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Molecular chirality has long been monitored in the frequency domain in the ultraviolet,
visible, and infrared regimes. Recently developed time-domain approaches can detect
time-dependent chiral dynamics by enhancing intrinsically weak chiral signals. Even-
order nonlinear signals in chiral molecules have gained attention thanks to their
existence in the electric dipole approximation, without relying on the weaker higher-
order multipole interactions. We illustrate the optimization of temporal polarization
pulse-shaping in various frequency ranges (infrared/optical and optical/X ray) to
enhance chiral nonlinear signals. These signals can be recast as an overlap integral
of matter and field pseudoscalars which contain the relevant chiral information.
Simulations are carried out for second- and fourth-order nonlinear spectroscopies
in L-tryptophan.
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Spectroscopic techniques for probing molecular chirality are undergoing rapid progress.
Circular dichroism (CD), defined as the differential absorption of left and right circularly
polarized light, is the most commonly used technique but provides a weak signal atop
a stronger achiral background. Tang and Cohen (1, 2) have shown that CD signals are
proportional to a quantity known as the “field chirality” introduced by Lipkin (3). This
observation offers avenues to maximize intrinsically weak CD signals (4). Such opti-
mization relies on matching the spatial profiles of the matter and field chiralities. Similar
considerations can also be extended to the time-domain (5–7). Time-domain nonlinear
techniques are very promising for the temporal optimization of ultrafast chiral signals
because their multiple pulses offer the needed flexibility to match the field and matter
chiral correlation functions. In all cases, the molecular chirality involves a pseudoscalar
matter correlation function which depends on the chosen chiral-sensitive technique and
that is probed by a corresponding probing field chiral correlation function (8).

Most nonlinear spectroscopic techniques, such as �(3) ones, are done with odd-order
perturbative interactions in the incoming fields. The reason lies in the fact that even-order
techniques vanish in centro-symmetric media (9). The sensitivity of even-order signals,
such as sum-frequency generation (SFG), to parity breaking has long been used to probe
interfaces (10, 11) and randomly oriented chiral molecules in the bulk of a liquid phase
(12–15). However, when the matter is chiral, even-order techniques do not vanish in the
electric dipole approximation, under some constraints on the incoming beams geometry,
enabling strong chiral signals in the bulk (16–19). The rotationally averaged second-order
�(2) signals can be factorized into two triple products: one of the three transition electric
dipoles of matter given by �ab · �cd × �ef and the three electric field polarizations for
the incoming fields E3 · E2 × E1. These triple products are pseudoscalars that do not
vanish only when the three vectors are noncoplanar. For chiral molecules, the absence of
improper rotations guarantees it (20). For achiral molecules, the triple product vanishes
by symmetry, and the leading contribution to �(2) has to include the electric quadrupole
or the magnetic dipole (21). From the probing fields’ perspective, this implies that the
three interactions are achieved with noncoplanar fields. This is why SHG carried out
with a single incoming beam vanishes even in chiral liquids. Note that the sign of the
field pseudoscalar is determined by the handedness of the coordinate frame spawned by
the three vector polarizations.

Various schemes have been developed for generating these pseudoscalar fields.
Rentzepis et al. (12) have proposed the following frequency domain scheme to probe
chiral liquids: beams with frequency ! and 2! and crossed polarizations are generated
and interact noncollinearly with a chiral sample. The SFG signal at frequency ! + 2!
is finally homodyne-detected. This approach was employed by Belkin et al. (13, 22)
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to probe limonene. They used optical and IR fields crossing at
90◦ at the sample. By scanning the IR frequency and measuring
the SFG in reflection and transmission, they were able to
separate bulk and interface contributions. The former is due to
intrinsic molecular chirality while the latter is caused by symmetry
breaking at the surface. Smirnova et al. (23–26) and Wörner
et al. (27–29) have recently extended these approaches to High
Harmonic Generation sources. They have used bicircular fields
consisting of two counterrotating circularly polarized fields with
frequencies ! and 2!. Over the field period, the polarization
forms a Lissajous pattern. Again, the combination of different
polarizations and frequencies allows for the generation of a field
pseudoscalar. It is a triple product at the lowest nonvanishing
order, �(2), and can be generalized to higher orders (25). They
have also extended the concept by ensuring that the field chirality
is conserved spatially in the interaction region (24) so that
the spatial handedness of the field polarization coordinates is
preserved across the sample.

In this work, we demonstrate how sensitive even-order ultrafast
chiral spectroscopies can be designed and optimized in chiral
liquids and show how this maximization maps the molecular
chiral correlation functions. We apply even-order �(2) and �(4)

techniques to probe the UV-active amino acid L-tryptophan.
Previous studies did not take advantage of the broad spectral
envelope of ultrashort pulses to address multiple molecular
eigenstates at once. We consider ultrashort pulses in the time
domain with various levels of complexity, ranging from simple
Gaussian pulses to temporally shaped pulses with polarization
control. Applications are made to two types of SFG signals using
low or high photon energy regimes: 1) �(2) IR + optical SFG,
and 2) �(2) optical + X ray SFG schemes. Schemes (1) and
(2) monitor the chirality of vibrational and electronic excited-
states, respectively. Finally, we demonstrate how this approach
can be extended to other techniques by discussing an example
of a �(4) process. To that end, charge migration dynamics are
calculated by starting with an actinic optical excitation followed
by an optical + X-ray SFG process. We show how the temporal
polarization profiles can be tuned to maximize the chiral response.
Importantly, the chiral signal maximization signifies that the
overlap between the field and matter chirality is increased and
one is effectively mapping the matter chiral correlation function
by tuning the field parameters. This tuning of the field chirality to
maximize the signal is different from the one proposed by Tang
and Cohen (2) which relied on the spatial variation of the field
to maximize the field chirality at some well-defined locations. In
contrast, our proposition tailors the temporal field polarization
profiles to match the time-dependent molecular dipoles.

