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A unified theory of time-domain and frequency-domain four-wave mixing processes, which is based on the nonlinear
response function R(ts, to, t1), is developed. The response function is expressed in terms of the four-point
correlation function of the dipole operator F(ry, 72, 73, 74) and is evaluated explicitly for a stochastic model of line
broadening that holds for any correlation time of the bath. Our results interpolate between the fast-modulation
limit, in which the optical Bloch equations are valid, and the static limit of inhomogeneous line broadening. As an
example of the relationship between time-domain and frequency-domain four-wave mixing, we compare the
capabilities of steady-state and transient coherent anti-Stokes Raman spectroscopy experiments to probe the
vibrational dynamics in ground and excited electronic states.

1. INTRODUCTION

Four-wave mixing (4WM) processes play an important role
in current studies of nonlinear optical phenomena.l** The
most general 4WM process involves the interaction of three
laser fields with wave vectors ki, ko, and k3 and frequencies
wy, we, and ws, respectively, with a nonlinear medium. A
coherently generated signal with wave vector k, and fre-
quency w; is then detected (Fig. 1), where

k, = +k, £ k, + k; (1a)
and .
w, = tw; + wy + ws. (1b)

Equations (1) imply that k; and w; are given by any linear
combination of the applied wave vectors and frequencies.
The various types of 4WM processes differ according to the
particular choices of k; and wy [i.e., the particular choice of
signs in Egs. (1)]. They also differ according to the tempo-
ral characteristics of the applied fields. In one limit the
applied fields (and the signal field) are stationary
(S4WM).5-13  In the opposite limit the applied fields are
infinitely short pulses, resulting in an ideal time-domain
4WM (T4WM). Examples of T4WM experiments are pho-
ton echoes,4-17 transient gratings,!8-24 and time-resolved co-
herent Raman scattering.25-32 Realistic pulsed experiments
involving pulses with finite duration are characterized by a
finite spectral and temporal resolution and are intermediate
between these two ideal frequency-domain and time-do-
main limits. The various 4WM experiments are often inter-
preted using different terminologies, and the relationships
among these techniques are not always obvious. In this
paper we present a unified framework for the interpretation
of any 4WM process. The key quantity in the present for-
mulation is the nonlinear response function R(ts, to, t1),
which contains all the microscopic information relevant for
any type of 4WM. In Section 2 we introduce the nonlinear
response function R and derive the general expression for
4WM. The two ideal limiting cases of time-domain experi-
ments (T4WM) and frequency-domain 4WM (S4WM) are
derived from the same unified expression. The nonlinear
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susceptibility x® that is commonly used in S4WM is also
obtained in terms of R. In Section 3 we calculate the re-
sponse function for a specific model system for molecular
4WM. The model consists of two manifolds of levels cou-
pled to a thermal bath that causes dephasing. In Section 4
we present new expressions for the response function and
x® for a stochastic model in which the thermal bath has a
finite time scale. This model includes the model of Section
3 as a special case and interpolates continuously between the
homogeneous (fast-modulation) and inhomogeneous (static)
broadening limits. In Section 5 we focus on coherent anti-
Stokes Raman spectroscopy (CARS). The T4WM and
S4WM are compared in detail. The different roles of
ground-state and excited-state resonances are analyzed. In
Section 6 we summarize these results.

2. THE NONLINEAR RESPONSE FUNCTION
FOR FOUR-WAVE MIXING

We consider a nonlinear medium interacting with a classical
external electromagnetic field through the dipolar interac-
tion. The total Hamiltonian of the system is

HT =H+ Hint' (2)

Here H is the Hamiltonian for the material system in the
absence of the radiation field. Hj,; represents the radia-
tion-matter interaction and is given by

Hipg(8) = " B )V, &)

where V, is the dipole operator of the particle labeled « and
located at r,, and the summation is over all the molecules in
the nonlinear medium. E(r, t) is the external electric field
that for a general 4WM process (Fig. 1) can be decomposed
into three components:

3
E(r,0) = [E;(t)exp(ik;- r — iwjt)

j=1

+ E].*(t)exp(-—ikj .r+ iwjt)]. 4)
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Fig.1. The general 4WM process. The coherent signal with wave
vector k; is generated by a nonlinear mixing of the applied fields
with wave vectors k;, ko, and kj.

