
PNAS  2024  Vol. 121  No. 27 e2409257121 https://doi.org/10.1073/pnas.2409257121 1 of 8

RESEARCH ARTICLE | 

Significance

Unraveling dynamic protein 
structures from two- dimensional 
infrared (2DIR) spectral signals 
presents a formidable task. By 
utilizing machine learning, we 
have correlated the intricate 2DIR 
spectroscopic features with the 
protein dynamic conformations, 
thereby tracing changes of 
secondary structure content 
along protein folding trajectories. 
This pretrained model facilitates 
universal transfer learning across 
diverse protein folding 
trajectories, offering valuable 
insights into the dynamic 
behavior of proteins and their 
biological function.
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Dynamic protein structures are crucial for deciphering their diverse biological func-
tions. Two- dimensional infrared (2DIR) spectroscopy stands as an ideal tool for tracing 
rapid conformational evolutions in proteins. However, linking spectral characteristics to 
dynamic structures poses a formidable challenge. Here, we present a pretrained machine 
learning model based on 2DIR spectra analysis. This model has learned signal features 
from approximately 204,300 spectra to establish a “spectrum- structure” correlation, 
thereby tracing the dynamic conformations of proteins. It excels in accurately predicting 
the dynamic content changes of various secondary structures and demonstrates universal 
transferability on real folding trajectories spanning timescales from microseconds to mil-
liseconds. Beyond exceptional predictive performance, the model offers attention- based 
spectral explanations of dynamic conformational changes. Our 2DIR- based pretrained 
model is anticipated to provide unique insights into the dynamic structural information 
of proteins in their native environments.

ultrafast spectroscopy | protein dynamics | machine learning

Protein structures are pivotal for elucidating their diverse biological functions. Significant 
experimental advancements have been made in the determination of protein structure (1–3). 
In recent years, AI has shown promising success in determining the lowest- energy state of 
proteins (4–18). Tools like AlphaFold2 (4, 5) and RoseTTAFold (6) can predict the 
three- dimensional structures of proteins from their amino acid sequences, while the inte-
gration of message passing neural network (MPNN) supplements the predictive capability 
of protein assemblies (8). The latest generative models can sample a broad variety of protein 
structures based on desired properties (13–16). These advancements have deepened our 
understanding of the lowest- energy static protein structures. Given that the dynamic char-
acteristics of proteins ultimately shape their biological functions (19), integrating confor-
mational dynamics information into machine learning (ML) training is therefore crucial for 
identifying dynamic protein structures that are relevant to biological processes (20–22).

Optical signals offer a unique window into protein dynamic responses. Two- dimensional 
infrared (2DIR) spectroscopy, based on femtosecond pulse sequences, has proven to be a 
powerful tool for determining protein structure and provides snapshots of protein folding 
events (23–30). However, unraveling dynamic protein structures from a series of 2DIR spectra 
present a formidable task, which typically requires days or weeks of manual analysis by a 
trained expert. Recent efforts in applying ML methods to extract structural information from 
spectroscopic signals (31–35) have paved the way for the potential of tracing protein dynamics. 
Therefore, it is imperative to develop data- driven ML protocols for automatically establishing 
correlations between protein 2DIR spectra and their dynamic conformations.

Here, we introduce a ML pretrained model utilizing the state- of- the- art transformer archi-
tecture (36), which effectively learns the signal features from 2DIR spectra and establishes a 
“spectrum- structure” correlation, thereby enabling the prediction of dynamic contents of 
various secondary structures in proteins. After being pretrained on approximately 204,300 
simulated 2DIR spectra, the model shows exceptional transferability to real protein folding 
trajectories covering timescales from microseconds to milliseconds. Beyond its universal pre-
dictive power, this model also allows one to obtain signal interpretation for structure identi-
fication from the original spectra through attention maps. By tracing conformational changes 
in protein dynamics via 2DIR spectroscopy, this model can provide critical insights into the 
dynamic behavior of proteins and their biological function.

