS experiments are
sensitive to the third-order susceptibility, which is probed
via the heterodyne detection of the induced nonlinear
polarization Pð3Þ. Under the electronically nonresonant
regime, i.e. when the pulses’ wavelengths are detuned with
respect to the sample absorption, the radiation-matter
interaction Hamiltonian involved in preparing and detecting
the vibrational coherences is [49,50] HI ¼ −α · jEj2, where
α is the molecular polarizability. The Raman response can
be isolated from the spectrally resolved probe via the Raman
gain RG ¼ IPðωÞ=I0PðωÞ − 1, where IPðωÞ (I0PðωÞ) indi-
cates the PP spectrum recorded in presence (absence) of

the RP. In Fig. 1(c), the pathways responsible for the SRS
signals are reported for both the red (R0 diagram) and the
blue (B0 diagram) side of the spectrum, considering a
system initially in the ground state (n ¼ 0). Briefly, in the
R0 process an interaction between the bra side of the density
matrix and the RP is followed by an interaction with the PP,
which brings the system to the j0ih1j vibrational coherence.
Then another interaction with the RP occurs on the ket side,
preceding the free induction decay that leaves the system in
the j1ih1j population. In the B0 process all the interactions
occur on the ket side: the vibrational coherence is prepared
by an interaction with a PP spectral component blueshifted
with respect to the pump, degenerate with the emission
frequency. Under the nonresonant regime, such processes
give rise to the following polarizations [51,52]:

PR0
ðωÞ ¼ −

p0

ℏ

�
∂αðTÞ
∂Q

�
2

jh1jQ̂j0ij2 jERj2EP

ωR − ω10 − ω − iγ10
;

ð1Þ

(a) (b)

(c) (d)

FIG. 1. Energy levels involved in Stokes and anti-Stokes SR processes from the ground or first excited vibrational levels (a)–(b). The
corresponding pathways, describing the molecular density matrix evolution and the interaction with the electromagnetic fields, are
shown in (c)–(d) for nonresonant SRS processes; dashed or solid lines indicate interactions with the bra or ket, respectively. For a
molecule initially in the n ¼ 0 level, two pathways (R0=B0) contribute to the SRS response, generating a peak (loss) in the red (blue)
side. When the molecule is initially in the n ¼ 1 state, additional pathways are enabled: R1=B1 are the natural extension of R0=B0 and
probe the j1i → j2i transition, while R0

1=B
0
1 involve the j1i → j0i transition. Spontaneous Stokes pathways correspond to Ri diagrams

(leading to gains in the red side), whereas spontaneous anti-Stokes processes originate from B0
i diagrams (blue side gains). In both cases

the vacuum field replaces the probe beam.
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PB0
ðωÞ¼p0

ℏ

�
∂αðTÞ
∂Q

�
2

jh1jQ̂j0ij2 jERj2EP

ωRþω10−ω− iγ10
; ð2Þ

where γij indicates the dephasing rate of the jiihjj coher-
ence, ωij ¼ ωi − ωj, pj is the initial j-state population,
ð∂α=∂QÞ is the molecular polarizability derivative (calcu-
lated at the equilibrium geometry) with respect to the
considered normal coordinate Q, ER=P denotes the RP-
PP field amplitude. Without loss of generality, we have
considered an impulsive PP and a monochromatic RP.
These polarizabilities can be exploited to compute the
RG via the relation [53] RG ∝ −ℑ½ωPðωÞ=EPðωÞ�, valid
in the low excitation regime [54]:

RGR0
ðωÞ∝p0

�
∂αðTÞ
∂Q

�
2 jh1jQ̂j0ij2

ℏ
ωγ10jERj2

ðωR−ω10−ωÞ2þγ210
;

RGB0
ðωÞ∝−p0

�
∂αðTÞ
∂Q

�
2 jh1jQ̂j0ij2

ℏ
ωγ10jERj2

ðωRþω10−ωÞ2þγ210
:

RGR0
ðωÞ corresponds to a positive red-side gain (at

ω ¼ ωR − ω10), while RGB0
ðωÞ generates a negative

blue-side loss (at ω ¼ ωR þ ω10). The amplitude of both
the signals is proportional to the polarizability derivative
square modulus, the RP intensity IR ¼ jERj2 and the
jh1jQ̂j0ij2 wave functions overlap.
When the sample temperature increases, levels with a

vibrational quantum number greater than 0 can be initially
populated, enabling additional Raman transitions and
potentially temperature dependent polarizability. An accu-
rate calculation of the response function requires hence
summing over all the contributions from thermally popu-
lated higher-lying levels. For instance, SRS probes n ¼
1 → n ¼ 2 transitions via the following third-order polari-
zation