We shall now adopt a simple model in which the active
nonlinear medium consists of noninteracting absorbers and
a set of bath degrees of freedom that interact with the ab-

sorbers but not with the electromagnetic field. In this case

we can focus on one absorber located at r and write
H;,(t) = E(x, t)V, (5)

where V is the dipole operator of that absorber.

In order to calculate the 4WM signal, we start at t = —o
and assume that the system is in thermal equilibrium with
respect to H (without the radiation field)

p(—=) = exp(—BH)/Tr exp(—BH), (6)

where 8 = (kT)~. The system then evolves in time accord-
ing to the Liouville equation

d . .
S = U ] = ilHip ). ()
In Liouville-space notation,33
dp . .
i = —iLp — iL;p. (8)

The action of the Liouville operator on an ordinary (dyadic)
operator A is given by

LA =[H, A], (9a)
LA = [Hy,, Al (9b)

In Egs. (7)-(9) and in the rest of this paper, weset A = 1. We
also define
YA =[V, Al (9¢)

We shall be interested in calculating the polarization P(r,t)
at position r at time ¢. This is given by the expectation
value of the dipole operator V:

P(r, t) = ((V|p(8))), (10)

where we are‘using the double-angle-bracket notation3? to
denote an inner product of operators. For any two opera-
tors,

({A|B)) = Tr(A'B). (11a)
We shall also define a Liouville-space matrix element by

((A|L|B)) = Tr(A'LB). (11b)
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For a 4WM process we calculate p(t) perturbatively to third
order in Li,. We then get

t Ta Ty
Plr, t) = (=i)? f dr, [ dr, j dr((VI8(t = 7))Ly (r2)

X §(rg = 79)Liny(79)9(75 = 7)) Ling(r)lp(==))).  (12)

Here the Green function §(7) is the formal solution of Eq. (8)
in the absence of the electromagnetic field:

€(r) = exp(—iL7). . (13)

For subsequent manipulations we shall also introduce the
Green function in the frequency domain:

9w) = —i j dr explien)§(r) = —L1—.  (19)

0 w = L
The interpretation of Eq. (12) is as follows: The system
starts at { = —o with a density matrix p(—). It then
interacts three times with the electromagnetic field at times
71 £ 79 < 73. During the intervals between interactions
(72 = 71, 73 — 79), it evolves in time according to €(r). Then
the system evolves from time 73 to ¢ through ¢(¢t — T3). At
time ¢ we calculate the polarization. Equation (12) is the
usual time-ordered expansion of the evolution operator. It
will prove useful to make a transformation of time variables
and define (Fig. 2)

bi=7 =7y
tz = Ty — To,
t3 =f - T3 (153)

or

o=t -ty (15b)

The new time variables ¢y, 5, and t3 (Fig. 2) represent,
respectively, the three intervals between 7, and 7, 7 and 7,
and r3 and t. Equation (12) can then be recast in the form

P(r, t) = (=i)° f " dt, [ " at, ] " dt,
0 0 0
X (VIS (E3) Line(t — t5)9 (o) Lins(t — ty — )
X Q(t) Lyt = by — ty — to)lp(==))).  (16)

On the substitution of Eqgs. (4), (5), and (9b) into Eq. (16), we
obtain an explicit expression for the polarization in terms of
the incoming field amplitudes E;(t). P(r, t) can have any of
the possible wave vectors k; given in Eq. (1):

t1 tz t3

-—>
74 T2 73 t

Fig. 2. The time arguments for Egs. (12) and (16). The three
radiative interactions occur at times 7y, 79, and 73, and the nonlinear
polarization is calculated at time ¢. These time arguments are fully
ordered: 71 < 7y < 73 <t ¢ty and t3 denote the time intervals
between the former time arguments as indicated in Egs. (15).
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P(r,t) = Z exp(ik, - r — iw,t)P(k,, t). 17
ksi""s
Hereafter, we shall select a specific choice, namely,
k, =k, +k, +k; (18a)
and
w, = w; T wy + ws. (18b)

Any other combination may be obtained from our final ex-
pression by changing one (or more) k; and w; into —k; and
—wjand E;(¢) into Ej*(t). Using Egs. (4), (5), and (16)-(18),
we then get

P, ) = (=) > j dt, jmdtz [ dt,
m,n,g=1,2,3 0 0 0 ’

X R(tg, ty, ty)explilw,, + @, + w )ty + iw, + w, )ty + iw,t]
X E,(t — t; — ty = t)E,(t — ty — t) E(t — t3). (19)