Results

Overall Schematic and ML Model Architecture. Our experimental workflow, illustrated 
in Fig. 1A, encompasses “construction of the 2DIR spectra dataset,” “pretraining of the 
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model,” and “transfer learning to protein folding trajectories,” 
all structured in a straightforward hierarchy. The 2DIR spectra 
pretraining dataset is generated by simulations, with detailed 
steps shown in Fig. 1B. We extracted 4,086 distinct homologous 
superfamily protein structures from the Orengo et al. developed 
CATH database, version 4.3 (37). The complete file index used 
in this study is available in SI  Appendix. To capture dynamic 
information, 50 snapshots were taken for each trajectory at  
1- ns intervals following molecular dynamics (MD) equilibrium, 
yielding a total of 204,300 protein conformations. The 
Hamiltonians for each protein conformation within the amide 
I spectral window were derived using semiempirical vibrational 
spectroscopic maps (38, 39), and the 2DIR signals were simulated 
employing the NISE code developed by Jansen et al. (40, 41). The 
contents of different secondary structures, including helix, strand, 
and coil were determined by utilizing the Stride program (42). The 
combined 2DIR spectra and secondary structure content formed 
the pretraining dataset.

The detailed architecture of our model is shown in Fig. 1C, 
based on the Vision Transformer (36). The 2DIR signals used for 
learning span the 1,575 to 1,725 cm−1 spectral window, where the 
horizontal and vertical axes correspond to coherence and detection 
frequency, respectively. Each spectrum is converted into a 224×224 
matrix, segmented into 16×16 small patches, and subsequently 
flattened for model input. The position embeddings and an extra 
learnable regression [RGS] token to estimate the secondary 

structure contents were incorporated. The Transformer Encoder 
is composed of 12 alternating sets of multiheaded self- attention 
(MSA) layers and multilayer perceptron (MLP) layers, with 
pre- layernorm (LN) technique (43, 44) being utilized. The [RGS] 
token, as the output from the Transformer Encoder, is assumed 
to capture the essential spectral features of the 2DIR signal. It then 
proceeds through a MLP layer to predict the secondary structure 
contents of protein conformations.

The notable advantage of the pretrained model lies in its capa-
bility to show good predictive performance on entirely new, unseen 
datasets. In Transfer Learning at the bottom of Fig. 1A, the profi-
ciency of our model in predicting the dynamic secondary structure 
contents during the reversible folding processes of Trp- cage and 
WW domain proteins serves as an illustrative example. The trans-
ferability to the folding trajectories of α3D and ubiquitin proteins 
will be demonstrated in the following. Additionally, the attention 
weights from the MSA layer can be extracted for visualization, 
showcasing which regions of the 2DIR spectra are most significant 
when predicting the contents of various secondary structures.

Pretraining Results on the CATH Dataset. The pretraining task is 
pivotal for determining the performance of the ensuing transfer 
learning process. During this phase, the model has to be trained on 
a vast and varied dataset to assimilate the intricate signal patterns 
and features of 2DIR spectra. Within our spectral dataset of 
204,300 entries, 20% was allocated as a validation set, and 50 to 

Fig. 1.   Comprehensive workflow to predict dynamic protein secondary structures. (A) The overall experimental sequence flows from top to bottom, encompassing 
construction of the 2DIR spectra dataset, pretraining of the model, and transfer learning to protein folding trajectories. The CHelix of Trp- cage and the CStrand of 
WW domain respectively represent the contents of helices and strands within the overall secondary structure, expressed as a percentage. (B) For the pretraining 
dataset, protein entries underwent MD equilibration before each snapshot was taken to simulate 2DIR spectra and quantify secondary structure contents. (C) 
Detailed architecture of the ML model.D
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80% was employed as a training set to determine the minimum 
data amount required. Our findings suggest that utilizing at 
least 75% of the training set is necessary to achieve satisfactory 
prediction results, with a coefficient of determination (R2) of 0.98 
and a root mean squared error (RMSE) of 1.87 (SI Appendix, 
Fig.  S1). The model has the capacity to concurrently predict 
the contents of three secondary structures for a single protein 
conformation. The error distribution of the validation set depicted 
in SI Appendix, Fig. S2 shows that the mean absolute error (MAE) 
for 96.54% of the predictions falls below 3.00. CHelix, CStrand, and 
CCoil are represented as the content of the corresponding secondary 
structures, namely helix, strand, and coil. When examining the 
specific predictive contents for each secondary structure, as 
illustrated in the scatter plot of Fig. 2A, the R2 value of helix, strand, 
and coil are 0.99, 0.98, and 0.98, respectively. Meanwhile, their 

RMSE are 1.51%,1.89%, and 1.71%, respectively, demonstrating 
the robust regression performance of the model.