1. Probing Vibrations by Ground State SFG

We first present closed-form expressions for the SFG signals using
pulses with arbitrary polarization and spectral profiles. These
chiral-sensitive signals can be used to characterize molecular
vibrational or electronic eigenstates in chiral molecules. SFG is a
three-wave-mixing process induced by two incoming beams E1
and E2. The outgoing signal can be homodyne- or heterodyne-
detected using a local oscillator ELO pulse. For even-order non-
linear techniques, the dominant light–matter coupling leading to
the chiral response only involves the electric dipole (30):

Hint = −� · E(t), [1]

where � and E are the electric transition dipole operator and the
incident electric fields respectively.

BA

vis

vis

vis

IR

XR

XR

Fig. 1. Ladder diagrams for the SFG signals. (A) IR/optical and (B) optical/
X-ray.

The SFG process can be represented by a ladder diagram
representing an interaction pathway on the molecular density
matrix (31). Both IR/optical, Fig. 1A, and optical/X-ray, Fig. 1B
are considered in the following. Fig. 1A represents the commonly
implemented SFG process with an initial IR interaction followed
by an optical probe. Experiments which resolve vibrational modes
at interfaces usually scan the IR beam central frequency, and the
optical beam generates an easy-to-detect signal that is sensitive to
parity breaking (32). Here, the lack of centrosymmetry is caused
by molecular chirality in the bulk liquid, and not by the surface.
These techniques use monochromatic light or narrowband pulses,
and only spectral information is recorded.

The rotationally averaged frequency-dispersed heterodyne-
detected SFG signal (Fig. 1 A or B) can be written as (8):

S(2)
SFG(!, T ) =

2
ℏ3

1
6

Im
∫

dtdt2dt1�ijk〈�iLG(t2)�
j
LG(t1)�kL〉

× �abcEa∗
LO(!)ei!tEb

2 (t − t2)E c
1(t − t2 − t1 + T ),

[2]

where T is the delay between the IR and visible pulses, t1
and t2 are dummy variables which represent the perturbative
expansion and G are field-free molecular propagators (31). The
subscript L (R) on the dipoles stand for actions on the left (right)
of the density matrix (31); see Fig. 1. The summation over
repeated lower and higher indices is implied. The Levi-Civita
contraction indicates a vector triple product �ijkuivjwk = u ·
(v×w) originating from the rotational averaging over molecular
orientations. The triple products of the matter dipoles and of
the electric field amplitudes are the rotational invariants of the
third-rank matter response and of the field tensors, respectively.

Ultrashort measurements require pulses with a broad band-
width. We shall recast the field amplitudes in the frequency
domain:

E∗LO(t) =
∫

d!LO

2�
ei!LOtE∗LO(!LO), [3]

E2(t − t2) =
∫

d!2

2�
e−i!2(t−t2)E2(!2), [4]

E1(t − t2 − t1 + T ) =
∫

d!1

2�
e−i!1(t−t2−t1+T )E1(!1). [5]

Eq. 2 then becomes:

S(2)
SFG(!, T ) =

2
ℏ3

1
6

Im �ijk�abc
∫

d!2

2�
d!1

2�
�(!− (!2 + !1))

〈�iLG(!2 + !1)�
j
LG(!1)�kL〉E

a∗
LO(!)Eb

2(!2)E c
1(!1)e−i!1T .

[6]
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The matter correlation function corresponding to Fig. 1A can
be expanded in eigenstates:

�ijk〈�iLG(!2 + !1)�
j
LG(!1)�kL〉

=
∑
ev

�ge · (�ev × �vg)
(!2 + !1 − !eg + iΓeg)(!1 − !vg + iΓvg)

.

[7]

Eqs. 6 and 7 can be used to compute the SFG IR + visible
signal. Before turning to numerical computations, we show in the
next section how the signal can be recast as a matter/field overlap
integral and how shaped field envelopes for various polarization
components may be used to modify the chiral response.

2. Response to Polychromatic Chiral Fields

In recent works, the chiral fields pseudoscalars were constructed
in the frequency domain by combination of a few monochromatic
field modes (24, 28). While these have experimental advantages,
they lack the generality to be resonant with a broad manifold of
excited states.

To enhance the resonant time-domain probing, all pulses will
be polarization-shaped. Pulses with nontrivial polarization states
are represented in Fig. 2. When each polarization component of
the fields is shaped in the time-domain, the probing field may
be designed to maximize the field pseudoscalar, to maintain the
sign of the field chirality in space, and to maximize their resonant
interaction with the molecular states.

When limited to harmonics of the same source field, the
field polarization runs through a Lissajous knot with parameters
(nx , ny, nz) ∈ N3. For example, for monochromatic fields, by
crossing an elliptical field at frequency ! with a longitudinal
component at 2!, one gets the (1,1,2) knot.

E(t) =

(E! cos � cos(!t + �x)
E! sin � cos(!t + �y)
E2! cos(2!t + �z),

)
[8]

A

B

C

Fig. 2. Left: Light polarization trajectory in time domain. The red arrow
represents the wavevector of the E1 and E2 fields, and the black arrow is the
polarization of the total field. Center: Spectral envelopes used for the three
field components used in the SFG process. Right: Corresponding chiral field
correlation function, Eq. 11 with ! = !1 + !2. Three cases are considered:
(A) Monochromatic fields, Eq. 8 (E! = 1 au, E2! = 0.5 au, ! = 1.5 eV, � = �/4,
�x = 0.2, �y = �/2, � = 0.6). (B) Narrowband fields centered at 1.5 eV (X,Y
components) and 3 eV (Z component). (C) Broadband fields with the same
central frequencies.

where the relative phases �x , �y, and �z of the various cartesian
components determine the shape of the Lissajous knot (33).