R(ts, ts, t1) is the nonlinear response function, which
contains all relevant microscopic information:

R(ts, ty, t1) = (VIS (t3) VE(t) V() V]p(—=))). (20)

The summation in Eq. (19) is over all 3! = 6 permutations of
the indices m, n, and ¢ with the numbers 1, 2, and 3. Alter-
natively, we may define the response function in the fre-
quency domain by performing a Fourier transform of
R(t37 t2: tl):

R(w,, + w, + 0, 0, + w0, 0) = (—i)3 J dtgj dt2J d¢,
‘ 0 0 o

X expli(w, + w, + wts + iw, + w,)ts + iw,ty]
X R(ts, tg, t1). (21)

Equation (19) may then be rearranged in the form

Ph,= S r do,, ] do, F dw,

mnq=12,3
X R/, + o), + @ g &y F Wy ) S (@) () (@)
X expli(w,, + w, + 0, — &', — o, — & )t], (22)
where
R(wm + w, + w0, + @, @)
= ({V|%w, + v, + wq)ﬂlé(wm + @,)V&(w,)V]p(—=))),
(23)
and

J () = @) j " drEexpli; —w)rl,  j=mon,q

(24)

is the spectral density of the j field.

Equations (19) and (20) or alternatively Egs. (22)-(24)
provide the most general formal expression for any type of
4WM process.!? The signal (field intensity) in the k; direc-
tion is obtained by substituting P(ks, £) as a source into the
Mazxwell equations and solving for the signal field. When
the incident fields do not vary substantially during the pro-
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cess, the signal is simply proportional to the absolute square
of P(k,, t). We thus have for the 4WM signal in the k;
direction at time ¢ (apart from some numerical and geomet-
rical factors):

S(k,, t) = |P(k,, t)|% (25)

Equations (19) and (20) or (22)—(24) show that the nonlinear
response function R(ts, ts, t1) or its Fourier transform R(om
+ wy + wg, Wy + @y, wy) contains the complete microscopic
information relevant to the calculation of any 4WM signal.
As indicated earlier, the various 4WM techniques differ by
the choice of k, and w, and by the temporal characteristics of
the incoming fields E(t), Eo(t), and E5(t). A detailed analy-
sis of the response function and the nonlinear signal will be
made in Sections 3-5 for two specific models. At this point,
we shall consider the two limiting cases of ideal TAWM and
S4WM. In an ideal time-domain 4WM (T4WM), the dura-
tions of the incoming fields are infinitely short, i.e.,

E () = Ej8(z — 7*)),

Ey(7) = Exo(r — 7%,),

Eq(7) = Eqo(r — 7%3), (26)
where 7*; < 7%5 < 7*3. We furtherdenote t; = 7% — 7%, L2 =
7*3 — 7%y, and t3 = t — 7*3. On the substitution of Egs. (26)
into Eq. (19) we get

P (k,, t) = E\E,EsR(ts, ty, ty)expliogt; + ilw; + wylty
+ i(w; + wy + wg)tg) (27

and
S(k,, t) =|E.E,EJ)R(ts, ty, t1)|2 (28)

The other extreme limit of 4WM is a stationary frequency-
domain experiment (S4WM) in which the field amplitudes
Ei(7), Eo(7), and E3(r) are time independent. In this case
we have

Jy(w'y) = Ejd(0’; — wy),
Jolw'y) = Eqd(w’y — wy),
Iy(os) = Egd(w' — ). (29)
Using Egs. (22) and (29), we get
Pk, t) = x(?’)(—ws, wy, Wy, w3) B EyEg, (30)
where the nonlinear susceptibility x® is given by

X(3)(—wsy W1, Wy, w3)

= Z R(w, + @, + @y 0y + 0, @) (31)
mn,q=12,3

The stationary signal [Eq. (25)] is given in this case by
S(k,) = |EE,Eq| 2|X(3)(—ws’ Wy, W, “’3)|2- (32)

3. A MOLECULAR MODEL FOR THE
NONLINEAR RESPONSE FUNCTION: THE
OPTICAL BLOCH EQUATIONS

In order to gain a better insight into the significance of the
nonlinear response function [Eq. (20) or (23)], we shall now
consider a specific model system commonly used in molecu-
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Fig.8. The molecular level scheme and laser frequencies for {WM.
Levels|a) and |c) are part of the ground-state vibrational manifold,
whereas levels |b) and |d) belong to an electronically excited mani-
fold. 1+, is the inverse lifetime of level |»). The electronic-dipole
operator [Eq. (34)] couples vibronic states belonging to different
electronic states.