To investigate the ability of the model to predict the dynamic 
content changes of secondary structures, we selected a total of 30 
entries based on the protein molecular weight distribution in the 
CATH database. A 100- ns MD simulation was then performed, 
extending the initial 50- ns trajectory. The changes in secondary 
structure content over time were counted and the 2DIR spectra 
were calculated. As shown in SI Appendix, Fig. S3, the three major 
structural classes of proteins (mainly helix, mainly strand, and 
mixed helix/strand) in the database mostly contain about 20 to 
200 amino acid residues. Thus, taking the mainly helix class as an 
example, for proteins with ≤200 amino acid residues, we began 
with a 20- residue protein and subsequently selected one every 30 
residues, reaching a total of seven protein structures. For proteins 

Fig. 2.   Pretraining results on the CATH dataset. (A) Sequential scatter plots showing predictions for helix, strand, and coil contents, arranged from left to right. 
(B) Predictions for the dynamic secondary structure contents across three classes of protein trajectories: “mainly helix,” “mainly strand,” and mixed “helix/strand.”D
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with more than 200 amino acid residues, we chose three proteins 
with about 250, 300, and 350 residues, to ensure a diverse and 
representative sampling from the original database. In Fig. 2B, for 
the three classes of proteins comprising approximately 80 to 170 
amino acid residues, the pretrained model precisely predicts the 
dynamic content changes of the secondary structures, achieving 
an R2 value of at least 0.95. From the complete predictions for the 
30 trajectories depicted in SI Appendix, Fig. S4, there is an overall 
decreasing trend in the predictive performance of the model as 
the number of residues is incrementally raised from ~20 to 350, 
which is correlated with the overlap of the oscillator signals in the 
2DIR spectra (45). Notably, even for the trajectory of a protein 
with up to 382 residues (CATH ID: 5o6hA00), the model still 
maintains good predictions with an R2 value of at least 0.91. These 
findings demonstrate the effectiveness of our pretrained model in 
capturing the intricacies of 2DIR spectra, enabling it to provide 
accurate and reliable predictions on the secondary structure con-
tent of corresponding protein conformations.

Transfer Learning for Tracing Protein Folding Trajectories. In 
the previous section, the spectrum- structure dataset constructed 
through MD simulations is confined to the nanosecond scale due 
to computational constraints. However, protein folding processes 
typically occur over the microsecond to millisecond timescale (46, 
47). The potential of our pretrained model to successfully transfer 
to datasets with broader timescales will thus be most valuable. As 
shown in Fig. 3, the reversible folding trajectories of four proteins 
with distinct secondary structure characteristics, simulated on 
the Anton supercomputer (48, 49), were utilized to evaluate the 
transferability of our model. Specifically, Trp- cage (PDB ID: 2JOF) 

and α3D (PDB ID: 2A3D) contain only helices, WW domain (PDB 
ID: 2F21) consists solely of strands (50), and ubiquitin (PDB ID: 
1UBQ) features a mixture of both (51). For each complete folding 
trajectory, approximately 10,000 conformations were harvested at 
equal time intervals. The first 40% of this dataset was allocated for 
fine- tuning to update the pretrained weights, and this portion was 
randomly divided into training and validation sets in a 9:1 ratio. The 
remaining 60% served as the test set to verify transfer performance. 
The correlation curves between the predictive performance and the 
amount of fine- tuning data in the training set for different proteins 
are detailed in SI Appendix, Fig. S5 and Table S1.

For the Trp- cage folding trajectory in Fig. 3A, the prediction 
results of the test set start at 80 μs (see SI Appendix, Fig. S6 for 
the complete folding trajectory). Here, high or low variations 
in the helix content, correspond to the Trp- cage protein in a 
folded or unfolded state, respectively. Alternating folding and 
unfolding events can be clearly observed within the predicted 
120- μs trajectory. The pretrained model, which was not 
fine- tuned using any 2DIR spectra, had an R2 value of only 0.92 
on the validation set. The predictive accuracy improves with the 
increasing amount of feeding data. Notably, when the amount 
of data reaches ~1800, an optimal performance is achieved, with 
R2 value equals to 0.98 (SI Appendix, Fig. S5A). We highlighted 
five characteristic conformations marked by significant helix 
content variations and zoomed in to display the prediction 
details at surrounding times. These results reveal that our model 
can precisely trace the dynamic secondary structure content 
changes of Trp- cage along its folding process. The helices of the 
shown conformations are colored in red to enhance the visual 
representation, whereas the tertiary structures were not 

