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Significance

 Dynamic protein structures are 
essential for understanding their 
diverse biological functions. 
Two-dimensional infrared (2DIR) 
spectroscopy is a powerful 
technique for monitoring protein 
dynamics, yet converting 
spectroscopic signals into 
detailed 3D structures remains a 
challenge. Here, we introduce a 
machine learning–based method 
that predicts 3D protein structure 
dynamics from 2DIR descriptors. 
By establishing a precise 
“spectrum–structure” 
relationship, our approach 
effectively predicts structures 
across a range of proteins, 
capturing folding trajectories and 
identifying structures of 
previously uncharacterized 
proteins. The integration of AI 
with 2DIR spectroscopy marks a 
significant advancement in 
real-time analysis of dynamic 
protein structures.
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Understanding the dynamic evolution of protein structures is crucial for uncovering 
their biological functions. Yet, real-time prediction of these dynamic structures remains 
a significant challenge. Two-dimensional infrared (2DIR) spectroscopy is a powerful 
tool for analyzing protein dynamics. However, translating its complex, low-dimensional 
signals into detailed three-dimensional structures is a daunting task. In this study, 
we introduce a machine learning-based approach that accurately predicts dynamic 
three-dimensional protein structures from 2DIR descriptors. Our method establishes 
a robust “spectrum-structure” relationship, enabling the recovery of three-dimensional 
structures across a wide variety of proteins. It demonstrates broad applicability in 
predicting dynamic structures along different protein folding trajectories, spanning 
timescales from microseconds to milliseconds. This approach also shows promise in 
identifying the structures of previously uncharacterized proteins based solely on their 
spectral descriptors. The integration of AI with 2DIR spectroscopy offers insights 
and represents a significant advancement in the real-time analysis of dynamic protein 
structures.

protein dynamics | machine learning | spectrum-structure relationship

 Understanding protein function requires insights into the dynamic evolution of their 
atomic structures ( 1 ), which has led to significant efforts in developing tools for structure 
determination ( 2         – 7 ). Advances in AI have revolutionized the prediction of a protein’s fully 
folded three-dimensional structure from its primary amino acid sequence, with models 
like AlphaFold and RoseTTAFold significantly enhancing our understanding of static 
protein structures ( 8           – 14 ). However, the intermediate states that control proteins’ dynamic 
behavior are less explored ( 15 ). This hinders our comprehension of critical processes such 
as transmembrane transport, ligand binding, conformational changes, and protein folding. 
Real-time monitoring of protein structures and dynamics is therefore essential for a com­
plete understanding of their function.

 Spectroscopic techniques have long been used to monitor protein dynamics, as 
they offer detailed temporal and spatial insights into structural changes ( 16       – 20 ). 
Among these, two-dimensional infrared (2DIR) spectroscopy stands out for its high 
spectral resolution and ability to capture nanometer-scale conformational changes 
on picosecond to nanosecond timescales ( 21       – 25 ). Compared to one-dimensional 
infrared spectroscopy, which produces congested spectra for larger molecules, 2DIR 
utilizes an additional frequency dimension to achieve higher resolution. This added 
clarity allows for the detection of interactions between vibrational modes, making 
2DIR especially effective for analyzing complex systems and accounting for environ­
mental effects ( 23 ,  25 ). Furthermore, 2DIR data can be generated through both 
theoretical calculations and experimental measurements, bridging the gap between 
theory and experiment.

 Despite its advantages, interpreting complex 2DIR signals and correlating them with 
specific protein structural characteristics remains a challenging task ( 23 ,  25 ). While cross 
peaks in 2DIR spectra provide valuable information about atomic distances between 
atoms such as carbon, these data alone do not provide a complete picture of the overall 
protein structure. A similar challenge exists with NMR, which provides proton–proton 
distances but cannot uniquely resolve full structures from these data alone ( 26 ,  27 ). 
NMR requires hundreds of experimentally derived constraints, including chemical shifts, 
coupling constants, and NOE distances, to construct accurate three-dimensional models 
by revealing atomic environments and spatial relationships ( 27   – 29 ). In contrast, 2DIR 
spectroscopy captures structural information across the entire spectral matrix, where 
each pixel reflects interactions between vibrational modes, thus providing a detailed map D
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of vibrational couplings ( 23 ). However, due to the complexity 
of the data, extracting clear structural insights from 2D IR spectra 
remains difficult. AI plays a critical role in addressing these lim­
itations by analyzing incomplete datasets, uncovering hidden 
correlations, and serving as a powerful tool for modeling complex 
structure–pr operty relationships ( 30 ).

 In this study, we present a machine learning (ML)–based pro­
tocol that leverages 2DIR spectral descriptors to accurately predict 
three-dimensional protein backbone structures. This approach not 
only predicts the real-time structural evolution of proteins on 
microsecond to millisecond timescales but also holds great poten­
tial for predicting the structures of previously uncharacterized 
proteins. Integrating AI with 2DIR spectroscopy opens possibil­
ities for real-time detection of dynamic protein structures and the 
characterization of unknown proteins. 

Results and Discussion

ML Protocol Workflow. The workflow of our ML-based protocol 
for predicting dynamic protein structures using 2DIR spectroscopy 
is divided into three components: “ML Dataset,” “ML Protocol,” 
and “Model Application.” (Fig.  1). We first collected 49,547 
protein structures, each containing up to 100 residues (SI Appendix, 
Fig. S1), from the RCSB Protein Data Bank and SWISS-PROT 
library (31, 32). Due to the rarity of experimental 2DIR spectral 
data, we employed theoretical simulations to create a foundational 
ML database. The 2DIR signals were generated using the Frenkel 
exciton Hamiltonian, created for each protein conformation within 
the amide I spectral window, based on vibrational spectroscopic 
maps that align well with experimental findings (19, 33, 34). We 
subsequently calculated protein alpha carbon (Cα) distance maps, 
where each matrix element corresponds to the distance between 

Fig. 1.   ML protocol for predicting protein structures with 2DIR descriptors. The experimental sequence flows from Top to Bottom, encompassing ML Dataset, 
ML Protocol, and Model Application.D
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the Cα atoms of amino acids in the protein structure, which serve 
as initial predictions for the ML model (9, 10).