lar 4WM. We consider a molecular level scheme for the
absorber consisting of a manifold of vibronic levels belong-
ing to the ground electronic state denoted fa),|c), ... ,and a
manifold of vibronic levels belonging to an excited electronic
state denoted |b), |d), ... (Fig. 3). The absorber is further
coupled to a thermal bath, and the Hamiltonian for the
nonlinear medium is

H = Hg + Hgp, (33a)
= _i
Hs= S n(e=gn)oh (@
v=a,b,cd...
Hep= > |v)Hzp(@p)0- (33¢)
v=ab,ed...

Here ¢, is the energy and v, is the inverse lifetime of the |»)
level. H is decomposed into a system Hamiltonian Hgand a
system-bath Hamiltonian Hgg, which is taken to be diagonal
in the system states|v). The bath coordinates are denoted
@p. The electronic-dipole operator of the absorber couples
vibronic states belonging to different electronic states. We
then have

V= Z (sl @) (D] + poda)(d|

a,b,e,d

+ peple) (bl + poge)(d] + Heel), (34)

where the summation runs over the entire manifolds of
ground and electronically excited states. The molecule is
taken to be initially at thermal equilibrium in the ground-
state manifold, i.e.,
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p(==) = >a)Pla)(dl, (35)

or, in Liouville-space notatio;,
lo(==))) = > P(a)aa)), (36)

where ’
P(a) = exp(-Be,,y Nex(-pe). (D)

In order to calculate the response function [Eq. (20)] we need
the matrix elements of the absorber’s Green function [Eq.
(13)]. Since our Hamiltonian H [Egs. (33)] is diagonal in the
absorber states, we simply have

(NGDIPN) ) = ((WNEB)|VA)) 8,00y, (38a)
where
({vN @) wA)), = exp[—iw,t — (1/2)(y, + 7))t
X ({vNexp(—iLggt)|vA)),,
vnA=a,b,ce,d ..., (38b)
WS €, = 6 (39)
The action of the Liouville operator Lgg on an operator A4 is
given by
LgpA = [Hgg, A]. (40)

The subscript s in Eqgs. (38) indicates that the matrix ele-
ment involves a partial trace over the system (absorber)
degrees of freedom, and ({vA]G(£)]¥))); is still a Liouville-
space operator in the bath degrees of freedom. In general,
Eqs. (38) should be substituted into Eq. (20), and the result-
ing expression should be averaged over the bath degrees of
freedom. Inthissection, we shall adopt the Bloch equations
to account for the bath. In the absence of a radiation field,
the Bloch equations for p, the density matrix averaged over
the bath degrees of freedom, are

dp, . -
Frale (—iw,, = T,)0,0 v,A=a,bec,d..., (41a)
where
p =Trp(p) (41b)
and
r,= 1/2 (v, + )+ f‘w\- (41c)

The pure dephasing rate I',, is the only effect of the bath in
this approximation. The bath does not affect populations,
ie., I',, = 0. Typically, if » and X belong to two different
electronic states (e.g., v\ = ab), then the pure-dephasing rate
is much larger than if they belong to the same electronic
state (e.g., ¥\ = ac). The solution of Eq. (41a) is

p(t) = (N S@) VX)) p,0(0), (42a)

where the double brackets now denote a total trace (over the
system and the bath), i.e.,

((ONS(B)pA)) = Trgl (W QE|N)),. (42b)

The optical Bloch equations hold when the correlation time
of the bath is very short compared with the time scale of the
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Fig. 4. Pictorial representation of the possible Liouville-space
pathways!? that contribute to the nonlinear response function [Eq.
(20)]. Solid lines denote radiative coupling V. Horizontal (verti-
cal) lines represent action of V from the right (left). Starting at aa,
after three perturbations the system finds itself along the dashed
line. The dotted lines represent the last V, which acts from the left.
At the end of four perturbations, the system is in a diagonal state
(aa, bb, cc, or dd). There are, respectively, 1, 1, 3, and 3 three-bond
pathways leading to aa, ba, dc, and cb. Altogether, there are there-
fore eight pathways. In each pathway each of the three fields acts
once.

