
1124 J. Opt. Soc. Am. B/Vol. 3, No. 8/August 1986

Photon echoes as a probe for long-range spatial correlations
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A microscopic correlation-function expression for the photon-echo signal in systems with long-range spatial
correlations is developed. In general, the signal is given by an eight-point correlation function of the dipole operator
involving two particles. In the absence of long-range spatial correlations, this correlation function may be factor-
ized into a product of two four-point, single-particle correlation functions. Only under these conditions is the signal
proportional to the absolute square of the ensemble-averaged nonlinear polarization. We predict that photon
echoes may be used to probe the long-range spatial correlations near critical points.

Coherent, nonlinear optical signals are usually calculated in
two steps. First, the material system is assumed to interact
with the incident light fields, creating a nonlinear polariza-
tion with a specified wave vector and frequency. Subse-
quently, this polarization is substituted into Maxwell's
equations and generates the signal field. This procedure is
used both for steady-state and for transient (e.g., free-induc-
tion decay, photon echoes) observables.'-5 In the absence of
long-range spatial correlations, the coherent nonlinear pro-
cess is characterized by an amplitude (proportional to the
nonlinear polarization averaged over any thermal bath), and
the signal intensity is given by the absolute square of this
amplitude. Consequently, the conventional treatments of
nonlinear coherent transients focus on calculating the en-
semble-averaged nonlinear polarization.'-5 However, more
general treatments of superfluorescence and stimulated Ra-
man scattering use Langevin equations and require an en-
semble averaging over the signal (amplitude square) rather
than over the amplitude. 6 In this paper we develop a micro-
scopic correlation-function expression for the photon-echo
signal. We show that the signal is, in general, given in terms
of an eight-point, two-particle correlation function of the
dipole operator.7' 8 In the absence of long-range spatial cor-
relations in the nonlinear medium, this correlation function
may be factorized into a product of two four-point, single-
particle correlation functions. Only under these conditions
is the signal given by an amplitude square. 5 6 9-4 3 We pre-
dict, however, that, when long-range correlations exist (e.g.,
near critical points), this factorization will break down, and
the present, more general expression will need to be used.
The effects of line broadening on the photon-echo signal are
shown to be dramatically different for short-range and long-
range mechanisms. In an ideal photon-echo experiment,
the material system interacts with two short laser pulses.
We shall denote the frequency, wave vector, and electric-
field amplitude of the first pulse by wi, ki, and E1 , respec-
tively, and those of the second pulse by ° 2, k2, and E2. The
first pulse acts at time t = 0, and the second at time T. The
photon echo is a coherent transient observed at time t (t > T)

in the direction k8 = 2k 2 - k1. We have solved for the echo
signal in a model system consisting of N two-level absorbers
(with states Iaa) and Ib,), a = 1, 2,... N), which interact with
a thermal bath but not with each other. The k mode of the
radiation field was treated quantum mechanically, and the
signal is defined as the rate of change of the occupation
number of this mode, i.e., the expectation value of d/dtata8 ,
where a t (a,) are the creation (annihilation) operators for
the s mode. The calculation was made by using the tetradic
(Liouville-space) scattering theory.7 ' 9"13 The result for the
signal at time t, to lowest order in El and E2, is given by the
eight-point, two-particle correlation function 4:

N

S(t, 7) = 8r1E 2 E214 E (Vb'(7)Vaa(0)Vab(0)
a,fl=

X V. (t - T) Vab (t - )Vbaa(0)Vab'(O)Vba ( n))
X exp[i(2k2 - k, - k) - (ra - r0)]. (1)

Here a and 3 denote two particles located at ra and rg,
respectively. The angle brackets ( ... ) denote a trace over
all degrees of freedom (absorbers and baths), and V is the
dipole interaction

Vab(t) Aab exp(iHot)la)(ba I exp(-iHot), (2)

where Mab is the transition dipole between states aa) and
iba), Ho being the material Hamiltonian (in the absence of
the radiation field). Va is the Hermitian conjugate of Vab.
In Eq. (1) we have used the invariance of the correlation
function to translation in time. The normalization of Eq.
(1) is in arbitrary units. If particles a and are uncorre-
lated, we can factorize the two-particle correlation function
in Eq. (1) into a product of two single-particle correlation
functions corresponding to particles a and /3. Let us intro-
duce the polarization of particle a, i.e.,

(Pa(t, T)) 2E,1E2 12 (Vab(rtT) Vba(O)Vba(t - T)Vbaa(O)).
(3)

Equation (1) can then be rearranged as
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S(t, T) = 27rIE1E2' 2 E (Pa(t, 7j) (P*0(t, T))
a,;

X exp[i(2k2 - k- k) (ra -r)]

and

g(T) = (/A) 2[exp(-Ar) - 1 + Ar].