Fig. 3.   Transfer learning results of protein folding trajectories simulated on the Anton supercomputer. Panels (A), (B), (C), and (D) correspond to the prediction 
results of Trp- cage, α3D, WW domain, and ubiquitin, respectively. In each panel, we highlight five conformations with significant changes in secondary structure 
contents, labeled t1–t5, and further display prediction details at surrounding times.D
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predicted. The α3D protein, similar to Trp- cage in containing 
only helices, possesses about three times the number of amino 
acid residues, leading to more complex 2DIR signals. At the 
same time, folding and unfolding events are less frequent within 
the prediction time span (Fig. 3B), increasing the prediction 
challenge. However, even without fine- tuning, the model pro-
vides an R2 value of 0.84. Increasing the fine- tuning data to 
~3,000 led to satisfactory predictions, with R2 value reaching 
0.97 (SI Appendix, Fig. S5B). The WW domain primarily con-
sists of strand- type secondary structures. The 2DIR spectral 
features associated with strands were effectively captured during 
the previous pretraining step, facilitating quite a smooth transfer 
learning process. The R2 values before and after fine- tuning were 
0.90 and 0.98, respectively, with a fine- tuning data usage of 
~2,400 (Fig. 3C and SI Appendix, Fig. S5C). Ubiquitin, widely 
found in eukaryotic cells, has 76 amino acid residues and fea-
tures both helix and strand secondary structures. Fig. 3D shows 
that our fine- tuned model can accurately predict the helices and 
strands content changes for each conformation throughout the 
folding process. Upon using nearly all of the spectra from the 
training set, the R2 value increased from 0.85 to 0.97 
(SI Appendix, Fig. S5D). It is noteworthy that the CHARMM22* 
force field slightly underestimates the stability of helices in the 
folded state of ubiquitin (52), leading to a greater variance in 
helix content compared to the strand. After the model was pre-
trained on a vast and varied spectral dataset to optimize its 
weights, only a minimal amount of additional data was required 
for fine- tuning to achieve exceptional predictive accuracy on 
entirely new datasets. Please note that for these four trajectories, 
training the same model from scratch resulted in the R2 values 
of only 0.71, 0.67, 0.67, and 0.63, respectively (SI Appendix, 
Table S1). We thus believe that this pretrained model can facil-
itate universal transfer learning for predicting the dynamic 

secondary structure content changes of protein trajectories. The 
code and weights files of our model are freely accessible on our 
GitHub repository (53) (https://github.com/SaintCloud-  
0013/2DIR- ML), and future downloads and verifications are 
highly appreciated.

Attention- Based Interpretation of Spectral Signals. Beyond its 
universal transfer learning capability, our model offers a significant 
advantage by providing visual interpretations on the original 
spectra for its prediction results. By analyzing the attention 
maps corresponding to different secondary structures, we gain 
insights into the characteristic regions of 2DIR spectra that the 
model focuses on when making predictions. After integrating 
the attention weights across all the MSA layers (54), Fig.  4 
provides the digital interpretation of the model for ubiquitin 
conformations during its folding process. Sequentially displayed 
from top to bottom are the corresponding 2DIR spectra, helix 
attention maps, and strand attention maps. It is evident that 
the transition signals at different vibrational energy levels are 
effectively captured (in the 2DIR spectra, blue and red denote 
transitions of the vibrational quantum numbers v = 0 → 1 and 
v = 1 → 2, respectively). Both diagonal and off- diagonal (cross) 
peak regions contribute to the structure identification (33). 
There is a clear distinction in the attention distribution for the 
helix and strand. The model focuses primarily on the spectral 
region around 1,650 cm−1 for the helix, while for the strand, the 
attention is mainly on the region around 1,630 cm−1, with a minor 
contribution around 1,680 cm−1. This observation aligns with 
generally accepted understanding (55), suggesting that the model 
effectively captures the relevant features from the original 2DIR 
spectra during its learning process. In addition, we find that as 
the helix content increases, the corresponding attention undergoes 
a redshift, a similar redshift is noted with an increase in strand 

Fig. 4.   Attention maps of different secondary structures for ubiquitin conformations. The figure displays, from top to bottom, the conformations along the 
ubiquitin folding trajectory, followed by the corresponding 2DIR spectra, helix attention maps, and strand attention maps.D
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content, consistent with previous work (56–59). This attention- 
based spectral interpretation enhances the transparency of the 
ML black box, fostering greater trust in the pretrained model and 
making it more reliable and effective for practical applications.