absorber dynamics. Under these conditions, the average of
the product of Green functions in Eq. (20) may be factorized
into the product of the averaged Green functions [Eq. (42b)].
Making use of the factorization approximation,'23 we may
replace ({¥A|S(¢)|¥\) )5 in Eqgs. (38) by its ensemble average
over the bath, which we denote I,,(¢):

I,(t) = ((wN 8(D)|vA)) = exp[(iw,, — T,))t]. (43)

. For subsequent manipulations we shall also introduce 1, in
the frequency domain:

1,(0) = CONB(@|A)) = ~i f " dr,(r)expliwr). (44)
0

Using Eqgs. (43) and (44), we get
1

W=, +il,

I\(w) = (45)
We are now in a position to calculate the nonlinear response
function R(ts, ¢, t1) [Eq. (20)] for the present model system.
The radiative interaction %V is a commutator that can act
either from the left or from the right, and its matrix elements
are

NV = V,byn = Vb (46)

The first and second terms in Eq. (46) correspond, respec-
tively, to action of V from the left and from the right. Since
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Eq. (20) contains three factors of the radiative interaction %V,
it will have 23 = 8 terms corresponding to the various possi-
ble choices of the V’s to act from the left or the right.12 A
pictorial representation of Eq. (20) is given in Fig. 4. We
start at |p(—«))) = |ea)), which is in the upper left-hand
corner. A horizontal (vertical) bond represents an interac-
tion Y acting from the right (left). After the first interac-
tion (which takes place at time ¢ — t; — t3 — t3), the system
finds itself in either of the states |ab)) or|da)) (note that b
and d are indices that run over the entire excited-state mani-
fold). The system then evolves for a period t;, interacts
again (at time ¢ — tg — t3), evolves for a period ¢y, interacts
again at time ¢ — ¢35, and evolves for a period t3. Then, at
time ¢, the polarization is calculated by operating with V
from the left and performing a trace. The eight pathways in
Fig. 4 that contribute to R are displayed in Fig. 5. Making
use of Eqs. (20), (35), (43), and (46) and Figs. 4 and 5, we
obtain the nonlinear response function

R(ts, by, t1) = z P(@)taphpcttcataal ~Taa(t) Lot Lap(tr)

abod

+ Lot gp(E9) L ga(ty) + Lye(Eg) () o5 (21)

+ Lo (6300 () o (E1) + Tpo(E3) e (E9)1 4o (E1)

— Lyt s (E) I (1) = L)L) Lo 21)

= Loy(tg)Lea(E9) 4o (t9)], (47)
where the eight terms correspond to the pathways (i)—(viii)
of Fig. 5, respectively. Alternatively, making use of Egs.

(23), (44), and (45), we obtain the nonlinear response func-
tion in the frequency domain!2 ’

aa
. da
—eo—o—o (i) (v)
aa ab ac ad ca
ba
. aa
aa ab
| (i) db (vi)
da db dc cb
aa ab aa
*—9
(iii) da db (vii)
*—e
db dc cb
aa ab ac aa

| (iv) da (viii)

dc ca cb

Fig.5. The eight distinct Liouville-space pathways that contribute
to the nonlinear response function [Eq. (20) or (23)]. The eight

terms in Egs. (47), (48), (53a), and (58a) correspond, respectively, to*

pathways (i)-(viii).
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Rl + wy + wg, 0; + wy, wy) = Z P(a)papttpetteataa
a,b,e,d

X [=1,4(w; + @y + )T, (0; + wo)T ()

+ 10 + 0, + w)gp(w; + W) 4o(wr)

+ 1 (0 + 0y + w0 gp(wy + @)1 (w;)

+ 1w, + wy + w )l (w; + wz)fab(wl)

+ Ty, + @y + w) o (@ + W)l yp(w;)
=Ty, + w, + w)lgp(w; + w) p(w;)

— T p(w; + wy + w)gp(wy + wp)l(w;)

= I p(w; + @y + wp)T (w0, + wllyo(w))].  (48)