(4)

Since in this case (Pa(t, T)) does not depend on ra, i.e., (Pa)
= (P#) = (P), we can perform the a, 3 summations immedi-
ately, resulting in

S(t, T) = (2ir)4(N 2/)I(P(t, T))j26(2k2 - k- k), (5)

where N is the number of particles that contribute to the
nonlinear optical response, Q is the volume of the active
nonlinear medium, and (P) is given by Eq. (3). This is the
condition for validity of the conventional Bloch-Maxwell
procedure.1- 6 However, in the presence of long-range spa-
tial correlations in the sample, we can no longer invoke the
factorization of Eq. (4). In that case, we have to evaluate the
eight-point correlation function [Eq. (1)], which semiclassi-
cally (when Va and VP commute) can be recast as the two-
particle average (Pa(t, T)P*0(t, T)).

We now illustrate Eq. (1) by considering the following
model: The material system consists of a collection of two-
level systems denoted Iaa) and Iba), each having a frequency
Wbaa. We assume two line-broadening mechanisms and
write

Wba = Wa + 6wa(t) (6)

where bwa(t) and wa represent dynamic and static (inhomo-
geneous) broadening mechanisms, respectively. We assume
that a(t) is a random variable with zero mean (bwjt)) = 0
and that its correlation function is15

= A' exp(-At), (7a)

(11)

Equation (9) is our general result for the photon echo in the
presence of long-range correlations. We note that S(t, T) is
a direct probe for the spatial correlation function 4(r). A
reasonable model for 4 (rafl) is -exp(-rap/t). For simplic-
ity, we take

4(ra,) = { 
IroI < 

otherwise
(12)

When the frequency modulations &wa(ti) and &o,(t2 ) at two
different sites a 5, 3 are uncorrelated, i.e., t = 0, we have
S(t, T) = Su(t, T)6(Ak), where

Su(t, 7) = (2r) 3A(N2/Q)exp[-2yt - f(t, T) -2(t - 2T)2].

(13)

In the other extreme ( ), the line broadening originat-
ing from the modulation disappears, since both particles are
fully correlated and the contribution of fluctuations in the
frequency of particle a cancels those of particle 3 in Eq. (1).
This two-particle cancellation is lost once the eight-point
correlation function is factorized [Eq. (4)]. We thus get for t

-, S(t, T) = Sjt, T)6(Ak), where

S,(t, T) = (2r) 3 A(N2/Q)exp[-2yt - -2T) 2]. (14)

In the general case (arbitrary t) we get

S(t, T) = FR(Ak)Su(t, T) + F(Ak)[Sj(t, T) - Su(t, T)],

(15)

where

where A represents the amplitude of the stochastic modula-
tion and A-' is its correlation time. The modulation of
different particles may be correlated. We thus assume that

(5w"(t)5COO() = k (ras)A2 exp(-At). (7b)

4(ra,#) is finite over a correlation length t and is zero other-
wise. In addition, we assume that the static frequency coa
has an inhomogeneous Gaussian distribution, i.e.,

(8)W(Wa) = -1 expI 3-[__ 1T2 -

For simplicity, we take the inhomogeneous part to be uncor-
related for different particles. This does not affect our
result since the inhomogeneous part cancels for the echo
signal. For this model we may evaluate S [Eq. (1)], resulting
in14

S(t, T) = A(N2 /Q)exp[-2-yt - 2(t- 2T)2]

R
X J dr expl-[l - F(r)]f(t, T)}exp(iAk * r). (9)

Here, R is the radius of the nonlinear medium Q = 47rR3/3,
21y -- /Ti is the inverse lifetime of the excited state, A =
87rTl.ab 18 1E112 IE2 14, Ak - 2k 2 - k-k,

f(t, T) = 4g(t - T) + 4g(T) - 2g(t),

Fr(Ak) = [sin(Ak r) - (Ak r)cos(Ak r)]
2ir 2 (Ak) 3 r =R. 