The polarization trajectory of this Lissajous knot pulse is
displayed in Fig. 2A (Left). Since the beam is monochromatic (see
corresponding spectra on the right), the polarization undergoes
a periodic motion along the Lissajous knot.

Ultrashort pulses in time-resolved techniques must be broad-
band to achieve a high time resolution and to probe chiral
dynamics involving multiple molecular eigenstates. We introduce
the following polarization-shaped polychromatic fields:

En(!) =
∑

a=x,y,z

∑
�

eaEa�
n (!− !�), [9]

where n indicates the nth pulse in the interaction pathway,
a is the polarization component, and � runs over the basis
used to generate the frequency profile. Each a component of
the polarization is given by a sum of broadband contributions
centered at frequencies !� . Ea�

n are typically Gaussian or
Lorentzian field envelopes.

Fig. 2 B and C show examples of such fields given by:

E(!) =

Ex e−(!−!x)2/(2�2
x )

Ey e
−(!−!y)2/(2�2

y )

Ez e−(!−!z)2/(2�2
z )

 , [10]

where !x = !y = 1.5 eV, !z = 3 eV. In Fig. 2B the bandwidth
� are taken to be relatively narrow (0.08 eV) while in C they are
broad (0.3 eV). For narrow bandwidths, the pulse durations are
long and the polarization pattern is similar to the monochromatic
case. For broad bandwidths, the polarization pattern becomes
complex within a short period of time within the pulse.

We next introduce the field and matter chiral correlation
functions for the SFG signals:

�(2)
F (!,!1, T ) = E∗LO(!) · (E2(!− !1)× E1(!1))e−i!1T ,

[11]

�(2)
M (!,!1) =

∑
ev

�ge · (�ev × �vg)
(!− !eg + iΓeg)(!1 − !vg + iΓvg)

.

[12]

The chiral SFG signal can be finally recast as an overlap integral
of these field and matter quantities:

S(2)
SFG(!, T ) =

2
6ℏ3 Im

∫
d!1

2�
�(2)
M (!,!1)�

(2)
F (!,!1, T ).

[13]

Maximizing the chiral signal amounts to optimizing the
overlap of the above two field and matter chiral quantities.
Reaching a maximum of the SFG chiral signal indicates that
�(2)
F closely resemble �(2)

M and may thus be used to map the
matter chiral correlation function.

Turning to the field chirality function �(2)
F (!2,!1, 0) cal-

culated for narrowband pulses, Fig. 2B, one can see that its
sign is preserved over the entire spectral region of the pulses.
Broadband pulses on the other hand produce a field pseudoscalar
that changes sign over the spectral region, which can diminish
the chiral-sensitivity of the signal when integrating over the
pulse bandwidth. However, this should not be a limitation
of broadband pulses, but rather provides a practical route
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for optimization. The field chirality itself can change sign
for different transitions. Frequency-shaped pulses can then be
engineered to closely match the matter chirality over the probed
frequency range and during its dynamics. In this discussion and
in Fig. 2, the field chiral response function is taken at T = 0.5 fs
when the pulsesE1 andE2 are almost coincident. In the following
examples, when a sum-over-state expression with exponential
phenomenological decays, the dynamics following the E1 pulses
is trivial, and varying the delay T does not add extra information
in the signal. It can however be used to control the phase of
the field chiral correlation function to better match the matter
chiral correlation function. In systems with nontrivial relaxation
dynamics, the matter chiral response would depend on the delay
T , and extra optimization steps can be made to maximize the
field chirality at every step along the dynamics.

Eq. 13 assumes heterodyne detection. While this is customary
for optical spectroscopic techniques, it remains a challenge for
X-ray signals. In that case, the homodyne-detected signal may be
preferred and is given by:

S(2)
SFG,hom(!, T ) ∝

∣∣∣ ∫ d!1

2�
�(2)
M (!,!1)�

(2)
F (!,!1, T )

∣∣∣2.
[14]

3. Applications to L-Tryptophan

3.1. Ab Initio Computation of the Electronic States. L-
tryptophan is one of the three important UV-active amino acids
(34) and is also a precursor for various important compounds
such as serotonin or melatonin. Extended networks of tryptophan
molecules have also been found to have remarkable optical
properties (35). We use this molecule to illustrate polarization
pulse shaping in even-order nonlinear spectroscopic signals.

The valence excitations were calculated using the multi-
configurational self-consistent field (MCSCF) approach at the
cc-pVDZ/SA5-CASSCF(8/6) level of theory with the MOLPRO
package (36). Four valence-excited states were computed. The
six orbitals considered ranged from HOMO-3 to LUMO+1.
The resulting UV spectrum (transition frequencies and oscillator
strengths) with a phenomenological broadening of 0.1 eV is
displayed in Fig. 3B.

To calculate the C K-edge absorption spectrum, we used
restricted active space core-excited states calculations (RASSCF)
for each carbon 1s core molecular orbital. The second-order
Douglas–Kroll–Hess Hamiltonian was used to account for
relativistic corrections. The RASSCF calculations were performed
at the cc-pVDZ/RASSCF(10/7) and two state-averaged core-
excited states were calculated for each of the 11 carbon atoms
in the L-tryptophan molecule. Note that the employed RASSCF
method describes bound states and is thus adequate for the near-
edge region of the X-ray spectrum, but not over the edge region
where photoelectron scattering effects become predominant.
Fig. 3C shows the stick absorption spectra with a 0.4 eV
phenomenological broadening. Finally, the vibrational spectrum
was computed by using the experimental data of Mohan et al. (37)
The spectrum is displayed in Fig. 3A with a phenomenological
broadening of 100 cm−1.