Discussion

In summary, we have developed a pretrained ML model based 
on the state- of- the- art transformer architecture, which captures 
features of 2DIR spectra and establishes a spectrum- structure 
correlation. This facilitates a universal prediction of dynamic 
secondary structure content changes along protein trajectories. 
During the pretraining phase, about 204,300 2DIR spectra 
were used to optimize the model weights. The pretrained model 
demonstrates high fidelity in predicting helix, strand, and coil 
contents of protein conformations in the validation set, with 
coefficient of determination R2 values of 0.99, 0.98, and 0.98, 
respectively. Remarkably, in the transfer learning process, even 
without fine- tuning, the model still achieved fair R2 values over 
0.84 in predicting dynamic content changes for real folding 
trajectories of four typical proteins, namely Trp- cage, α3D, WW 
domain, and ubiquitin. Following a time- efficient and data- 
minimal fine- tuning step, R2 values reached satisfactory 0.98, 
0.97, 0.98, and 0.97, respectively, underscoring its universal 
transferability and high performance. Moreover, the model can 
provide an attention- based interpretation of spectroscopic sig-
nals by elucidating the dynamics of different secondary struc-
tures along protein trajectories. By using 2DIR spectroscopy to 
trace conformational structures during protein dynamics, this 
model can provide useful insights into the dynamic behavior of 
proteins in their biological functions. With the significant boost 
in computing power, the pretraining protocol detailed in this 
article should provide a powerful methodology for the protein 
dynamics community, and trigger the development and appli-
cations of ML models in related fields.

Materials and Methods

As described in the previous sections, 2DIR spectra can serve as a tool for tracing 
the dynamic conformations of proteins. However, extracting oscillator signals from 
these spectra and converting them into quantitative structural information pre-
sents a major challenge. Our aim is to establish a spectrum–structure correlation 

through ML, facilitating the prediction of protein secondary structure contents. 
Additionally, by leveraging pretraining techniques in combination with a vast 
and varied dataset, we strive to achieve universal transferability across various 
protein folding trajectories.

Dataset Construction. The 2DIR spectra used in both the pretraining and trans-
fer learning datasets were generated through simulations derived from protein 
PDB files. The computational protocol of these spectra is detailed below. The 
initial structures for constructing the pretraining dataset were sourced from the 
CATH database v4.3 (37), developed by Orengo et al. This database is organized 
according to the protein secondary structure categories. From it, we extracted 4,086 
distinct homologous superfamily protein structures using three major categories: 

“Mainly Alpha,” “Mainly Beta,” and “Alpha Beta.” The complete index of files can 
be found in SI Appendix. To capture the dynamic conformations, MD simulations 
were conducted for each protein using the Gromacs (60) software, with detailed 
settings provided below. For each trajectory, 50 snapshots were harvested at 1- ns 
intervals following the NVT and NPT equilibria. The entire pretraining dataset 
comprises a total of 4,086 × 50 = 243,000 spectra. The transfer learning dataset 
features protein reversible folding trajectories, simulated on the Anton super-
computer across timescales from microseconds to milliseconds. This collection 
encompasses structures such as the Trp- cage, α3D, WW domain, and ubiquitin. 
For each trajectory, we sampled approximately 10,000 conformations at equal time 
intervals to compute the 2DIR spectra. The secondary structure assignments for 
protein conformations were determined by calculating hydrogen bond energies 
(61) anrd mainchain dihedral angles from the atomic coordinates of the snapshots, 
using the Stride (42) program.
2DIR spectra simulations. We employed the Frenkel exciton Hamiltonian within 
the amide I spectral window:

Here, b†
i
 and bi represent the Bosonic creation and annihilation operators for 

individual peptide unit, respectively. ωi is the vibrational frequency of the local 
mode, Jij denotes the coupling between two local modes, and Δi refers to the 
anharmonicity. The frequency of an oscillator is calculated using the Skinner map 
(62), where the environment of the C and N atoms is considered:

� = �map +
∑

i

Pi,mapPi + (Ei,map ⋅ Ei ).