PR1
ðωÞ ¼ −

p1

ℏ

�
∂αðTÞ
∂Q

�
2

jh2jQ̂j1ij2 jERj2EP

ωR − ω21 − ω − iγ21
;

which is formally analogous to Eq. (1) and gives rise to a
positive peak at ω ¼ ωR − ω21. Similarly, in the blue side
n ¼ 1 → n ¼ 2 transitions are probed by the following
polarization:

PB1
ðωÞ ¼ p1

ℏ

�
∂αðTÞ
∂Q

�
2

jh2jQ̂j1ij2 jERj2EP

ωR þ ω21 − ω − iγ21
:

Critically, permutations of the RP and PP fields are now
possible giving also rise to the R0

1 and B0
1 pathways

depicted in Fig. 1(d), involving the j0ih1j and j1ih0j
vibrational coherences, respectively. The corresponding
polarizations read as

PR0
1
ðωÞ ¼ p1

ℏ

�
∂αðTÞ
∂Q

�
2

jh1jQ̂j0ij2 jERj2EP

ωR − ω10 − ω − iγ10
;

PB0
1
ðωÞ ¼ −

p1

ℏ

�
∂αðTÞ
∂Q

�
2

jh1jQ̂j0ij2 jERj2EP

ωR þ ω10 − ω − iγ10
:

Interestingly, the polarizations appearing in the R0
1-B

0
1

responses are identical to those observed in the R0-B0

pathways. However, the R0
1-B

0
1 intensities vary in amplitude

(being proportional to the initial p1 population) and, most
importantly, exhibit opposite signs, leading to a destructive
interference with the R0-B0 pathways. This can be ration-
alized as an effect analogous to the competition between
stimulated emission and absorption processes in a two level
system [55].
The measured SRS response can be finally derived by

summing over the initial vibrational levels, weighted by the
corresponding thermal populations. The resulting red and
blue side RGs read

RGRðωÞ ∝
�
∂αðTÞ
∂Q

�
2

ωIR
X∞
j¼0

ðpj − pjþ1Þ

γjjhjþ 1jQ̂jjij2
ðωR − ωj − ωÞ2 þ γ2j

; ð3Þ

RGBðωÞ ∝ −
�
∂αðTÞ
∂Q

�
2

ωIR
X∞
j¼0

ðpj − pjþ1Þ

γjjhjþ 1jQ̂jjij2
ðωR þ ωj − ωÞ2 þ γ2j

; ð4Þ

where pj ¼ ðe−Ej=kBT=ZÞ and Z ¼ P∞
0 e−Ej=kBT is the

partition function. For improved readability, we have
indicated ωjþ1;j and γjþ1;j as ωj and γj. Equations (3)
and (4) show the same dependence on the vibrational
population, indicating that the ratio between the red and the
blue side SRS responses is independent of temperature,
rationalizing the results of Ref. [21] in terms of sum over
the vibrational levels.
It is worth to stress that this result is valid also for large

excitation regimes: high RP fluences can indeed result in
larger RGs, once the exponential gain regime is initiated
[54]. However, they do not alter the SRS sensitivity to the
molecular properties, as the measured signal still depends
on the same third-order polarization as RGR=BðωÞ ¼
e−f2πωℑ½P

ð3Þ
R=BðωÞ=EPðωÞ�L=cng − 1, where n, c, and L indicate

the sample refractive index, the speed of light in vacuum,
and sample length, respectively.
The spontaneous Raman case can be seen as a SRS

process in which the probe pulse is provided by the vacuum
field. Since this latter cannot be annihilated, only those
pathways that contain two matter deexcitations into the
vacuum field contributes to SR, corresponding to the
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diagrams where the last two interactions are complex
conjugate of the first two (Ri and B0

i).
This results in the well known Stokes (red side, with final

level higher than the initial one) and anti-Stokes (blue side,
with final state lower than the initial one) processes,
naturally weighted by different thermal populations. The
summation over all the possible directions of the scattered
field leads to a cubic dependence of the spontaneous
Raman cross section on the emitted frequency ω, in contrast
with the linear dependence ruling stimulated processes
[55]; the corresponding Stokes and anti-Stokes signals read