3.2. IR/UV Sum-Frequency Generation. To illustrate how the
polarization-shaped pulses can maximize the chiral signal over
a broad range of excited states, it is instructive to compare the
chiral matter correlation functions, Eq. 12, and the field, Eq. 11.
To demonstrate the impact of polarization pulse shaping on the

A

B

C

Fig. 3. Computed L-tryptophan linear absorption spectra covering (A) vibra-
tional, (B) valence, and (C) carbon K-edge core excitations.

chiral �(2) SFG signal, we display these two correlation functions
for the IR/UV signals in Fig. 4.

The IR/UV matter chiral response �(2)
M (!,!1) displayed

in Fig. 4A is a purely molecular property that fully describes
the chiral response in the studied frequency regime for this
chirality-sensitive technique. In panels 4B and 4C, two different
field chiral correlation functions �(2)

F (!,!1, T ) are employed

to probe �(2)
M (!,!1). The polarizations were chosen to be

orthogonal: eLO = (0, 0, 1), e2 = (1, 0, 1) and e1 = (0, 1, 0).
This greatly simplifies the polarization triple product computa-
tion. In more realistic experimental geometries, one would have to
consider a set of convenient pulse wavevectors with noncoplanar
polarizations at the sample location. The triple product would
then be obtained by simple geometric calculations.

In the following examples, we have considered coincident
pulses (T = 0). Varying this delay would allow for further
optimization of the field pseudoscalar or the further study of
molecular dynamics occurring during that delay.

The first configuration, whose chiral field correlation function
is displayed in Fig. 4B, has a single Gaussian for each of the three

4 of 11 https://doi.org/10.1073/pnas.2402660121 pnas.org
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A

B

C

Fig. 4. Chiral correlation functions probed by IR/UV SFG signals. (A) Matter
chiral correlation function �(2)

M (!,!1). (B) Field chiral correlation function
�(2)
F (!,!1 , T = 0) for a single Gaussian pulse for each incoming field. The field

parameters are chosen as follows: E1 = E2 = ELO = 1 au, !1 = 1,500 cm−1,
�1 = 200 cm−1, !2 = 7.81 eV, �2 = 1. eV, !LO = 8 eV, �LO = 1.5 eV.
(C) Same as B but with multiple Gaussian envelopes for each pulse. The field
parameters are chosen as follow: E1a = E1b = 1 au, !1a = 1,500 cm−1,
!1b = 3,000 cm−1 and �1a = �1b = 100 cm−1. E2a = E2c = −E2b =
−E2d = 1 au, !2a = 8.2 eV, !2b = 8 eV, !2c = 6.4 eV, !2d = 6.2 eV,
�2a = �2b = 0.3 eV, �2c = 0.4 eV, �2d = 0.4 eV. ELO,a = ELO,b = 1 au,
!LO,a = 8.1 eV, !LO,b = 6.3 eV, �LO,a = �LO,b = 0.2 eV.

pulses E1,E2, and ELO. This corresponds to a loose overlap
between�(2)

M (!,!1) and�(2)
F (!,!1, T ) for that spectral region.

This pulse configuration thus allows to probe the IR/UV
SFG signal, but is not optimized to closely fit �M (!,!1) in
that region. In Fig. 4B, the IR field resonant with the C–C
stretching band at 1,427 and 1,555 cm−1. The UV pulse is
centered at 8 eV, matching the strongest oscillator strength
in Fig. 3A.

In Fig. 4C, shaped pulses constructed as the sum of several
Gaussian envelopes are employed to build a field pseudoscalar
with a larger spectral overlap with the matter one. This allows res-
onances with both the C–C stretching and the C–H stretching in
the 2,849 to 3,042 cm−1 region by using two Gaussians (centered
at 1,500 and 3,000 cm−1) for the IR pulse. Four Gaussians for
the UV pulse (centered at 6.2, 6.4, 8, and 8.22 eV) allow for res-
onances with multiple electronic excitations. We have retained a
reasonably simple pulse spectral profile for each of theE1,E2, and
ELO pulses, while improving the overlap with the chiral matter
correlation function. Pulses intensities were normalized to unity
to ensure that signals with equivalent incoming photon fluxes are
compared.

The SFG signals probed with these two pulse configurations
are displayed in Fig. 5 A and B. These signals are given by overlap
integrals of the matter and field chiral correlation function in the
frequency domain, Eq. 2. The aim of the polarization pulse
shaping is to bring the field chiral correlation function as close
as possible to the matter chiral correlation function in order to
maximize the chiral response, Eq. 13. The pulse configuration
leading to the signal displayed in Fig. 5B matches more closely

the matter chiral correlation function, and thus resulting in a
larger signal in absolute amplitude (about 50% larger for the 8 eV
spectral feature). This is a results of the field correlation in Fig. 7C
having spectral features in the (! = 8eV,!1 = 1,500 cm−1)
and the (! = 6eV,!1 = 1,500 cm−1) ranges where the matter
correlation function is displaying a similar spectral behavior. The
configuration used to get Fig. 7C remains relatively simple. More
elaborate spectral and polarization shaping has the potential to
further increase the signals.