ωmap, Pi,map, and Ei,map are, respectively, the vibrational frequency, electric potential, 
and electric field, as predefined in the map. Pi and Ei were computed as follows:

P =
∑

j

qj

|rj|
,

 
Ex =

∑

j

qj

|rj|3
(rj ⋅ x̂).

Ex is the electric field in the x- direction, Ey and Ez can be calculated in a similar 
manner. Additionally, frequency shifts for each neighboring amide groups are 
incorporated based on Ramachandran angles (63).

The coupling between the neighboring and nonneighboring oscillators is 
determined through the transition charge coupling (TCC) (64) and glycine dipep-
tide (GLDP) methods (65), respectively:

 

The dipole moment of each oscillator was obtained from the relative positions 
between C, O, and N atoms (66):

� = 2.73(s − ((CO ⋅ s) +
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where ω1 and ω3 represent the frequencies of t1 and t3 after Fourier transfor-
mation, respectively. GB, SE, and EA represent the contributions from different 
Liouville space pathways, known as ground- state bleach, stimulated emission 
and excited- state absorption, respectively.
MD simulations. The protein PDB entries within the CATH database, were subjected 
to MD sampling using Gromacs 2018. In the aqueous environment, the all- atom 
OPLS- AA/L force field was utilized in combination with TIP3P water molecules, and 
Na+ or Cl− ions were used to balance the charge of the system. To avoid the influ-
ence of periodic images, the protein molecule was centrally positioned in a cubic 
box, ensuring at least 1.0 nm distance from the edges. A 50,000- step energy min-
imization was applied to eliminate steric clashes or inappropriate geometries. This 
was followed by two- phases NVT and NPT equilibration steps, each lasting 100 ps. 
Production dynamics was then performed for a period of 50 ns with a 2- fs timestep. 
The system was maintained at 373 K and 1 atmosphere using v- rescale Berendsen 
thermostat (67) and Parrinello–Rahman barostat (68), respectively. Fifty snapshots 
were collected every 1 ns along each production trajectory.

Model Architecture. In the 2DIR spectra, information on frequencies and cou-
plings of vibrational modes is stored in a contour plot with excitation frequency (ω1) 
and detection frequency (ω3) serving as the coordinate axes. A self- attention- based 
transformer is adopted to capture the features of these two- dimensional matrices. 
The model primarily consists of three components: segmented embeddings of 2DIR 
matrices, a backbone network of Transformer Encoder, and an MLP head for regression 
tasks. The input 2DIR signals covering the 1,575 to 1,725 cm−1 spectral window are 
resized to 224×224 matrices and then segmented into 16×16 small patches. Each 
patch is linearly embedded into the network, incorporating position embeddings and 
an extra learnable regression [RGS] token for numerical regression of the secondary 
structure contents. The Transformer Encoder comprises 12 alternating sets of MSA 
and MLP layers, with LN technique being utilized. The [RGS] token, processed by 
the Transformer Encoder, captures the essential spectral features of 2DIR signal. It 
then proceeds through an MLP layer to predict the secondary structure contents of 
protein conformations.

Pretraining and fine- tuning configurations. During the pretraining phase, 
we utilized the AdamW (69) optimizer, configured with a learning rate of 10−4 
and a weight decay of 10−2. The pretraining dataset was randomly divided 
into training and validation sets in an 8:2 ratio. The model was trained for 
100 epochs with a batch size of 256. A learning rate warmup strategy was 
implemented for the initial 5% of the total epochs, followed by a linear decay 
to zero for the remaining.

For the fine- tuning step, pretrained model weights are loaded to optimize 
for predicting specific protein folding trajectory. The optimizer and learning rate 
strategy are consistent with the pretraining step, and the weights across all layers 
are updated. The 2DIR spectra calculated from the first 40% snapshots of the 
complete folding trajectory were used to construct the fine- tuning dataset, which 
was randomly split into training and validation sets in a ratio of 9:1. The remaining 
60% is served as a test set to evaluate the performance of the fine- tuned model. 
Given the relatively small size of the dataset used for the fine- tuning, the model 
was trained with a batch size of 32 during 40 epochs.