 The ML architecture was then designed using the DeepLabV3 
( 35 ,  36 ) model and includes three key components: feature extrac­
tion, spatial dimension restoration through upsampling convolu­
tional layers, and a final regression output. The DeepLabV3 model 
first extracts features from 2DIR images within the 1,575 to 1,725 
cm−1  spectral window, capturing both coherent and detection fre­
quencies. The 2DIR signals are converted into 3 × 224 × 224 RGB 
images, from which high-level features (2,048 × 28× 28) are extracted. 
The process uses atrous convolutions and feature fusion to enhance 
multiscale information capture and improve segmentation accuracy 
( 36 ). In our approach, effective constraints are primarily derived from 
the diagonal and off-diagonal (cross-peak) regions near the diagonal 
of the 2DIR spectrum (SI Appendix, Fig. S2 ). Diagonal peaks repre­
sent fundamental vibrational frequencies and local environments, 
while cross-peaks provide information about specific vibrational cou­
plings ( 23 ). These regions offer valuable insights into molecular struc­
ture, with approximately 2,050 pixels on average serving as meaningful 
constraints in our study (SI Appendix, Fig. S2 ). Subsequent layers 
progressively upsample and reduce dimensions to ultimately produce 
the structural predictions. To ensure comprehensive feature utiliza­
tion, lower-level features from intermediate layers are concatenated 
with features before the final upsampling layer ( 37 ). To handle pro­
teins of varying sizes, padding and a Maskloss function are employed, 
focusing on the nonpadded sections of our data, thus ensuring 

robustness in training and prediction (SI Appendix, Fig. S3 ). A 
gradient-based folding algorithm ( 10 ,  38 ) is then used to generate 
the three-dimensional protein backbone structures.

 Finally, in the Model Application section, the trained ML 
model is used to predict both static protein structures and dynamic 
changes during protein folding. Additionally, this AI-based pro­
tocol, using 2DIR spectral descriptors, shows potential in predict­
ing the structures of previously uncharacterized proteins. By 
integrating AI with 2DIR spectroscopy, this method offers a prom­
ising approach for analyzing protein dynamics and characterizing 
unknown protein structures.  

Protein Static Structure Prediction. The ML model’s ability 
to predict protein Cα distance maps was evaluated using Mean 
Absolute Error (MAE) and precision metrics such as Top-L/5, 
Top-L/2, and Top-L for long-range predictions (38, 39) (Fig. 2A). 
The accuracy of the predicted three-dimensional protein backbone 
structures was assessed using RMSD. The training and testing 
loss curves indicate effective parameter optimization, with rapid 
initial convergence followed by stabilization, demonstrating the 
model’s strong generalization capabilities. The close alignment of 
the training and testing losses, achieved by implementing batch 
normalization (BN) in each layer to stabilize data distribution 
and accelerate training (40), suggests minimal overfitting. The 
robustness of the model was further supported by a model-saving 
strategy based on validation performance (SI Appendix, Fig. S3).

Fig. 2.   ML Prediction of Protein Static Structures. (A) Evaluation metrics for ML predictions including Cα distance map and precision metrics (Top-L/5, Top-L/2, and 
Top-L precision), alongside the RMSD of the predicted and experimental protein 3D backbone structures. (B) Comparison of ML predicted with experimentally 
determined structures for various proteins, ranging from 10 to 100 residues.D
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 Comprehensive cross-validation results showed low MAE values 
(average Cα  distance map: 2.20 Å) and high long-range precision 
(accuracy >0.8) across 4,954 diverse protein test sets, confirming the 
model’s reliability in predicting protein distance maps, as illustrated 
in  Fig. 2A  . We also assessed the model’s performance across different 
protein sizes. As shown in SI Appendix, Fig. S4 , very small proteins 
(0 to 20 amino acids) lack stable structural features, leading to higher 
prediction errors due to increased conformational variability. For 
proteins in the 20 to 40 amino acid range, more recognizable motifs 
emerge, allowing the model to perform better. However, as protein 
size exceeds 40 amino acids, increasing complexity and long-range 
interactions lead to a rise in errors. Overall, protein structures with 
loosely connected or unstable regions exhibit higher prediction devi­
ations due to greater conformational variability (SI Appendix, 
Fig. S5 ). Future work will focus on improving prediction accuracy 
by incorporating biophysical constraints to enhance the model’s 
accuracy. Despite these trends, the model achieved RMSD values 
comparable to experimental protein structures (average Cα  RMSD: 
2.54 Å), as illustrated in  Fig. 2  and SI Appendix, Table S1 , under­
scoring the effectiveness of 2DIR spectral descriptors in predicting 
accurate three-dimensional protein structures.