RSðωÞ∝
�
∂αðTÞ
∂Q

�
2

ω3IR
X∞
j¼0

pj
γjjhjþ1jQ̂jjij2

ðωR−ωj−ωÞ2þγ2j

RASðωÞ∝
�
∂αðTÞ
∂Q

�
2

ω3IR
X∞
j¼0

pjþ1

γjjhjjQ̂jjþ1ij2
ðωRþωj−ωÞ2þγ2j

: ð5Þ

Summing up, for a given normal mode, both SRS and SR
emit on the red and blue side depending on the relative
wavelengths of the last two interactions, which scatter off
the vibrational coherence. Critically, in SR the two cases
can only originate from Stokes and anti-Stokes processes,
respectively: therefore the measured response depends
directly on the temperature via the thermal populations.
In the stimulated regime this is no longer true: two Stokes
contributions, originating from the coherently driven vibra-
tional coherences, can be scattered off by different proc-
esses emitting on the red or blue side (R=B families
in Fig. 1).
All the aforementioned considerations can also be

applied to coherent Stokes and anti-Stokes Raman scatter-
ing and ISRS, with the distinction that the vibrational
coherence preparation and the pulses are different [56–59].
The derivation of the corresponding polarizations is
reported in the Supplemental Material [60].
To assess the effect of thermal excitations on sponta-

neous versus coherent Raman spectra, we start considering
a simple harmonic molecular system, with frequency ωv
and a j-independent dephasing rate (γj ¼ γv), evaluating
the

P∞
j¼0 pj summation. The thermal occupation numbers

of the j levels are

pj ¼
�
e−jℏωv=ðkBTÞ� · �1 − e−ℏωv=ðkBTÞ� ð6Þ

while

Δpj ¼ pj − pjþ1 ¼ e−jℏωv=ðkBTÞ ·
�
1 − e−ℏωv=ðkBTÞ�2: ð7Þ

Finally, the transition amplitudes hjþ 1jQ̂jji, hjjQ̂jjþ 1i
read

hjþ1jQ̂jji¼hjþ1j
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωv

s
ðâþ â†Þjji¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ1Þℏ
2mωv

s
;

hjjQ̂jjþ1i¼hjj
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωv

s
ðâþ â†Þjjþ1i¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ1Þℏ
2mωv

s
; ð8Þ

which increase as the initial occupation number j is
increased, critically determining the temperature depend-
ence of spontaneous Raman responses. Plugging these
relations into Eq. (5), the spontaneous Stokes response can
be expressed as

RSðωÞ ∝
�
∂αðTÞ
∂Q

�
2 γvω

3IR
ðωR − ωv − ωÞ2 þ γ2v

·
ℏ

2mωv

×
X∞
j¼0

ðjþ 1Þ · e−jℏωv=ðkBTÞ ·
�
1 − e−ℏωv=ðkBTÞ�:

Carrying out the summation over the initial states j and
incorporating the constant ðℏ=2mωvÞ term into the pro-
portionality relation, RSðωÞ reads

RSðωÞ∝
�
∂αðTÞ
∂Q

�
2 γvω

3IR
ðωR−ωv−ωÞ2þγ2v

·
�hniþ1

�
; ð9Þ

where hni ¼ ½1=ðeℏωv=ðkBTÞ − 1Þ� is the mean occupation
number. Similarly, RASðωÞ reads

RASðωÞ ∝
�
∂αðTÞ
∂Q

�
2 γvω

3IR
ðωR þ ωv − ωÞ2 þ γ2v

· hni: ð10Þ

On the other hand, the temperature dependence of the red
and blue side SRS responses is ruled by the following
summation:

X∞
j¼0

ðpj − pjþ1Þ · ðjþ 1Þ

¼
X∞
j¼0

ðjþ 1Þ · e−jℏωv=ðkBTÞ ·
�
1 − e−ℏωv=ðkBTÞ�2 ¼ 1:

Therefore, the Raman gains on the red and blue side can be
expressed as

RGRðωÞ ∝
�
∂αðTÞ
∂Q

�
2

·
γvωIR

ðωR − ωv − ωÞ2 þ γ2v
; ð11Þ

RGBðωÞ ∝ −
�
∂αðTÞ
∂Q

�
2

·
γvωIR

ðωR þ ωv − ωÞ2 þ γ2v
; ð12Þ

notably, the only temperature dependence is brought about
by the polarizability gradient. The same results can be
obtained considering a temperature dependent dephasing
rate, as the integrated Raman response intensities do not
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depend on γ (details are reported in the Supplemental
Material [60]).
To benchmark the presented theoretical results, SRS

spectra have been measured for two crystals, namely,
sapphire and CaF2, as a function of temperature. The
integrated area of the monitored bands (centered at ∼420
and ∼320 cm−1, respectively) are reported in Fig. 2.
Notably, the areas of sapphire and CaF2 bands experience
a reduction of approximately 10% and 40%, respectively,
as the temperature increases from 300 to 800 K. To verify
our theoretical prediction, we also measured the corre-
sponding SR Stokes response over the same temperature
range, which shows a significant deviation from the mean
occupation number (hni þ 1). Critically, by factoring out
such dependence we find an excellent agreement with the
SRS data, validating our results. This also indicates that in
the harmonic limit the observed decreasing trend is a
measure of the j∂αðTÞ=∂Qj temperature decrease.
The question now stands on whether coherent vibrational