3.3. UV/X-Ray Sum-Frequency Generation. We now turn to the
analogous UV/X-ray SFG signals. While the vibrational manifold
is probed by using an optical pulse as a window in Fig. 1 A
and B presents a higher energy extension of this technique in
which the valence excited-state manifold is probed by an X-ray
pulse. This is reminiscent of the recently proposed stimulated
X-ray Raman process (38, 39), in which a broadband X-ray pulse
probes many valence excitation simultaneously. While nonlinear
X-ray spectroscopies are still in their infancies (40, 41), multiple
pulse (42, 43) and polarization-control (44, 45) schemes are
being developed. Ultrafast even-order nonlinear spectroscopies
should be available in the near future at X-ray facilities, and
a partial optimization of chiral signals should then become
possible.

The implementation of UV and X-ray three-wave-mixing
signals is still in its infancy (46–49). Such signals would offer
additional structural information compared to their lower energy
counterparts. The chiral matter correlation function for UV +
X-ray SFG in L-tryptophan is displayed in Fig. 7A. From Fig. 1B,
the signal expression remains the same (Eq. 13), but with the
matter correlation function replaced by:

A

B

Fig. 5. (A) IR/UV chiral SFG signals, Eq. 13, calculated for the pulse config-
urations displayed in Fig. 4 B and C (in blue and orange respectively). (B)
Corresponding total incoming field polarization temporal profiles (Left: Fig.
4 B, Right: Fig. 4C).
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A

B

C

Fig. 6. Chiral correlation functions probed by UV/X-ray SFG signals. (A) L-
tryptophan chiral correlation function �M(!,!1). (B) Field chiral correlation
function computed with the following parameters: !1 = 5.5 eV, !2 =
287.9 eV, !LO = 293.4 eV, �1 = 0.5 eV, �2 = �LO = 1. eV, E1 = E2 = ELO = 1
au. (C) Field chiral correlation function computed with polychromatic chiral
fields using the following parameters for E1 (!1a = 5.5 eV, !1b = 6.1 eV,
�1a = �1b = 0.5 eV, E1a = 1 a.u., E1ba = −0.75 a.u.), for E2 (!2a = 287.6
eV, !2a = 287.2 eV, �2a = �2b = 1 eV, E1a = 1 a.u., E1ba = 1.9 a.u.), for ELO
(!LO,a = 293.1 eV, !LO,b = 294 eV, �LO,a = �LO,b = 1 eV, ELO,a = 1 a.u.,
ELO,b = 0.5 a.u.). Pulse energies are normalized.

�(2)
M (!,!1) =

∑
ce

�gc · (�ce × �eg)
(!− !cg + iΓcg)(!1 − !eg + iΓeg)

,

[15]

where e and c label the valence- and core-excited states,
respectively.

As done above, two field chiral correlation functions are
considered. As for the IR/UV SFG, the first configuration
considered is constructed from a single Gaussian envelope for
each of the pulses. The corresponding chiral field correlation
function and parameter is shown in Fig. 7B. For the second field
configuration, displayed in Fig. 7C, each pulse is built by a sum
of two Gaussian pulses. The UV/X-ray SFG signals are finally
displayed in Fig. 6 A and B. Similar to the IR/UV case, the
amplitude of the signal with an improved beam configuration in
Fig. 6B is larger than when a single Gaussian pulse is used in Fig.
6A. The use of shaped pulses increases the signal amplitude by
2 compared to simple Gaussian pulses. The frequency-dispersed
local oscillator allows targeting a desired spectral feature, while
frequency-integrated signals could take advantage of a better
overlap between field and matter chiral pseudoscalars over a
broader spectral range. The latter strategy can provide a larger
chiral signal enhancement but requires more complex temporal
polarization profiles than can be achieved using optimal control
feedback loop (50).

3.4. Probing Excited-State Charge Migration by Time-Domain
�(4). The ultrafast SFG process discussed above starts with a
molecule in its electronic ground state. The spectral profiles
can be shaped with various degrees of complexity to maximize

Fig. 7. UV/X-ray chiral SFG signals, Eq. 13, calculated for the pulse configu-
rations displayed in Fig. 7 and c (in blue and orange, respectively). The second
pulse configuration has been selected to maximize the feature at 293 eV.

the overlap between the field and the matter chiral correlation
functions. These concepts are quite general and can be applied
to molecules experiencing electronic or nuclear dynamics. As
an example, we now turn to a �(4) signal, in which the first
two interactions correspond to an actinic excitation that induces
a charge migration in the L-tryptophan molecule. The process
is then probed by a UV + X-ray SFG signal after a delay T .
As higher-order signals are considered, the number of pulse
parameters and matter transition dipoles involved is increased.
Note that this �(4) is actually a second-order process with respect
to the probe pulses.

To simplify the discussion, we consider a pulse configuration
in which only two interaction pathways are resonant and obey the
phase-matching condition, as shown in the diagrams of Fig. 8.
The two interactions with the actinic pump pulse Ep are denoted
by the label p and leave the molecule in a |e〉〈e′| coherence. Then,
the pulses Ev, Ex, and ELO achieve the UV + X-ray process. ELO
is the local oscillator that has a central frequency in the X-ray
regime.