 To evaluate the model’s performance on more complex proteins, 
we tested it on proteins ranging from 100 to 150 amino acids, 
derived from 10,000 structures in the RCSB database (SI Appendix, 
Fig. S6 ). Transfer learning was employed to enhance the model’s 
transferability (Details in SI Appendix ). Despite the limitations of 
the dataset and the increased complexity associated with larger 
proteins, the model performed well after fine-tuning with 70% 
of the dataset, while the remaining 30% was used for testing 
(SI Appendix, Fig. S6B﻿ ). In 70% of the pretraining cases, the 
model achieved an average Cα  RMSD of approximately 3.33 Å 
(SI Appendix, Fig. S6C﻿ ). Expanding the training dataset could 
further reduce error (SI Appendix, Fig. S6B﻿ ), highlighting the 
model’s strong transferability to larger, more structurally complex 
proteins. We also assessed the model’s robustness at varying tem­
peratures by investigating the molecular dynamics trajectories of 
the BsUDG–p56 complex (PDB: 3z0q) (SI Appendix, Fig. S7 ), 
which inhibits uracil removal and protects the phage genome from 
host DNA repair ( 41 ), at two temperatures (320 K and 348 K). 
These trajectories, sourced from a publicly available dataset ( 42 ), 
were used to study how temperature influences the complex’s 
structural properties. A total of 2,500 conformations were 

Fig. 3.   ML prediction of protein dynamic structures in a reversible folding process.D
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generated at 1 ns intervals. We then used 50% of the dataset to 
fine-tune the model and update the pretrained weights via transfer 
learning, while the remaining 50% was used as a test set to validate 
the model’s transferability. The results—average Cα  RMSD of 
2.63 Å at 320 K and 2.85 Å at 348 K—demonstrate that the 
model exhibits good transferability in predicting protein structures 
across different temperatures (SI Appendix, Fig. S7 ).

 Then, to further evaluate whether the ML model accurately 
captures the underlying protein spectrum-structure relationship, 
we conducted an additional test. We first generated random 2DIR 
spectra that did not correspond to any real protein and input them 
into the trained model to produce protein structures. Using the 
Frenkel exciton Hamiltonian, we then calculated the 2DIR spectra 
for these generated structures. The calculated spectra were com­
pared to the originally created spectra using the Structural 
Similarity Index Measure (SSIM), a widely used metric for image 
similarity ( 43 ) (SI Appendix, Fig. S8 ). The high SSIM values 
(>0.85) confirm that the model effectively captures and replicates 
the protein spectrum-structure relationship in a closed-loop manner.

 Additionally, we created a 2DIR spectrum by combining spectra 
from purely α﻿-helical and β﻿-sheet proteins. The structure gener­
ated by the model from this combined spectrum exhibited features 
of both α﻿-helices and β﻿-sheets. Notably, an increase in β﻿-sheet 
content correlated with a higher proportion of β  spectra in the 
combination (SI Appendix, Fig. S9 ). This result demonstrates the 
model’s ability to construct accurate and nuanced protein spec­
trum–structure relationships, reinforcing its potential for precise 
protein structure prediction and analysis.  

Protein Dynamic Structure Prediction. 2DIR spectroscopy is 
renowned for its high spectral resolution and its ability to track 
conformational changes on the nanometer scale over picosecond 

to nanosecond timescales (23). To assess the ability of our ML 
model to predict dynamic protein structures, we selected ten 
well-characterized fast-folding proteins and extensively studied 
both theoretically and experimentally (44) (Fig.  3). These 
proteins, ranging from 10 to 80 amino acid residues, contained 
no disulfide bonds or prosthetic groups, and represented the three 
major structural classes: α-helical, β-sheet, and mixed α/β (44). 
The reversible folding trajectories of these proteins, which unfold 
over microseconds to milliseconds, were simulated using the 
Anton supercomputer, developed by the David E. Shaw research 
group (44–46).

 Then approximately 10,000 conformations were sampled for 
each protein at consistent time intervals throughout the entire 
folding trajectory to calculate the corresponding 2DIR spectra. 
To improve the model’s ability to predict dynamic protein struc­
tures, we employed transfer learning techniques. Predictive 
accuracy increased as more data were incorporated, with optimal 
performance achieved when 50% of the dataset was used 
(SI Appendix, Fig. S10 ). The first half of the dataset was used 
for fine-tuning and updating the pretrained weights, while the 
remaining half served as a test set to evaluate the model’s trans­
ferability, as detailed in SI Appendix . Test set predictions began 
from the remaining 50% of the MD conformations, where 
alternating folding and unfolding events were clearly observed.

 As shown in  Fig. 3  and SI Appendix, Figs. S11–S13 , the ML 
model accurately predicted the dynamic structures of the ten pro­
teins throughout their folding processes, closely matching the 
reference MD structures over microsecond to millisecond times­
cales, with an average RMSD of 2.51 Å (SI Appendix, Table S2 ). 
For detailed visualization, we highlighted five characteristic states 
(t1  , t2  , t3  , t4  , and t5  ) at equal intervals, focusing on significant 
changes during the reversible folding process. These states are 

Fig. 4.   ML prediction of unknown protein with 2DIR descriptor. (A) ML framework predicts unknown proteins. (B and C) ML prediction of 100 unknown proteins 
length and comparison of ML predicted with AlphaFold determined structures for various proteins.
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further magnified in  Fig. 3  to showcase the prediction details at 
corresponding times. The model’s predictions align closely with 
the MD-simulated structures, effectively capturing the dynamic 
evolution of protein configurations. This level of accuracy demon­
strates the model’s ability to decode the complex, high-dimensional 
geometric data embedded in 2DIR spectral descriptors, further 
validating our approach for probing dynamic protein structures.  

Application to Uncharacterized Proteins. The diversity and 
complexity of proteins are immense, with currently known proteins 
representing only a small fraction of the possible variations (47, 
48). Discovering new proteins is crucial for advancing biomedical 
research. The ML model we developed, which uses 2DIR spectral 
descriptors as inputs, has been refined to detect previously 
uncharacterized proteins. The size of the distance map matrix 
generated by the model corresponds to the number of residues in 
a protein, effectively representing the protein’s length. As shown 
in Fig. 4A, when the input is the 2DIR spectrum of an unknown 
protein, the model predicts both the elements of the distance matrix 
and the protein’s length. It then combines this information to create 
the final distance map matrix. The three-dimensional structure 
of the protein is subsequently generated using a gradient-based 
folding algorithm.