Raman can be used for thermometry. While it is well
understood [21] that the red or blue side ratio is thermally
inactive, our result indicates that a single spectral compo-
nent features a temperature dependence brought about by
the sample polarizability, even in the harmonic case.
Exploiting such a dependence would require either a
calibration or an a priori knowledge of ½∂αðTÞ=∂Q�2. A

convenient alternative is granted by anharmonic effects.
A simple illustrative case is offered by single mode
molecular anharmonicity, which is well captured by the
Morse potential [69–71] model. As shown in Fig. 3, upon
increasing temperature, the molecular redistribution over
the energy levels affects both the polarizability and the
vibrational spectrum with the appearance of the hot band
progression. The former can be factored out by comparing,
for example, the relative amplitudes of two adjacent
components (an approach of practical interest when the
hot bands can be resolved), which, from Eq. (7),
is Δpjþ1=Δpj ¼ e−ℏωv=ðkBTÞ.
In conclusion, we have studied the temperature depend-

ence of Raman processes by combining a quantum
description of matter with a perturbative expansion of
the molecular density matrix. This approach allowed us
to dissect how different transitions within the vibrational
manifold participate to the scattering mechanism, providing
a direct comparison between spontaneous and stimulated
processes. Generally, molecular potentials exhibit Raman
transition amplitudes that increase with the occupation
number (hjjQ̂jjþ 1i ∝ ffiffiffiffiffiffiffiffiffiffiffi

jþ 1
p

, for harmonic potentials):
this makes spontaneous Raman enhanced by thermal
fluctuations. The same molecular transitions, with the same
transition amplitudes, are involved in coherent Raman
spectroscopy and, hence, a dependence similar to SR
may be erroneously expected also for CRS. However,
due to the different permutations of the external electro-
magnetic fields participating to the radiation-matter inter-
actions, additional pathways concur to the generation of
CRS signals. In particular, stimulated processes originating
from vibrationally excited energy levels can engage in

FIG. 2. Temperature dependence of spontaneous and stimu-
lated Raman responses. Experimental responses have been mea-
sured for two crystals, namely, sapphire (band at ∼420 cm−1) and
CaF2 (at ∼320 cm−1), and are reported evaluating the peak areas
in panels (a)–(b), respectively. SRS and SR areas (integrated
intensities) divided by the occupation number (hni þ 1) have
been normalized by a constant factor to benchmark Eqs. (9), (11),
and (12). Panels (c)–(d) show the corresponding SRS spectra,
measured in the red (gains) and in the blue (losses) sides.

FIG. 3. Comparison of stimulated and spontaneous (solid and
dashed lines) Raman responses as a function of temperature for a
model Morse potential, with a fundamental band at 1335 cm−1,
constant dephasing rate γv ¼ 15 cm−1, and consecutive hot-band
transitions shifted by 15 cm−1 [71]. SRS and SR spectra have
been normalized to the same intensity at 900 K, assuming a
monochromatic RP (λRP ¼ 800 nm) and a spectrally flat PP. For
clarity, spectra at different temperatures are vertically offset.
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destructive interference with transitions from the ground
state or lower-lying energy levels, ultimately modifying the
temperature dependence. In particular, the total cross
section of CRS processes is less sensitive to thermal effects
with respect to SR. In the specific case of a simple
harmonic molecular potential, the nonresonant CRS
response merely reflects the temperature dependence of
the polarizability gradient, in sharp contrast with SR. For
these reasons, stimulated Raman-based vibrational ther-
mometry requires more refined methodologies, relying
either on an a priori knowledge of the molecular polar-
izability or on the direct observation of anharmonic
signatures.
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TEMPERATURE DEPENDENCE OF IMPULSIVE STIMULATED RAMAN SPECTROSCOPY

The pathways responsible for the ISRS signals are reported in Fig. 1: when the molecular system is initially
in the ground state n = 0, only two processes (labeled as A0 and B0) contribute to the o�-resonant ISRS signal
generation [1]. Brie�y, two interactions, either on the bra or on the ket side, with the femtosecond RP stimulate
a vibrational coherence, and are followed by an interaction with the temporally delayed broadband PP and a free-
induction decay. From a physical point of view, the �rst two interactions create a vibrational coherence while the last
two represent the scattering of that coherence via Stokes and anti-Stokes processes: due to the �eld driven (athermal)
vibrational excitation, the relative energy transfer between the red and the blue PP spectral components (originated
by the two diagrams A0 and B0) is temperature independent. Importantly, due to the di�erent state of the density
matrix (|1⟩ ⟨0| versus |0⟩ ⟨1| for A0 and B0 processes, respectively) prepared by the RP, the two pathways generate
time-domain responses which are out of phase and involve an interaction with a di�erent PP spectral component:
in the PP impulsive limit, this results in a vanishing o�-resonant ISRS response. However, a proper control of the
temporal delay between the PP spectral components, simply achieved by tuning the pulse chirp [2, 3], can be exploited
to introduce an arbitrary phase between the A0 and B0 processes, ensuring strong ISRS signals, with a mode-speci�c
enhancement [1, 4]. When the system is initially in a vibrationally excited population |i⟩ ⟨i|, 4 pathways should be
considered to evaluate the contribution to the measured response (in Fig. 1 they are illustrated for i = 1): Ai and Bi