Data, Materials, and Software Availability. Protein files with distinct second-
ary structure characteristics are available from the CATH database (37) (https://
www.cathdb.info/browse/tree). Protein folding trajectories are available from D. 
E. Shaw Research (50, 51) (https://www.deshawresearch.com/resources.html). 
Code is available at our GitHub repository (53) (https://github.com/SaintCloud- 
0013/2DIR- ML). All other data are included in the manuscript and/or supporting 
information.
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Fig. S1. Correlation between RMSE (left)/R2 value (right) and training data size 

during pre-training. The percentages on the x-axis represent the proportion of the training 

set size relative to the total dataset of 204,300. 
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Fig. S2. Error distribution of the validation set. (A) Mean absolute error (MAE) for 

predicted secondary structure contents of protein conformations. Panels (B), (C), and (D) 

correspond to the residual distributions for the predicted contents of helix, strand, and coil, 

respectively. 
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Fig. S3. Distribution of protein structures in the CATH databases, according to the 

number of amino acid residues. Panels (A), (B), and (C) correspond to the three major 

structural classes: “mainly helix”, “mainly strand”, and mixed “helix/strand”, respectively. 

It can be seen that a large proportion of proteins in the database consist of less than 200 

amino acid residues. 
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Fig. S4. Prediction results of dynamic secondary structure contents for protein 

trajectories in the CATH database. Panels (A), (B), and (C) correspond to the three 

major structural classes: “mainly helix”, “mainly strand”, and mixed “helix/strand”, 

respectively. In each column, the amino acid residues of the proteins increase from top to 

bottom. 
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Fig. S5. Correlation between transfer learning performance and fine-tuning data size 

across different protein folding trajectories. Panels (A), (B), (C), and (D) correspond to 

the predicted R2 values for the Trp-cage, α3D, WW domain, and ubiquitin systems, 

respectively. 
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Fig. S6. Complete protein folding trajectories simulated on the Anton supercomputer. 

Panels (A), (B), (C), and (D) correspond to the folding trajectories of Trp-cage, α3D, WW 

domain, and ubiquitin, respectively. In each trajectory, the area shaded in gray represent 

the training and validation sets, while the remaining is the test set. 
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Table S1. Transfer learning performance on protein folding trajectories simulated 

using the Anton supercomputer. 
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Data S1. (separate file) 

Protein entries used in the CATH database. 
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Protein entries used in the CATH database 

 

1a0rP02 1a9xA04 1af7A01 1aq5A00 1av1A00 1avoA00 1b25A03 1b3qA01 1bg1A01 1bgfA00 

1bhaA00 1bpoA02 1bvp101 1bvp103 1bzkA00 1c17M00 1c1kA02 1ciiA01 1cipA02 1cmbA00 

1colA00 1dc1A02 1dd3A01 1dd9A03 1dekA02 1dgwY01 1dk8A01 1dquA02 1dvkA00 1e1hB01 

1e5wA04 1e7lA02 1e7uA03 1ed1A00 1ehsA00 1ekeB02 1el6A01 1enwA00 1epuA03 1erdA00 

1euvA01 1ezjA01 1ezjA02 1f0lB02 1f1mA00 1f5nA01 1f6vA00 1ffyA03 1fjkA00 1fs0G02 

1g8eB00 1gaxA05 1gk9A01 1gk9A02 1gk9B03 1gkmA02 1gm5A01 1gmjD00 1gnlA01 1gqeA01 

1gs9A00 1gxlA01 1gzsB00 1h5wB01 1h6uA01 1he1A00 1heiA03 1hgvA00 1hj0A00 1ho8A02 

1hw7A02 1i5jA00 1iieA00 1iioA00 1iipA02 1ijyA00 1ik7A00 1iqvA00 1irqA00 1irxA04 

1iuqA01 1iv8A03 1iv8A04 1ix9A01 1iyrA00 1izmA00 1j0tA00 1j5wB02 1j8uA00 1jadA00 

1jekA00 1jeqA05 1jeyA04 1jfbA00 1jmuB02 1jmuB03 1jnrA03 1jqoA03 1jr8A00 1jvrA00 

1jy2O00 1k3eA01 1k6yA01 1k87A01 1k87A02 1k8kE00 1k8kG00 1k90C03 1kaeA03 1kblA02 

1kblA05 1kmiZ01 1kmiZ02 1kn7A00 1kqfB03 1kqfC00 1kv4A00 1kyqA03 1l2pA00 1l5jA01 

1l7mA02 1l8dA00 1l9lA00 1lnsA03 1ls1A01 1lshA02 1ltsC00 1lvkA03 1m15A01 1m56D00 
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