 To further validate the ML model’s capability to detect unknown 
proteins, we first tested the ML model’s prediction of protein 
length on a base dataset of 49,547 proteins. A high Pearson cor­
relation coefficient of 0.957 and a MAE of 4.46 achieved in test 
set after cross-validation indicate that the ML model can accu­
rately predict protein lengths using 2DIR descriptors (SI Appendix, 
Fig. S14A﻿ ). Next, we randomly harvested 100 unknown proteins 
from the AlphaFold

 Protein Structure Database ( 48 ), each containing up to 100 
residues (SI Appendix, Fig. S14B﻿ ), which were predicted by the 
AlphaFold program based on their initial sequences and have not 
yet been experimentally confirmed (Sequences information in 

﻿SI Appendix, Table S3 ). By inputting their 2DIR spectra into the 
ML model, it was able to predict protein lengths with a Pearson 
correlation coefficient (r ) of 0.982, an MAE of 3.26, and an aver­
age Cα  distance map deviation of 2.3 Å ( Fig. 4B   and SI Appendix, 
Fig. S14B﻿ ). Finally, we compared the three-dimensional structures 
predicted by the ML model to those generated by AlphaFold, 
resulting in a RMSD of only 2.38 Å ( Fig. 4C   and SI Appendix, 
Fig. S15 ). These results indicate that the 2DIR descriptor can 
accurately detect unknown proteins length and structure.  

Conclusions. In summary, our ML-based protocol accurately predicts 
three-dimensional protein structures using 2DIR spectroscopy 
descriptors. By establishing a precise “spectrum–structure” relation­
ship in a closed-loop manner, this method not only predicts 
dynamic structures with high accuracy but also demonstrates broad 
applicability across various protein folding trajectories, spanning 
timescales from microseconds to milliseconds. Additionally, our 
protocol shows great potential for determining the structures of 
previously uncharacterized proteins based on their spectral data. 
Currently, the model focuses on Cα distances to balance protein 
topology with computational efficiency. Expanding to all-atom 
positions could provide more detailed structural features, such as 
side-chain orientations and interactions. Future improvements will 
incorporate atomic-level data, including backbone torsion angles, 
side-chain dihedrals, and physics-based constraints, enabling more 

accurate predictions and a deeper understanding of protein structure 
and function. Furthermore, the accuracy of coupling and frequency 
models plays a crucial role in interpreting 2DIR spectra. Variations 
in coupling strengths can shift peak positions, intensities, and shapes, 
leading to biases and error accumulation, particularly in highly 
coupled modes. To mitigate these effects, feature scaling of both 
original and adjusted datasets is useful, especially for linear changes, 
while experimental validation is essential for nonlinear variations. 
Future work will focus on analyzing coupling variations, developing 
optimization algorithms, and validating models with experimental 
data. The integration of AI with 2DIR spectroscopy opens promising 
avenues for the real-time analysis of dynamic protein structures.

Methods

2DIR Spectra Simulations. We use the general framework of Frenkel excitons 
Hamiltonian to describe the amide I mode (25), specifically,
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Hamiltonian is calculated with the Skinner map (49):
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Additionally, the dipole moment of each oscillator, derived from the relative 
positions of the C, O, and N atoms, is given by (52):

� = 2.73(s − ((CO ⋅ s) +
√
�s�2 − (CO ⋅ s)2

tan10
)CO).

Finally, the total 2DIR signal is generated by three laser pulses with wave vec-
tors k1, k2, and k3. The absorptive signals are obtained by adding the rephrasing 
( kI = − k1 + k2 + k3 ) and nonrephasing ( kII = k1 − k2 + k3 ) spectra, These 
signals are emitted in different directions, corresponding to the rephasing and 
nonrephasing pathways. The 2DIR signal can be decomposed into three primary 
contributions: ground-state bleach (GB), stimulated emission (SE), and excited-
state absorption (EA), with each contribution having both rephasing and nonre-
phasing components.

S (I)(�3, t2,�1)=∫
∞

0
∫
∞

0

dt3dt1(S
(I)

GB
(t3, t2, t1)+S (I)

SE
(t3, t2, t1)

+S (I)
EA
(t3, t2, t1))exp(i(�3t3−�1t1))

,

S(II)(�3, t2,�1)=∫
∞

0
∫
∞

0

dt3dt1(S
(II)

GB
(t3, t2, t1)+S(II)

SE
(t3, t2, t1)

+S(II)
EA
(t3, t2, t1))exp(i(�3t3+�1t1))

.
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The total response function is the sum of the rephrasing and nonrephasing 
signals:

I2D(�3, t2,�1) = S(I)(�3, t2,�1) + S(II)(�3, t2,�1),

where ω1 and ω3 correspond to the frequencies of t1 and t3 after double Fourier 
transformation, respectively.

The Hamiltonian was generated using the AIM program (53), and 2DIR sim-
ulations were performed with the NISE_2017 spectral simulation package (53). 
To expedite the calculations, couplings smaller than 0.01 cm−1 were neglected, 
and the anharmonicity was set to 16 cm−1 (54). The 2DIR spectra were calcu-
lated within the spectral window of 1,550 to 1,750 cm−1, using coherence times 
ranging from 0 to 2.56 ps with 20 fs increments, with a waiting time (t2) of 0 ps. 
Smoothing was applied using an exponentially decaying function with an effec-
tive lifetime of 1.8 ps. Since the spectrum was calculated for a single snapshot, 
only a single averaging step was performed to further accelerate the process.

ML Protocol. The whole ML protocol was designed based on the DeepLabV3 
model (35, 36) to predict the three-dimensional structure of proteins from 2DIR 
spectral images. The architecture comprises three key components: a feature 
extraction module, a spatial resolution recovery module, and a regression out-
put module.