are the natural extension of the A0 and B0 pathways probing the |i+ 1⟩ ⟨i| vs |i⟩ ⟨i+ 1| coherences. On the contrary,
A′

i and B
′
i probe the |i⟩ ⟨i− 1| and the |i− 1⟩ ⟨i| coherences. The corresponding di�erential Raman gains, generated

outside the pulse temporal overlap [5], can be evaluated as

SAi
(ω, T ) ∝ −pi

(
∂α(T )

∂Q

)2

| ⟨i+ 1| Q̂ |i⟩ |2 · ℜ
[
EP (ω − ωi)/EP (ω)ÎR(ωi)e

−iωiT
]

(S1)
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Supplementary Figure 1. Pathways responsible for ISRS processes from the ground (n = 0, left panel) and the �rst vibrationally
excited (n = 1, right panel) state are compared. For a molecule initially in the n = 0 level, under the o�-resonant regime only
two pathways, labeled as B0 and A0, concur to the generation of the SRS response. When the molecule is initially in the n = 1
state, additional pathways are enabled: B1 and A1 are the natural extension of B0 and A0 and probe the |1⟩ → |2⟩ transition,
while B′

1 and A′
1 involve the |0⟩ ⟨1| and the |1⟩ ⟨0| coherences, respectively



2

𝑛0 = 0

𝑘𝐵𝑇 ≪ ℏ𝜔 𝑘𝐵𝑇 ≈ ℏ𝜔

CSRS0 CARS0

CSRS1 CARS1

CSRS’1
CARS’1

𝑛0 = 1

𝜔 = 2𝜔𝑃 − 𝜔𝑅

𝜔 = 2𝜔𝑅 − 𝜔𝑃

𝜔 = 2𝜔𝑅 − 𝜔𝑃
𝜔 = 2𝜔𝑃 −𝜔𝑅

Supplementary Figure 2. Pathways responsible for CSRS and CARS processes from the ground (n = 0, left panel) and the �rst
vibrationally excited (n = 1, right panel) state are compared. For a molecule initially in the n = 0 level, under the o�-resonant
regime there is only one process contributing to CSRS0 and one to CARS0. If the molecule is initially in the n = 1 state,
additional pathways are enabled: CSRS1 and CARS1 are the natural extension of the former ones and probe the |1⟩ → |2⟩
transition, while CSRS′

1 and CARS′
1 involve the |0⟩ ⟨1| and the |1⟩ ⟨0| coherences, respectively

SBi(ω, T ) ∝ +pi

(
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where for simplicity we have assumed a vanishing dephasing rate, IR(ω) =
∫ +∞
−∞ dt|ER(t)|2e+iωt denotes the Fourier

transform of the RP temporal pro�le and T is the temporal delay between the RP and PP. Fourier transforming over
T allows for retrieving the vibrational spectrum in the frequency domain, obtaining a response equivalent to SRS.
In close analogy with the pathways discussed for frequency-domain SRS responses, the A′

i+1/B
′
i+1 processes probe

the same molecular polarizabilities as the Ai/Bi processes, exhibiting di�erent (population) amplitudes and opposite
signs, which lead to a destructive interference.

TEMPERATURE DEPENDENCE OF CARS AND CSRS SPECTROSCOPIES

Energy level diagrams pertaining to the CSRS and CARS processes are illustrated in Supplementary Figure 2. In
their simplest version, two narrowband pulses at frequencies ωR and ωP (with ωR −ωP ≈ ωv) are exploited to record
signals at 2ωP − ωR and 2ωR − ωP , respectively [6]. Since the emitted signals occur at frequencies that are di�erent
with respect to the input beams, CSRS and CARS are homodyne techniques, accessing the square modulus of the
third-order polarizability [7, 8]. When the molecular system is initially in the ground state, they read as

PCSRS0
(ω) = −p0

ℏ

(
∂α(T )

∂Q

)2

IPER| ⟨0| Q̂ |1⟩ |2 2πδ(ω + ωR − 2ωP )