The signal involves five-point correlation functions given by a
sum over the diagrams in Fig. 8 A and B:

S(4)(!, T ) =
∑
�=a,b

S(4)
� (!, T ), [16]

A B

p
p

v

p
p

x

LO

v

x

LO

Fig. 8. Ladder diagrams for �(4) signals, Eq. 16. These diagrams represent
an SFG process starting from an electronic excited state population or
coherence. Diagrams (A) and (B) correspond to the IR+optical and the
optical+X-ray techniques, respectively.
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Fig. 9. Charge migration in L-tryptophan triggered by a Gaussian pump pulse Ep with central frequency !p = 6 eV and spectral bandwidth �p = 0.9 eV. (A)
Isosurfaces representing the difference charge density 〈�(r, T)〉 − 〈�(r,0)〉. (B–D) represent the time evolution coefficients of the populations cee, ground to
valence coherence ceg , and excited state contributions respectively; see Appendix 5.1.

where � indicates the two diagrams in Fig. 8. The multipoint
correlation functions associated to S(4)

a (!, T ) and S(4)
b (!, T )

are detailed in Appendix 5.3. The signal can be recast as sum of
overlap integrals over the interaction pathways:

S(4)(!, T ) = −
2

30ℏ5 Im
∫

d!4

2�
...
d!1

2�

×

∑
�
�(4,�),ijklm
M (!4,!3,!2,!1)I

(5)
ijklm,abcde

× �(4,�),abcde
F (!, T ;!4,!3,!2,!1), [17]

where the field and matter chiral response functions are given in
Appendix 5.3.

Formally, the signal in Eq. 17 is similar to the one given
in Eq. 13 but involves additional pulses that can be shaped to
maximize the overlap integral. Here, we restrict the discussion to
a simple case in which each pulse is Gaussian with the following
central frequencies: !p = 6 eV, !v = 2 eV, !x = 280.9 eV,
and !LO = 288 eV. The spectral bandwidths are chosen to be
�p = 0.9 eV, �v = 0.3 eV, �x = 2 eV, and �LO = 2 eV. The
electronic dynamics triggered by the pump pulse Ep leads to the
charge migration displayed in Fig. 9. Charge migration has been
the focus of multiple studies recently (51–54). These studies often
focus on the charge migration following a sudden ionization.
Here, we consider a charge migration perturbatively driven by a
UV actinic pulse. The charge density dynamics is displayed in
Fig. 9A. The time-evolving charge density is obtained as sum-
over-states using the density matrix perturbed up to second-order
in the UV pulse. The corresponding coefficients are displayed in
Fig. 9 B–D and their expressions are detailed in Appendix 5.1.
The electronic dynamics is mostly localized in the tryptophan
aromatic ring and behaves like a ring current (55). In aromatic
achiral compounds, ring currents could be created by a circularly
polarized actinic pulse and S(4)(!, T ) could be a sensitive
probe.

The molecule evolves freely for a delay T and is finally
probed by the coincident Ev, Ex, and ELO pulses. The resulting
S(4)(!, T ) is displayed in Fig. 10A. The beating between the
coherence |e1〉〈g|, |e2〉〈g| and |e2〉〈e1| can be observed by the
change in relative intensities of the peaks in the 286 to 288 eV
region.

4. Conclusions

The use of broadband polarization-shaped pulses offers numerous
opportunities to 1) maximize a given chiral-sensitive signal and
2) characterize the matter chiral correlation function. Even-
order nonlinear spectroscopic techniques are excellent candi-
dates for this approach because they already possess strong
sensitivity to molecular chirality. The absence of higher-order
multipoles guarantees that the signals are not buried under
a strong achiral background. To design such signals, it is
imperative to generate a field pseudoscalar from the field
correlation function, which is only possible if the different
field polarizations are not coplanar. For ultrashort pulses, this
field pseudoscalar depends on the frequency variables and does
not necessarily match the matter chiral response. This can
potentially erode the chiral response when multiple eigenstates
are contributing to the signal, which is typically the case when
broadband ultrashort pulses are used. Pulse shaping offers a
promising way to overcome this issue by maximizing the chiral
response. This is achieved by closely matching the field and
matter chiralities in the time domain. Alternatively, if the
system eigenstates are not known, an experimental maximization
of the chiral nonlinear signals via an optimization learning
protocol would allow to map the chiral molecular correlation
function.

While three-wave-mixing spectroscopies have been carried
out for decades in the optical regime (12), five-wave-mixing
experiments in chiral ensemble are less common. Nonetheless,
they have been demonstrated to be achievable and sensitive to
molecular chirality (56–59). The present approach is applicable

PNAS 2024 Vol. 121 No. 23 e2402660121 https://doi.org/10.1073/pnas.2402660121 7 of 11
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A B

Fig. 10. (A) S(4)(!, T) signal, Eq. 17, monitoring the charge migration in
L-tryptophan displayed in Fig. 9. (B) Slices of S(4)(!, T) are fixed delays T .

to most chiral-sensitive spectroscopies, as long as they can be
recast as a product of field and matter chiral pseudoscalars.

The proposed schemes can be implemented in the optical
regime using recent progress in polarization pulse shaping
(60–62). In the infrared, a careful design of the pulses and
sample geometry is required to avoid potential artifacts (63).
The temporal control of polarization usually relies on two-
layer spatial light modulators (60) to shape independently
orthogonal polarization component of a single ultrashort pulse.
Intricate polarization profiles have been designed to optimize the
ionization yield of a diatomic molecule (61). In the X-ray regime,
the control of pulses polarization is more challenging, but recent
demonstrations are showing the feasibility of polarization pulse
shaping at seeded FELs (64).

Future directions will include the implementation of closed-
loop pulse shaping approaches in which the spectral profile
of each incoming polarization component is varied with the
maximization of the nonlinear signals as an optimization target.
Extensions in the context of nontrivial dynamics involving
realistic relaxation models or nuclear dynamics are also an
exciting avenue. Finally, the mapping of the molecular chiral
correlation functions associated with various techniques provides
a wealth of spectroscopic information. Applications to different
molecular systems will allow determining how structural and
dynamical insights can be gained from optimized ultrafast chiral
techniques.