In protein 2DIR spectroscopy, the frequency and coupling information of vibra-
tional modes are stored in a contour map, where the excitation frequency (ω1) 
and detection frequency (ω3) serve as the coordinate axes (25). First, we utilize a 
pretrained DeepLabV3 model with a ResNet-50 backbone (55) to extract features 
from 2DIR images within the 1,575 to 1,725 cm–1 spectral window. The input 2DIR 
signals are converted into 3 × 224 × 224 RGB images. The DeepLabV3 network 
then extracts high-level features of 2,048 × 28 × 28, leveraging atrous convo-
lutions to enhance multiscale information capture and improve segmentation 
accuracy (56). These features contain rich spatial information, aiding subsequent 
structural prediction.

Next, the model recovers spatial dimensions through a series of upsampling 
convolutional layers. The upsampling process involves increasing the feature map 
from 2,048 channels to 512 channels while doubling the spatial resolution. ReLU 

activation functions and BN layers enhance nonlinear expressiveness and stability 
(57). Lower-level features from intermediate DeepLabV3 layers are concatenated 
with features before the final upsampling layer. Further upsampling reduces the 
feature map to 128 channels, then 32 channels, and finally outputs a single-
channel structural prediction. An adaptive average pooling layer adjusts the out-
put to the target size. To handle proteins of different sizes, we introduce padding 
and a Maskloss function to focus on nonpadding data parts (58). This approach 
ensures the model’s robustness to variable-length sequences and avoids interfer-
ence from padding during training. The protein distance map obtained through 
these steps, combined with a gradient-based folding algorithm (10), ultimately 
generates the three-dimensional backbone structure of the protein.

Data, Materials, and Software Availability. The machine learning code and 
simulation dataset is available at https://github.com/ZhuLvs/2DIR (59). All other 
data are included in the manuscript and/or SI Appendix.
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Training and testing set and cross-validation
The accuracy and robustness of the machine learning predictions were evaluated using a cross-
validation technique. The dataset was randomly divided into ten equal-sized subsets. In each
iteration, one subset was used as the test set, while the remaining nine subsets were used for
training. This process was repeated for all subsets to ensure reliable performance assessment.

Transfer Learning details
During the pre-training phase, we used the Adam optimizer with an initial learning rate of 0.001
and employed a linear learning rate decay strategy1. The pre-training dataset was randomly split
into training and validation sets in a 9:1 ratio. The model was trained for 100 epochs with a batch
size of 32, maintaining the linear decay strategy throughout.
In the transfer learning step, we loaded the pre-trained model weights to optimize predictions for
specific protein dynamic folding trajectories. The optimizer and learning rate strategy remained
consistent with those used in the pre-training phase, and all layers' weights were updated. For
instance, in the case of protein dynamic structure prediction, the fine-tuning dataset consisted of
2DIR spectra calculated from approximately 10,000 conformations sampled at equal time
intervals from complete folding trajectories2. This dataset was randomly split into training and
validation sets with a 5:5 ratios and the fine-tuning configuration mirrored that of the pre-training
phase.

Supplementary information for Figures

Distribution of protein length
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Supplementary Fig. 1 | Distribution of protein residue numbers in the basic dataset.

Effective constraints in 2DIR spectra

Supplementary Fig. 2 | Effective constraints in 2DIR spectroscopy for machine learning

prediction of protein structures (example proteins: 3J9Y and 7UNR).

Mask loss and loss curves

Supplementary Fig. 3 | (a) Standardizing proteins of varying lengths to a uniform size through

padding and using MaskLoss to focus on learning from the non-padded regions. (b) The loss

curves in whole training process.
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ML model evaluation

Supplementary Fig. 4 | Machine learning prediction of protein structure across varying protein

sizes.

Supplementary Fig. 5 | Machine learning structure prediction of different protein types.
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Supplementary Fig. 6 | (a) Distribution of protein lengths between 100 and 150 residues. (b)

Proportion of fine-tuning datasets used for predicting protein structures of 100-150 residue

length in transfer learning. (c) Evaluation metrics for machine learning predictions, including the

Cα distance map and the RMSD between predicted and experimentally determined 3D protein

backbone structures. (d) Comparison of machine learning-predicted structures with

experimentally determined structures for proteins ranging from 100 to 150 residues.

Supplementary Fig. 7 | Machine learning prediction of BsUDG-p56 complex (PDB:3z0q)

protein structure at different temperatures.
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ML model verification

Supplementary Fig. 8 | Verified the correctness of the ML model by comparing the randomly

created spectra and the calculated spectra.

The formula for calculating the Structural Similarity Index (SSIM) is3:

����(�, �) =
（2���� + �1）(2��� + �2)

（��
2+��

2 + �1）（��
2 + ��

2 + �2）

Supplementary Fig. 9 | (a) Validated the ML model by correlating spectral features with

secondary structural elements. (b) Created new 2DIR spectrum by combining different

proportions spectra from purely α-helical and β-sheet proteins.
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ML prediction of protein dynamic structures

Supplementary Fig. 10 | Proportion of fine-tuning datasets utilized for predicting protein

(1FME and 2F21) dynamic structures in transfer learning.

Supplementary Fig. 11 |ML predictions of Cα distance map for ten proteins dynamic structures
in reversible folding process.

Supplementary Fig. 12 | ML predictions for ten proteins dynamic structures in reversible
folding process with alongside precision metrics (Top-L/5, Top-L/2, and Top-L precision).
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Supplementary Fig. 13 | ML predictions for ten proteins dynamic structures in reversible
folding process with alongside root mean square deviation (Cα. r.m.s.d) of predicted versus
actual 3D structures of Cα atoms.