Here again, the eight terms correspond, respectively, to the
pathways (i)-(viii) of Fig. 5. In concluding this section, we
note that the nonlinear response function {R(t3, t9, t;) [Eq.
(47)] or R(wl + w9 -+ w3, W] =+ w9, wl) [Eq (48)]} is the
fundamental quantity that contains all the relevant micro-
scopic information for any 4WM process. Ideal T4WM
probes | R(¢3, to, £1)|2 directly [Eq. (28)]. The response func-
tion contains eight terms that correspond to the eight dis-
tinct pathways in Liouville space (Fig. 5). S4WM is de-
scribed by x® [Eq. (31)], which has 6 X 8 = 48 terms corre-
sponding to the 3! = 6 permutations of the time ordering of
the three fields that can be made for each of the eight path-
ways.%12 In TAWM we have fewer terms than in S4WM,
since in the former we can control the relative order in time
of the interactions with the three fields, whereas in S4WM
all orderings contribute equally to the signal. In some 4WM
techniques there is a simple Fourier-transform relation be-
tween SAWM and T4WM. In other cases, however, the
S4WM contains some interesting interference effects be-
tween the various time orderings that complicate the signal.
Such an example (probing ground- and excited-state vibra-
tional resonances with CARS) will be discussed in Section 5.

4. THE NONLINEAR RESPONSE FUNCTION
BEYOND THE OPTICAL BLOCH
EQUATIONS—A STOCHASTIC MODEL

In the previous section, we calculated the nonlinear response
function R(ts, g, t1) [Eq. (47)] for a model system of nonin-
teracting multilevel absorbers. The influence of the envi-
ronment on the absorbers (e.g., interactions with nonabsorb-
ing solvent molecules in a solution or with lattice vibrations
in a solid) is taken into account by using the optical Bloch
equations. This amounts to adding a pure dephasing rate I'
to the Liouville equation [Egs. (41)-(43)]. This approxima-
tion is justified whenever the typical correlation time associ-
ated with the bath degrees of freedom is much shorter than
the time scales associated with the dynamics of the absorber.
Although the Bloch equations have proved extremely useful
in analyzing a wide range of nonlinear optical phenomena,!4
there are numerous situations in which the assumption of
the separation of time scales on which they are based does
not hold. For example, excited-state dynamics in large dye
molecules in solutions or polymer films have been demon-
strated to occur on short time scales that may be comparable
to the time scale associated with solvent dynamics.!:3¢ An-
other common situation in which the Bloch equations do not
hold is pressure broadening in the gas phase at large detun-
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ings (the quasi-static limit).333536 Much insight can be
gained into the effects of a bath with a finite time scale from
the analysis of stochastic models that were first introduced
in the context of absorption line shapes.3”-3 Such models
have since been extended to the study of two-photon pro-
cesses?®4! coherent transients,174243 and 4WM.!2 Stochas-
tic models for the bath are simpler to analyze than complete
dynamical models, and, for noninteracting absorbers, they
are usually exactly solvable for any correlation time of the
bath. Such models interpolate between the limits of homo-
geneous line broadening (fast modulation of the transition
energy) and inhomogeneous line broadening (a static distri-
bution of transition energies).

In this section, we propose a stochastic model for the bath
and calculate the exact nonlinear response function R(¢s, ts,
t1) for this model. As in Section 3, we consider a model in
which each molecule has a manifold of vibronic states be-
longing to the ground electronic state labeled |a), |c), ...
and a manifold of vibronic states belonging to an excited
electronic state labeled |b), |d), ... (Fig. 3). The Hamilto-
nian of the system and bath [see Egs. (33)] is given by

CH= N 0l - /2y, + AGIG, (49a)

v=a,b,c,d
where
A(t) =0, v=a,c,... (49b)
and
A(t) = A), v=b,d,.... (49¢)

In Eq. (49), A(t) is the stochastic modulation of the election-
ic transition by interactions with the bath. A(z) is assumed
to be a Gaussian-Markov process obeying37-39

(A@)) =0, (50a)
(A(t)A(E,)) = D? exp(—Alt; — t). (50b)

The angle brackets in Eqs. (50) denote an average over the
stochastic process. D is the root-mean-squared amplitude,
and A~!is the correlation time of the bath fluctuations. The
absorber is coupled to the applied fields by the electric-
dipole interaction [Eq. (34)]. Equations (49) can be ob-
tained from our microscopic model [Eqgs. (33)] by taking the
bath degrees of freedom to be classical and by assuming that
the bath is sufficiently large that its motions are indepen-
dent of the absorber. By going to the interaction picture
(with respect to the bath Hamiltonian) we may then recast
Eqgs. (33) in the form of Egs. (49). The Gaussian nature of
A(t) can be often justified by using the central-limit theo-
rem. The choice [Eqgs. (49b) and (49c)] of A,(t) is based on
the assumption that the bath couples mainly to the electron-
ic degrees of freedom so that the ground-state and the excit-
ed-state manifolds are being stochastically modulated with
respect to each other, but no modulation occurs for frequen-
cies of levels belonging to the same electronic manifold.
This is often a realistic assumption. The nonlinear response
function can be evaluated also for a more general model in
which each A,(f) is an independent stochastic process.!2
However, for the sake of simplicity, we shall restrict the
present discussion to this special case.