5. Materials and Methods

5.1. Perturbative Description of Charge Migration. Charge migration
following the actinic pulse discussed in Section 3.4 is treated perturbatively
at the second order. The motion of charge within the molecule is defined as the
difference of charge densities of the photoexcited and ground state molecule:

Δ�(r, t) = 〈�(r, t)〉 − 〈�(r, 0)〉, [18]

where 〈�(r, 0)〉 = �gg(r) and

〈�(r, t)〉 = Tr
[
�(r)�(t)

]
=
∑
ee′

�e′e(t)�ee′(r). [19]

The interaction pathways in Liouville space contributing to the charge density
expectation value up to second order in the incoming field are displayed in
Fig. 11.

Since the charge densities matrix elements are symmetric �ee′(r) =
�e′e(r), the density matrix can be summed over symmetric pairs to use
only real coefficients. For example, for the first-order perturbation terms, we
have:

�(1)
eg (t)�ge(r)+�

(1)
ge (t)�eg(r) = (�(1)

eg (t)+�(1)
ge (t))�eg(r) = ceg(t)�eg(r),

[20]

Fig. 11. Ladder diagram for the density matrix elements up to a second-
order perturbation in the actinic field, triggering a charge migration.

where we have defined ceg(t) = �(1)
eg (t) + �(1)

ge (t) = 2Re(�(1)
eg (t)).

The perturbative expansion of the charge density difference is then given by:

Δ�(r, t) = cgg(t)�gg(r) +
∑

e
ceg(t)�eg(r) +

∑
e

cee(t)�ee(r)

+
∑
ee′

e>2,e′>e

cee′(t)�ee′(r), [21]

where we have explicitly separated the second-order ground state contribution,
the first-order ground to valence coherence (eg) contribution, and the second-
order population (ee) and coherence (ee′) contributions in the valence excited
states.

We now provide explicit expressions for the density matrix elements:

�(1)
eg (t) =

(
−

i
ℏ

) ∫ +∞

0
dt1

(
− �eg · E(t − t1)

)
e−i!egt1−Γegt1 ,

[22]

�(2)
gg (t) = 2Re

(
−

i
ℏ

)2 ∑
e

∫ +∞

0
dt2dt1 �eg · E

∗(t − t2)

× �eg · E(t − t2 − t1)e−i!egt1−Γegt1 , [23]

�(2)
ee (t) = −2Re

(
−

i
ℏ

)2 ∑
e

∫ +∞

0
dt2dt1

(
�eg · E

∗(t − t2)
)

×

(
�eg · E(t − t2 − t1)

)
e−i!egt1−Γegt1 e−Γeet2 , [24]

�(2)
ee′ ,e6=e′(t) = −

(
−

i
ℏ

)2 ∑
e

∫ +∞

0
dt2dt1[

�e′g · E
∗(t − t2) �eg · E(t − t2 − t1)e−i!eg t1−Γeg t1 e−i!ee′ t2−Γee′ t2

+ �eg · E(t − t2) �e′g · E
∗(t − t2 − t1)ei!e′g t1−Γe′g t1 e−i!ee′ t2−Γee′ t2

]
.

[25]

In the main text, the pump pulse is assumed to have Gaussian envelope in
the frequency domain. Its expression and corresponding temporal profile are
given by:
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E(!) = E e
−

(!−!p)2

2�2
p , [26]

E(t) = E
�
√

2�
e−

�2
2 t2

e−i!pt. [27]

Finally, the c coefficients for the charge migration treated perturbatively at
second order are given by:

ceg(t) = −
2
ℏ
�p
√

2�
�eg · E Re

∫ +∞

0
dt1 e−

�2
p

2 (t−t1)
2

ei(!p−!eg+iΓeg)t1 e−i!pt , [28]

cgg(t) = −
�2

p

�ℏ2

∑
e
|�eg · E|

2Re
∫ +∞

0
dt2dt1 e−

�2
p

2 (t−t2)
2

e−
�2

p
2 (t−t2−t1)

2
ei(!p−!eg+iΓeg)t1 , [29]

cee(t) =
�2

p

�ℏ2
|�eg · E|

2Re
∫ +∞

0
dt2dt1 e−

�2
p

2 (t−t2)
2

e−
�2

p
2 (t−t2−t1)

2
ei(!p−!eg+iΓeg)t1 e−Γeet2 , [30]

cee′(t) =
�2

p

�ℏ2
�eg · E �e′g · E Re

∫ +∞

0
dt2dt1e−

�2
p

2 (t−t2)
2

e−
�2

p
2 (t−t2−t1)

2
e−i!ee′ t2−Γee′ t2

(ei(!p−!eg+iΓeg)t1 + ei(−!p−!e′g−iΓe′g)t1). [31]

5.2. The Lineshape Function. When using broadband Gaussian pulses or
shaped pulses made of multiple Gaussian pulses, the following integral appears
repeatedly in the signal expressions:

I =

∫
−∞

−∞

d!
2�

e
−

(!−!̄)2

2�2 e−i!t

!− !eg + iΓeg
. [32]

This integral can be calculated as follows:

I = FT−1
[

e
−

(!−!̄)2

2�2 1
!− !eg + iΓeg

]
(t) [33]

= FT−1
[

e
−

(!−!̄)2

2�2
]
∗ FT−1

[ 1
!− !eg + iΓeg

]
(t) [34]

=
[ �
√

2�
e−

�2
2 �

2
e−i!̄�

]
∗

[
− i�(�)e−i!eg�−Γeg�

]
(t) [35]

= −i
�
√

2�

∫
−∞

−∞

d� �(t − �)e−
�2
2 �

2
e−i!̄�e−i!eg(t−�)−Γeg(t−�),

[36]

where FT−1 stands for the inverse Fourier transform, ∗ for the convolution
product and �(�) is the Heaviside function. Finally, the last expression can be
carried out analytically and gives:

I = −
i
2

e−i!egt−Γegte
1

2�2 (Γeg+i(!eg−!̄))2

erfc
(Γeg − �2t + i(!eg − !̄)

√
2�

)
. [37]

This last expression can be used to compute efficiently signals presented in
the article. Even when multidimensional integrals are required, for example for
�(4) signals, numerical evaluations on a grid can be simplified by carrying one
of the integrals analytically with this result.