Unknown protein prediction

Supplementary Fig. 14 | (a) ML prediction of protein length in a basic dataset. (b) ML
predictions Cα distance map of 100 unknown proteins.
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Supplementary Fig. 15 | Comparison of ML predicted with AlphaFold determined structures for
various proteins.
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Supplementary information for Tables

Supplementary Table 1. Comparison of ML predicted with experimentally determined
structures for various proteins, ranging from 10 to 100 residues.

PDB ID Number of residues RMSD (Å)
1HQ6 26 2.06
2KHB 29 0.90
6FS4 32 1.40
5MMI 37 0.14
4CE4 41 1.17
6SPB 49 1.96
3J7Z 55 1.15
3JBU 55 2.59
7UNV 59 1.84
8RDB 60 3.02
7UNU 63 3.13
2Z3X 70 3.35
8TXR 76 3.22
8I31 78 2.68
3J9Y 84 0.59
7UNR 88 1.03
3R9J 88 1.24
1XS8 92 1.26
7RBX 96 1.64
1N91 98 3.44

Supplementary Table 2. ML prediction of protein dynamic structures in reversible folding
process.

Protein name PDB ID MAE (Å) RMSD(Å)
Cln025 Cln025 0.43 0.87
NTL9 2HBA 0.44 0.81

WW-domain 2F21 0.85 1.68
NuG2 1MIO 1.36 2.08
Trp-cag 2JOF 2.19 2.78
A3D 2A3D 2.55 3.44
UVF 2P6J 2.76 3.27
2F4K 2F4K 2.75 3.14
BBA 1FME 3.12 3.26
PRB 1PRB 3.27 3.73
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Supplementary Table 3. Sequence information for 100 unknown protein from AlphaFold
Protein Structure Database4.

Ind
ex

Len
gth Sequence

1 84 MATKKAGGSTKNGRDSNPKMLGVKMYGGQAVTAGNIIVRQRGTEFHAGTNVGM
GRDHTLFATADGVIKFEVKGQFGRRYVSVEA

2 89 MALTNADRAEIVAKFARAENDTGSPEVQVALLTAQINDLQGHFKEHKHDHHSRRG
LIRMVNQRRKLLDYLKGKDATRYSDLIAALGLRR

3 36 ARNVLAALMDIIEATGATQVFYNHLYDPVSLVRDHR
4 34 MEVNILAFIATTLFILVPTAFLLIIYVKTASQND
5 27 MVVFLVGVLFLSIFVLLLLLAAISGIL
6 44 MKRTYQPSRLVRKRRHGFRARMATVGGRRVIGNRRAKGRKRLSA

7 79 MSEIADKVKKIVVEHLGVEESKVTPEASFIDDLGADSLDTVELVMAFEEAFNVEIPE
DAAEKIATVKDAIDYIEKQKAA

8 41 MKIRNSLKSAKVRDKDCRVVRRRGRVYVINKKNPRMKARQG

9 82 MNPLIGAASVLAAGLAVGLAAIGPGMGQGTAAGYAVEGIARQPEAEGKIRGALLLS
FAFMESLTIYGLVVALALLFANPFAS

10 38 MLTLKIFVYTVVTFFVSLFIFGFLSNDPGRNPGQKDLD
11 31 MALSDSQIFIALFTALITGILAVRLGIALYK
12 44 MESPAFFYTIFLWCLLLSITGYSIYVGFGPPSKTLRDPFEEHED
13 42 MTTKKSSYTYPIFTVRWLAVHALAVPTVFFLGSITAMQFIQR

14 81 MSGATGERPFSDILTSIRYWVIHSITIPSLFIAGWLFVSTGLAYDVFGSPRPNEYFTED
RQEAPLITDRFNALEQVKQLSE

15 34 MEVNILGLIATALFIIIPTSFLLILYVKTASQQP

16 67 MDTGTVKWFNDSKGFGFITPDAGGDDLFAHFSEVQGDGFKTLAENQKVSYETKRG
PKGMQAANISPL

17 37 MKVRASVRKICDNCRLIRRKRKIMVICSNPKHKQRQG
18 31 MKKMSIKFKKLQTIRKKIVLVLKQNANFMNI
19 41 MKNFTTYLSTAPVVALIWFTFTAGLLIEINRFFPDPLVFSF
20 38 MVKPNPNKQSVELNRTSLYWGLLLIFVLAVLFSSYIFN
21 31 MAITESQIFIALFLSLITGILAVRLGIELYK

22 83 MSGATGERPFSDILTSIRYWVIHSITIPSLFIAGWLFVSTGLAYDVFGSPRPNEYFTED
RQEAPLITDRFNALEQIKELSQVD

23 67 METGTVKWFNDAKGFGFITPDGGGEDLFAHFSEIRIEGFKTLQENQKVTYEVKTGP
KGKQAANIKPA

24 43 MALIIAKLPEAYAPFDPIVDVLPVIPVLFLALAFVWQASVSFR
25 32 LVYTFLLVGTLGIIFFAIFFREPPKVPSKGKK

26 77 MARVCQVTGKGPMSGNNVSHANNRTKRRFLPNLQNRRFFVESENRWVRLRVSNA
GLRLIDKNGIDAVLADLRARGEI

27 75 MDVNAAKMIGAGLAAIGMGLAALGVGNVFAQFLAGALRNPGAADSQQGRLFIGF
AAAELLGLLAFVTMIILVFVA

28 30 MKKTSLKMLATSLFTIFSRLQWVFQKRHAA
29 38 MIDEYVKKILDEKVTMYKQTSIHIQSLKRKALYFNSIK

30 84 MATKKAGGSTKNGRDSNPKMLGVKMYGGQAVTAGNIIVRQRGTEFHAGANVGM
GRDHTLFATADGVIKFEVKGQFGRRYVSVEV

31 78 MSNKGQLLQDPFLNALRKEHVPVSIYLVNGIKLQGNIESFDQYVVLLRNTVTQMVY
KHAISTVVPARPVNFHPDAESS
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32 94 MLNVSEYFDGKVKSIGFDSVTIGRASVGVMAEGEYTFGTGQPEEMTVVSGALKVLL
PGESEWKWYEAGSVFNVPGHSEFHLQVAEPTSYLCRYL