ωP − ω10 − ω − iγ10

and

PCARS0(ω) =
p0
ℏ

(
∂α(T )

∂Q

)2

IREP | ⟨0| Q̂ |1⟩ |2 2πδ(2ωR − ωP − ω)

ωR + ω10 − ω − iγ10

where the Dirac deltas originate from the energy conservation and from assuming monochromatic pulses. Similarly
to SRS and ISRS, as the temperature is raised additional pathways, originated by the initial population in the i > 0
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Supplementary Figure 3. Comparison of stimulated/spontaneous (solid/dashed lines) Raman responses as a function of tem-
perature for a model harmonic molecular system, with three normal modes (at 220, 315 and 460 cm−1, with γj = 7 cm−1) and
a temperature-independent polarizability. A monochromatic RP (λRP = 800 nm) and a spectrally �at PP are assumed. The
red-side SRS spectrum is reported in (a) with the Stokes spontaneous contribution, while the blue-side is shown in (b) with
the anti-Stokes. In the insets, the areas of the di�erent signals are compared as a function of the sample temperature (solid
red/blue lines indicate the SRS areas, dashed red/blue lines the Stokes/anti-Stokes spontaneous areas).

levels, contribute to the measured signals generating the following polarizabilities:

PCSRSi
(ω) = −pi

ℏ

(
∂α(T )

∂Q

)2

IPER| ⟨i| Q̂ |i+ 1⟩ |2 2πδ(ω + ωR − 2ωP )

ωP − ωi − ω − iγi
(S5)

and

PCARSi
(ω) =

pi
ℏ

(
∂α(T )

∂Q

)2

IREP | ⟨i| Q̂ |i+ 1⟩ |2 2πδ(2ωR − ωP − ω)

ωR + ωi − ω − iγi
(S6)

PCSRS′
i
(ω) =

pi
ℏ

(
∂α(T )

∂Q

)2

IPER| ⟨i| Q̂ |i− 1⟩ |2 2πδ(ω + ωR − 2ωP )

ωP − ωi−1 − ω − iγi−1
(S7)

and

PCARS′
i
(ω) = −pi

ℏ

(
∂α(T )

∂Q

)2

IREP | ⟨i| Q̂ |i− 1⟩ |2 2πδ(2ωR − ωP − ω)

ωR + ωi−1 − ω − iγi−1
(S8)

Thus, the population initially in the i state can undergo two processes: it can be promoted to the |i⟩ ⟨i+ 1| and
|i+ 1⟩ ⟨i| coherences, corresponding to the PCSRSi

and PCARSi
polarization, or it can undergo de-excitation to the

|i− 1⟩ ⟨i| and |i⟩ ⟨i− 1| coherences. These pathways are associated to third-order polarizations PCSRS′
i
and PCARS′

i
,

that have opposite sign with respect to PCSRSi−1 and PCARSi−1 , resulting in destructive interference.

SPECTRAL RESPONSE AND DEPHASING RATE

A comparison of the SR/SRS temperature-dependence computed using Eqs. 9-12 of the main text is reported
in Supplementary Fig. 3a-b, for an ideal harmonic system with 3 normal modes. All the molecular parameters
(excluding pj) are assumed to be temperature independent. As it is well known, thermal population can a�ect the
relative intensity of di�erent vibrational modes measured by SR spectroscopy, due to the mode-speci�c enhancement of

the cross-section (⟨n⟩+1 = eℏωv/(kBT )

eℏωv/(kBT )−1
and ⟨n⟩ = 1

eℏωv/(kBT )−1
factors for Stokes and anti-Stokes sides, respectively).

Remarkably, this is not the case for coherent Raman signals: upon increasing the vibrational level, the cross section
enhancement is exactly compensated by the contribution of the additional pathways. The di�erent behaviour of
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SR and SRS with temperature is illustrated by evaluating the areas of each Raman band reported in the insets of
Fig. 3a-b.
The interaction of the system with the surrounding environment may increase the dephasing rate of the vibrational

coherences involving large occupation numbers [9], inducing a temperature dependent spectral broadening. This e�ect
is evaluated in Supplementary Fig. 4a-b, where the spontaneous and stimulated Raman responses are evaluated for a
model system with the dephasing rate that scales linearly with the occupation number [10] (γj = γ0 · [j + 1]). All the
other molecular parameters are the same as the harmonic system considered in Supplementary Fig.3. Critically, both
the spontaneous and the SRS responses experience a spectral broadening as the temperature increases, accompanied
by a consistent reduction in the peak amplitudes for the SRS signals. Also in this case, the areas of the measured
Raman bands reveal a �at dependence of red/blue side SRS responses.
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Supplementary Figure 4. Comparison of stimulated (solid lines) and spontaneous (dashed lines) Raman responses as a function
of temperature for a harmonic molecular system, with three normal modes (at 220, 315 and 460 cm−1), and a temperature-
independent polarizability. A dephasing rate proportional to the occupation number (γj = [j + 1] · 7 cm−1) has been assumed.
A monochromatic RP (λRP = 800 nm) and a spectrally �at PP are considered. The red-side SRS spectrum is reported in (a)
with the Stokes spontaneous contribution, while the blue-side is shown in (b) with the anti-Stokes.