(15a)

and where Ak lAki andr- Ir. For Ak. r>> 1, Fr becomes a
Dirac function, i.e.,

Fr(Ak) ,

whereas for Ak r << 1 we have

Fr(Ak) (27r)r34irr 3/3 r/67r2.

(15b)

(15c)

Ordinarily R is a macroscopic length, say, 10-3 cm, whereas t

is short range and microscopic -10-6 cm. Under these con-
ditions of short-range correlations, FR is strongly peaked
around the exact phase-matching condition Ak = 0, and Ft is
negligible [Eq. (15c)]. The signal under these conditions is
given by the first term in Eq. (15). When the correlation
length t becomes longer, the second term increases. F is
also peaked around Ak = 0, but it is much broader than FR
since t << R. If we look at a direction slightly off the exact
phase matching, i.e., R-1 << Ak << t-I, we see only the second
term in Eq. (15). This term is induced by the spatial corre-
lations in the sample. Making use of Eqs. (13)-(15), we get
in this case

S(t, T) = F,(Ak)[S,(t, T) - Su(t, T)]

= AN2(Qc/Q)exp[-2,yt - (t - 2T)2]

X 1 - exp[-f(t, T)]J, (16)
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two particles, it will vanish in the absence of dephasing A_>
0. The appearance of this signal and its spatial dependence

/ 1 A on Ak are a measure of the correlated dynamics in the sam-
ple and of the correlation length . Figure B displays
similar curves for the exact phase-matching condition (Ak)
= 0 [Eq. (17)]. For A = 1 the curve starts at short times as a
Gaussian (for regions of time T < A-'). Then it becomes

l / o 1 exponential with a rate of -4(P + y), and in the long-time
limit it decays with a slower rate of 4y. As A increases, the
short-time behavior becomes more dominant. The relative

0.05 magnitude of the short- and long-time components is a mea-
sure of Q,/Q [see Eq. (17)]. It should be noted that usually
(far from critical points) Q,/Q << 1. Under these conditions,
S(t, T) [Eq. (17), Fig. 1B] is essentially S,. As lAk is varied,
we expect the time dependence of the signal to change con-
tinuously from that of Fig. 1A to that of Fig. B. The Ak!

\ \ \ B range under which this transition occurs is Sty. We pre-
dict that photon echoes (and other four-wave mixing tech-
niques)1",13"14 should provide a sensitive probe for the dy-
namics of systems near critical points, 6 whereby t diverges

55 0.1 andQ/Q - 1.
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or - << Ak << 1. Y = U.1, A = l, ana c was variea, as snown in
the figure. B, The photon-echo signal loglo S(2T, T) [Eq. (17)] in
the direction of exact phase matching. Parameters are the same as
in A. Q2/Q = 0.1.

where we have used Eq. (15c) for Fe(Ak) and defined the
correlation volume Q, = 4irt 3/3. The echo signal is usually
observed at t = 2T, whereby the inhomogeneous broadening
{i.e., the exp[-uf 2(t - 2T)2] term} vanishes. In Fig. 1A, we
display S(2T, T) [Eq. (16)] for several values of A/A.

In the direction of perfect phase matching Ak = 0 we have,
using Eqs. (13)-(15),

S(t, T) = AN2 exp[-2yt - a2(t - 2T)2]
X [1 - (Q,/Q)]exp[-f(t, T)] + (c/Q)1. (17)

S(2T, T) [Eq. (17)] is displayed in Fig. 1B for several values
of A/A. The signal in Fig. 1A has a maximum, and its shape
is sensitive to the nature of the line-broadening mechanism
as given by f(2T, T). In this figure we show several curves
with the same value of A and various values of A. In the fast
modulation limit (A/A >> 1, A = 0.05, 0.1, 0.2) the maximum
of the curve is at

T = (4P)-' log Y + r,(17')
-Y

where P A2/A. As A decreases, the maximum shifts toward
longer times, and the magnitude of the signal decreases.
Since this signal is induced by the correlated dephasing of
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