33 69 MAKIKGQVKWFNESKGFGFITPADGSKDVFVHFSAIQGNGFKTLAEGQAVEFEIQD
GQKGPAAVNVTAI

34 94 MTTFNAEVRKEQGKGASRRLRVANKFPAIIYGGNEAPVAIELDHDVVMNLQAKPEF
YTDVLTIVVDGKEIKVKAQAVQRHPFKPKLHHIDFVRA

35 68 MAPVKNIIMQRCFLESLLFLQIVFFYSKIISLSFIKWLNNINLKRDNIRYYALKNKRKS
NKTKRLSKY

36 66 MQKYCELVRQKYAEIGSGDLGYVPDAIGCALNALNDIAANSALNSSVREQAAYAA
ANLLVSDYVDE

37 92 MANTAQARKRARQAAKANSHNSALRSKFRTAIKAVRKAIDAGDQAKAAEVFKSSV
KTMDTIADKKIVHKNKAARHKSRLAAAIKGLQASAAQ

38 89 MTPESVMQIGQEAMRIALMLAAPLLLAALVSGLIISLLQAATQVNEQTLSFIPKILAV
AATAVIAGPWMLNLVLDYMRNLFTNLPYIIG

39 85 MAHKKAGGSTRNGRDSNAKRLGVKRFGGESVLAGSIIVRQRGTKFHAGTNVGCGR
DHTLFATADGKVQFEVKGPNNRKYISIVAE

40 90 MNKSQLIDKIAADADISKAAAGRVLDAFMGSVSDALKGGDEVALVGFGTFSVRER
AARTGRNPQTGKEITIPAGKVPGFRAGKALKDSVN

41 59 MFVWNFFCLQIICCFLFNLVIQKIFRFYNCKSEKLILYFQFNKSISNLHRNQYRFFINI

42 82 MVTIRLARHGAKKRPFYQVVVTDSRNARNGRFIERVGFFNPIASGQAEGLRLDMDR
IEHWVGQGATLSDRVNALIKEAKKAA

43 86 MAHKKAGGSSRNGRDSESKRLGVKVYGGQAINAGGIIVRQRGTRMHPGENVGIGK
DHTLFALTDGHVQFTTKGAAKKHTVVVVPAA

44 92 MANSPSAKKRAKQAEKRRSHNASLRSMVRTYIKNVVKAIDAKDAEKAQAAYVLA
VPVIDRMADKGIIHKNKAARHKSRLNGHVKALNVAAAA

45 74 KKKEEVERVQKEKADELNTVHEKIKQVVAKKDETFSNLKQQYEAACKRADHLEGL
LEQQRHLMLKKQANSNKID

46 89 MALSVEEKAQIVTDYQQAVGDTGSPEVQVALLTANINKLQGHFKANGKDHHSRRG
LIRMVNQRRKLLDYLKGKDVNRYSTLIGRLGLRR

47 68 MNLEDRVTDLESRLAFQDDTIQALNDVLVEQQRIVERLQLQMAALLKRQEEMAGQ
FESFEEEAPPPHY

48 90 MNDSVKTSLKRTLVGKVVSNKMDKTVTVLVEHRVKHPIYGKYVVRSKKYHAHDD
ANTYNEGDLVEIQETRPISKTKAWVVSKLLEAARVI

49 90 MNKSELIDAIAASADIPKAAAGRALDAVIESVTGALKAGDSVVLVGFGTFSVTDRPA
RVGRNPQTGKTLQIAAAKKPGFKAGKALKEAVN

50 78 MSNIEQQVKKIVAEQLGVSEAEVKNESSFQDDLGADSLDTVELVMALEEAFGCEIP
DEEAEKITTVQLAIDYINAHNG

51 87 MSENKNVRTLQGKVVSDKMDKTVTVLVERKVKHPLYGKIIRLSTKIHAHDENNQY
GIGDVVVIAESRPLSKTKSWVVKELVEKARTV

52 96 MALSLTDVEKIAKLSRLSLTEEEKGKTLSELNDIFAMVEKMQSVNTDGVEPMAHPH
EAALRLREDTVTETDHAAEYQAVAPEVRNRLYIVPQVIEE

53 91 MNKSELIQAIADEAELSKRAASEFVDAFVSVVTQAMKDGKDVTLVGFGSFHTAQSA
ERKGRNPKTGEPLTIAARKTPKFRAGKALKEAVNR

54 27 MVFFNILFWKGPFFKRSFSRSFFGKVL
55 55 MLTDSAQFVQNQYAKQLKAKKEVSKKMLVLDSIKNTITTILDSSDKFIKLLYWKC

56 90 MANHSSAKKAARQTVKRTLISKKRSSAIKTFIKKVVHEISLGNKENANLALSVAQSK
IMQGVKKNIIKLNTASRKISRLSKQIKSLNESK

57 35 MTSKELTGLNLRVSFATANIKIALISSLITLRLSL

58 74 MEEWEQGGSDICSKFGAVIERVRDGMQSKIRAFSAINTRMADHSKALDERERSLQQ
EKELLVKETGRVVETKSR
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59 60 EDKRRRNTAASARFRAKKKEREHAMESRCKNLESKVGDLERECEALRRENGWLKG
LVVGV