INTENSITIES OF SINGLE RAMAN BANDS

A comparison of SR and SRS band intensities associated to a given initial vibrational level can be obtained combining
the Eqs. reported in the main manuscript for red/blue and Stokes/anti-Stokes responses [3-5], here reported for clarity

RGR(ω) ∝
[
∂α(T )

∂Q

]2
ωIR

∞∑
j=0

(pj − pj+1)
γj | ⟨j + 1| Q̂ |j⟩ |2

(ωR − ωj − ω)
2
+ γ2j

(S9)

RGB(ω) ∝ −
[
∂α(T )

∂Q

]2
ωIR

∞∑
j=0

(pj − pj+1)
γj | ⟨j + 1| Q̂ |j⟩ |2

(ωR + ωj − ω)
2
+ γ2j

(S10)

RS(ω) ∝
[
∂α(T )

∂Q

]2
ω3IR

∞∑
j=0

pj
γj | ⟨j + 1| Q̂ |j⟩ |2

(ωR − ωj − ω)
2
+ γ2j

(S11)

RAS(ω) ∝
[
∂α(T )

∂Q

]2
ω3IR

∞∑
j=0

pj+1
γj | ⟨j| Q̂ |j + 1⟩ |2

(ωR + ωj − ω)
2
+ γ2j

(S12)

with the population factors (pj and pj − pj+1) in Eqs. [6-7] of the main manuscript, namely

pj = e−Ej/kBT · Z−1



5

∆pj = pj − pj+1 = e−jℏωv/(kBT ) · Z−2

where Z =
∑∞

0 e−Ej/kBT ≈ 1
1−eℏωv/(kBT ) . For the Stokes and red-side spectra, we obtain

RS (ω) ∝
[
∂α (T )

∂Q

]2
ω3IR

∞∑
j=0

(
e−jℏωv/(kBT )

)
· Z

−1 γj

∣∣∣〈j + 1|Q̂|j
〉∣∣∣2

(ωR − ωj − ω)
2
+ γ2j

RGR (ω) ∝
[
∂α (T )

∂Q

]2
ωIR

∞∑
j=0

(
e−jℏωv/(kBT )

)
· Z

−2 γj

∣∣∣〈j + 1|Q̂|j
〉∣∣∣2

(ωR − ωj − ω)
2
+ γ2j

Interestingly, except for the di�erent scaling with the emitted frequency (ω3 vs ω for spontaneous vs stimulated Raman
signals, respectively), the intensity of the Stokes and SRS lines di�er for a factor Z, which corresponds to the Bose
term.

POLARIZABILITY TEMPERATURE DEPENDENCE

For a single normal mode (for example in the case of a diatomic molecule) the molecular polarizability α depends
on the vibrational state j via the quantum average over the vibrational wavefunction ψj(Q) reading as

αj =

∫ +∞

−∞
dQ|ψj(Q)|2α(Q) = ⟨j| α̂ |j⟩ ≈ α(Qave(j))

By averaging αj over the thermal occupation of the vibrational states pj , α(T ) can be obtained as

α(T ) =

∞∑
j=0

pjαj

As discussed in [11], in the presence of an asymmetrical nature of the potential energy curve, Qave(j) increases
with the vibrational quantum number. For instance, considering a simple diatomic molecule with a potential energy
curve V (Q) asymmetric around its minimum, the equilibrium distance of the two nuclei, Qeq(T ), depends on the
temperature and it is di�erent with respect to the minimum Q0 of the nuclear potential V (Q). Practically, Qeq(T )
can be obtained by averaging Qave(j) over all vibrational quantum numbers weighted by the corresponding occupa-
tion factors, obtaining slightly larger atomic distances at higher temperatures. As the molecular polarizability shows
only weak modi�cation across the interatomic distances explored via thermal �uctuations, the α (T ) dependence is
relatively small and this e�ect is generally negligible [11].
Similar considerations can be applied to larger molecules; indeed, for M vibrational degrees of freedom, the molec-
ular polarizability depends on the vibrational states j1, j2, . . . , jM , via the quantum average over the vibrational
wavefunctions ψ1(Q1), . . . , ψM (QM ), as