5.3. Contributions to S(4)(!, T). The two contributions are given by:

S(4)
a (!, T) = −

2

ℏ5
Im
∫

d!4
2�

d!3
2�

d!2
2�

d!1
2�

�(!− !4 − !3 + !2 − !1)I(5)
ijklm,abcdeEa∗

LO(!)Eb
x (!4)Ec

v(!3)

Ed,∗
p (!2)Ee

p(!1)ei(!2−!1)T
× 〈�i

LG(!4 + !3 − !2 + !1)

�j
LG(!3 − !2 + !1)�

k
LG(−!2 + !1)�

l
RG(!1)�

m
L 〉, [38]

S(4)
b (!, T) = −

2

ℏ5
Im
∫

d!4
2�

d!3
2�

d!2
2�

d!1
2�

�(!− !4 − !3 − !2 + !1)I(5)
ijklm,abcdeEa∗

LO(!)Eb
x (!4)Ec

v(!3)

Ed
p(!2)Ee,∗

p (!1)e−i(!2−!1)T
× 〈�i

LG(!4 + !3 + !2 − !1)

�j
LG(!3 + !2 − !1)�

k
LG(!2 − !1)�

l
RG(−!1)�

m
L 〉. [39]

The rotational averaging of rank 5 tensors is carried out by I(5)
ijklm,abcde (65).

Unlike I(3)
ijk,abc = 1

6 �ijk�abc which is constructed from a single product, the

I(5)
ijklm,abcde is made of 10 isomers:

I(5)
ijklm,abcde =

1
30

(
�ijk�lm�abc�de + �ijl�km�abd�ce + �ijm�kl�abe�cd

+ �ikl�jm�acd�be + �ikm�jl�ace�bd + �ilm�jk�ade�bc

+ �jkl�im�bcd�ae + �jkm�il�bce�ad + �jlm�ik�bde�ac

+ �klm�ij�cde�ab

)
. [40]

The 10 terms in I(5)
ijklm,abcde are not linearly independent and can be reduced to

6 using the irreducible tensor algebra (66). This means that signals of order 2n

with n > 1 may not generally be recast as a simple overlap integral like S(2)
SFG,

Eq. 13, but rather as a sum of overlap integrals of the various matter and field
rotational invariants. The coupling between the six linearly independent SO(3)
invariants and the rotationally averaged sum-over states �(4) expressions can
be explicitly analyzed using representation theory techniques. The SO(3) action
on the space V⊗5

1 of rank 5 tensors natural extends to the action of SO(3)× S5,
with the latter being the symmetric group of permutations of 5 objects. The
aforementioned six-dimensional space of SO(3)-invariants can be viewed as
the space of an irreducible representation of S5, labeled by the Young tableaux
(3,1,1).Thediagonalcouplingbetweenthefieldandmatter invariants isachieved
via choosing an orthonormal basis set in the space of the (3,1,1) representation
of S5. This point will be addressed elsewhere.

In the S(4)
b (!, T) signal presented here, the first two interactions involve the

same pulse Ep, chosen to be linearly polarized. The polarization of pulses
Ev, Ex, and ELO are chosen to be polarized along the z, y, and x axes,
respectively. This greatly reduces the number of rotational invariants to three,
obtained by the contraction with (1/30)(�ijk�lm�abc�de + �jkl�im�bcd�ae +

�jkm�il�bce�ad). The corresponding field invariants are ELO · (Ex × Ev)|Ep|
2,

Ex · (Ev × E∗p)ELO · Ep and Ex · (Ev × Ep)ELO · E
∗
p . These field invariants

are similar to the ones discussed by Ayuso et al. (24) and that they denote
as h(5).
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In the main text, Eqs.38 and39 can be further simplified using the following
definitions:

�(4,a)
F (!, T;!4,!3,!2,!1) = Ea∗

LO(!)Eb
x (!4)Ec

v(!3)

Ed,∗
p (!2)Ee

p(!1)ei(!2−!1)T�(!− !4 − !3 + !2 − !1), [41]

�(4,b)
F (!, T;!4,!3,!2,!1) = Ea∗

LO(!)Eb
x (!4)Ec

v(!3)

Ed
p(!2)Ee,∗

p (!1)e−i(!2−!1)T�(!− !4 − !3 − !2 + !1). [42]

The matter chiral response functions are given by:

�(4,a)
M (!4,!3,!2,!1) =

∑
ee′fc

�i
e′c�

j
cf�

k
fe�

l
e′g�

m
egIce′(!4 + !3 − !2

+ !1)Ife′(!3 − !2 + !1)Iee′(−!2 + !1)Ieg(!1), [43]

�(4,b)
M (!4,!3,!2,!1) =

∑
ee′fc

�i
e′c�

j
cf�

k
fe�

l
eg�

m
e′gIce′(!4 + !3

+ !2 − !1)Ife′(!3 − !2 − !1)Iee′(!2 − !1)Ige′(−!1), [44]

where Iab(!) = 1/(!− !ab + iΓab).

Data, Materials, and Software Availability. Mathematica notebook and
transition dipoles data have been deposited in Zenodo (https://zenodo.org/
records/11068977) (67). All other data are included in the main text.
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