60 29 ICVDSVAELDKTGAENVESNEIVEGLDIS
61 29 MCYSSHYYYYYYYYYYYYYYYYYYSMSQK

62 65 MQISERKNALILHIDAFQELNLVLLIRAVLNGLIQFLSFYHLYALNNNLNKKILSFKKI
CFSRKI

63 59 MSCIFNGIQKSHYETDKNLTYCFMLKFYGLIVLIGLSWYLNIKFDYSLKRDDSLIVKA
D

64 61 MLSRIFFLILCFKIHNAKINEVKKLEAKIARSIFENFLKEWTSFFKLSLKLFFHKIGILK
F

65 83 MLTIRLALGGSKKRPFYHLNVTDSRNPRDGSHKEQVGFFNPIARGQEIRLSVNQERV
AYWLSVGAQPSERVAQLLKDAAKAAA

66 73 MATQTVEGSSRSGPRRTTVGNLLKPLNSEYGKVAPGWGTTPLMGVAMALFAVFLSI
ILEIYNSSVLLDGISMN

67 26 MNEYILRAAYIFYIYIYIIYYIYIYI
68 23 MYLYMLFFFFFFFFFFFLFLKFF
69 29 MHLALIKRYFMSLIFIMLSYIMIEIVKDK
70 33 MKIHLSPDEVNLLVYRYLVENGFVHTSFSFFNA
71 66 MTSEVLIYLILEIFFSASIYILNVHKIIELNITFFVIITLIYIYIYIYIELIFFFFFVSIIKANIR
72 20 MEYRFIFIFVHYYFIIFFYL
73 20 MVLLFYIFIFYISLLSYLFN
74 53 MMMIMMTIMMMIMITIMMMIIMWITTITTTMMITILIIIIKTHRIIIHIKTKE

75 68 MEVSLNNVNNDIKDVKEHITNFKEYVEKRIKDINNIMDMNRKEIDEKIEHICMNQKK
LMGDFYPYKKN

76 16 FFFFFFFFFFFFVIVI
77 31 MPISISVIFSFFLFFFFFSFLLYFIQLLPYI

78 90 MKTNKRITIIGKVQGVFFRKSTKAKAEELDISGWVRNERDGSVFAEIEGNRHAVKA
MEAWLSQGPPKALVENLLIEAGEEQGYTGFEIKE

79 56 MAHSNIWFSHPRKYGKGSRQCRVCANQGGIIRKYGLDICRQCFREKADAIGFVKNR

80 87 MATTERNLRKERIGKVVSDKMDKSITVAVERRVKHPIYGKFVAKTTKFMVHDENN
ECGSGDLVKISETRPLSKNKRWRLVEIIEKAK

81 58 MATITIKQIGSPIRRPESQRKILIGLGLNKMHKVVTRQDTPEVRGAIAKIPHLVTVID
82 40 MLFMVRRIQVFLVHFFKGRFFGQLFFDKFFLFRTFDVDNE

83 82 MEAATETHNDLVNLLNEKNIAITGHKAEAAQSAESVNKIIEENCQLKAEVERLQAEI
RELRIKLWDATEEERKMNAGRLRDV

84 90 MNKTELIAKVAETSELTKKDATKAVDAVLDAISDALKEGDKVQLIGFGNFEVRERA
ARKGRNPQTGEEIEIASSKIPAFKPGKQLKDSIK

85 73 MNTLALAIGIIFGLAALGGAIGNSLVISRTIEGVARQPEARGSLMGLMLLGVGLVEA
VPIIAVAVGFILYSQM

86 62 MTIAFQLAVFALIATSSILLISVPVVFASPDGWSSNKNVVFSGTSLWIGLVFLVGILNS
LIY

87 86 MANIKSQIKRIKTNEKARQRNQSVKSSVKTAIRKFREAAESGDKAKAVELQQAAAR
ALDKAASKGVIHANQAANKKSAMAKRVNQL

88 37 MKVQPSVKKICDKCKVIRRHGRIMVICENLRHKQRQG

89 85 MAHKKGASSSRNGRDSNPQYLGVKRYGGQLVNAGEILVRQRGTKFHPGLNVGRG
GDDTLFALAAGTVEFGAKRGRKTVNIVPAEA

90 89 MALSTDEKKSILTEYGLHESDTGSPEAQVALLTKRIIGLTEHLKVHKHDHHSRRGLL
LLVGRRRRLLNYVMKVDIERYRSLIQRLGLRR

91 32 LAALMDIIGATGATQVVYNHLYDPVSLVRDHR
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92 24 MLTNIMYVTVYVTDQDRALEFYTE

93 87 MKTFDELFAELTDRARNRPEGSGTVEALDAGVHAQGKKVLEEAGEVWIAAEHESD
DRLAEEISQLLYRVQVLMLGRGLTTEDVYRYL

94 47 MSKGKRTFQPNNRRRARTHGFRLRMRTRAGRAILSARRRKGREKLSA
95 44 MKRTYQPSVTRRKRTHGFRVRMKTRGGRAVINARRAKGRKRLAV

96 76 MLNYGRKTNTFTNCDSNVRDARFQLTGIYLRLLLIDCKLRNLNDFEYNLAKTSIKLE
NTKNCLKGNKKRYKNWITL

97 78 MAKVCQLTGKRPMSGNNVSHAQNKTRRRFLPNLQSRRFWVESENRWVRLRLSTN
ALRTIDKKGIDAVLAEMRANGQKV

98 96 MTKSELIAALMRKHPHLQLKDINLIVNTVFGAISKSLADNNRVELRGFGAFSIKERDP
RVGRNPKTGEQVQVSKKFIPFFKTGKELHARINKARES

99 56 MAVQQNKPTRSKRGMRRSHDALTTAALSVDKVSGETHLRHHITADGYYRGRKVIT
K

100 27 AILYFLEKGAQPTVTVHDILRKAEFFK
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