αj1,j2...,jM =

∫ +∞

−∞
dQ1

∫ +∞

−∞
dQ2· · ·

∫ +∞

−∞
dQM |ψj1(Q1)|2 · |ψj2(Q2)|2 . . . |ψjM (QM )|2α(Q1, Q2, . . . , QM ) =

⟨j1, j2, . . . , jM | α̂ |j1, j2, . . . , jM ⟩
(S13)

As above, the macroscopic polarizability is obtained as the thermal average

α(T ) =
∑

j1,j2,...,jM

pj1 · pj2 . . . pjMαj1,j2...,jM

Importantly, aiming to focus on a single vibrational degree of freedom (for example, j1), an e�ective temperature
dependent polarizability αj1(T ), which in principle depends also on j1, can be de�ned marginalizing over the other
di�erent vibrational degrees of freedom (j2, . . . , jM ). Namely,

αj1(T ) =
∑

j2,...,jM

pj2 . . . pjMαj1,j2...,jM
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which can be expressed as

αj1(T ) =

∫ +∞

−∞
dQ1|ψj1(Q1)|2 ·

∑
j2,...jM

pj2 . . . pjM

∫ +∞

−∞
dQ2· · ·

∫ +∞

−∞
dQMα(Q1, Q2, . . . , QM )|ψj2(Q2)|2 . . . |ψjM (QM )|2

αj1(T ) =

∫ +∞

−∞
dQ1|ψj1(Q1)|2 · αe�(Q1, T )

(S14)

where

αe�(Q1, T ) =
∑

j2,...jM

pj2 . . . pjM

∫ +∞

−∞
dQ2· · ·

∫ +∞

−∞
dQMα(Q1, Q2, . . . , QM )|ψj2(Q2)|2 . . . |ψjM (QM )|2 (S15)

In analogy with the diatomic molecule, the dependence on the occupancy of a single vibrational degree can be in
general neglected (i.e., assuming αj1(T ) = α(T )), while signi�cant variations of the polarizability can still occur at
di�erent temperatures, due to the average over the other (many) degrees of freedom appearing on Eq. S15.

EXPERIMENTAL SETUP

The temperature dependence of both stimulated Raman and spontaneous responses has been measured using a
commercial temperature controlled stage (THMS600 by Linkam). Temperature has been monitored via a platinum
sensor. Calibration and homogeneous thermal distribution of the sample were veri�ed using a second 10 kΩ thermistor
sensor positioned at the opposite end of the sample.
Stimulated Raman A Stimulated Raman scattering (SRS) experiment requires two pulses temporally and spatially
overlapped on the sample under investigation [12, 13], namely a narrowband (≈ 10 − 20 cm−1) Raman pump (RP),
which ensures high spectral resolution, and a femtosecond broadband probe pulse (PP). The RP and the PP used for
the SRS experiment have been synthesized from a Ti:sapphire laser source, which generates 40 fs transform limited
pulses centered at 800 nm, with an energy of 2.5 mJ and 1 kHz of repetition rate. The PP has been obtained via
supercontinuum generation, focusing a small fraction of the laser on a 3-mm-sapphire crystal, producing a broadband
(450-1000 nm) white light continuum (WLC). For the synthesis of the RP, a commercial two-stage optical parametric
ampli�er [14] (Light Conversion TOPAS-C) is used to produce tunable IR-visible pulses, which are then frequency
doubled by spectral compression (SC) via second harmonic and sum frequency generation [15, 16] in a 25 mm-thick
BBO crystal to produce a beam centered at λR ≈ 630 nm. The RP generated by SC are characterized by a temporal
envelope unfavorable for SRS, which is recti�ed by a double-pass (2f) spectral �lter, obtaining a Gaussian pro�le with
≈ 3 ps time duration [17]. The pulses are then focused on the sample in a non-collinear geometry (≈ 5◦) and the
PP spectrum is monitored on a charge-coupled device (CCD) upon frequency dispersion by a spectrometer (Acton
Spectra Pro 2500i).
Spontaneous Raman A Spontaneous Raman (SR) experiment requires a narrowband source to be focused on the

sample under investigation, collecting and spectrally resolving the inelastically scattered light. To control the output
polarization of a 20mW, 473nm continuous wave laser source, a half-wave plate and a Glan-Laser Calcite Polarizer
are employed. This laser source is then focused onto the sample through a 15 mm focal length aspherical lens. The
back-scattered Raman radiation is collected by the same lens, suppressing the Rayleigh component by a polarizing
beam splitter. The emitted Raman spectrum is monitored using a charge-coupled device (CCD) upon frequency
dispersion by a spectrometer (Acton Spectra Pro 2500i).
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