To calculate the nonlinear response function for this mod-
el, we begin with Eq. (20). Since our Hamiltonian [Egs.
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(49)] is now time dependent, we need to modify Eq. (20)
slightly. Itshould be recast in the form

R(ts, to ty) = ((VI8(t, + ty + tg, by + 1)
X VE(ty + to, t1)VE(t;, 0)V]|p(=))), (51)
where (7o, 71) is the molecular evolution operator from time

71 to time 79

((V)\|§(72, TIIPAY ) = eXp{_iww\(Tz =7y

— Yy, F )y =) =i f " ara ) - Ax(r)]} (52a)

1

and

(N8 (g TN Y, = 8,800 ( (WN @ (79, T1)|¥A) ), (52D)
Of course, for a time-independent Hamiltonian, S(rq9, 1)
reduces to 9(r2 — 71) [Eq. (13)], and Eq. (51) reduces to Eq.
(20). The trace in Eq. (51) should now be understood to
include an average over the stochastic process. Note that
calculating the response function [Eq. (51)] involves averag-
ing the product of three Green functions over the thermal
bath. The Bloch-equation approximation involves the fac-
torization of this average into the product of three averaged
Green functions [Eq. (43)].33 Our present calculation will

allow us to explore the significance of this approximation.
Making use of Egs. (34) and (49)-(52), we get

Rty by ) = Pl@tapbtpebteatta
a,b,c,d

X [~ Kyt K pot) K gy (£1) 8™ (b, Egy £1)
+ K (t) K gy (t) K o (E) @ (£, £, 1)
+ K 1 (t5) K gy (b Kot )@ (b, £, 1)
+ Ko (t3) Ko (t) Koy (£) @ (Eg, to, £1)
+ Ky (t) K (t) K ga£1) B (g, by 1)
— K (t) K gy (t) Koy (£) 8™ (£, g, £1)
= K (t5) K gy (£2) K 4o () 2™ (t3, E, £1)
|~ Kt K (K ua(8) @ (5, By, 8], (532)

where
K,\(t) = exp[—iw,t = hly, + 1)t (53b)
<I>=‘=(t3, to, ty) = exp{_g(t:;) - g(tl) + [g(t1 + ity + t3) + g(tz)
- g(tl + t2) - g(t2 + ts)]l’ (53¢)
t Ty
gty = j dr, j dry(Alr)AG))
0 ) (
D? d
= e [exp(—At) — 1 + At]. (563d)

The functions $* are defined by

ittty ty
Bty 1, 1)) = <exp[—i [ arae i | dTA<T>] >
b+, 0

. (54)
where the angie brackets denote averaging over the stochas-
tic process A(r). The average in Eq. (54) was evaluated by
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using the cumulant expansion (which is exact to second

order for the present Gaussian-Markov model). Equation

(53) should be compared with Eq. (47), which gives R(ts, ¢,
t1) for the Bloch-equation model of Section 3. The eight
terms in Eq. (53a) correspond to the eight pathways of Fig. 5,
respectively. Each term in Eq. (47) is a product of a func-
tion of 1, a function of s, and a function of t3. R has this
structure because, in the Bloch:equation approximation, the
average of the product of three Green functions in Eq. (51)
factors into the product of three averaged Green functions.
For a bath of arbitrary time scale, this factorization approxi-
mation no longer holds, as can be seen from Eq. (53a). Let
us consider two limiting cases of Egs. (563). In the limit of
fast modulation (A/D > 1), Eq. (53c) becomes

®*(ty, ty, t,) = exp[—D(ty + t,)], (55a)

where
I' = D¥/A. (55b)
If this result is substituted into Eq. (53&)‘, we recover the
Bloch-equation result of Section 3 [Eq. (47)]. In this limit,

the line-shape function I, of Eq. (43) is related to K,x(¢) of
Eqgs. (53) by

L,\(t) = exp(—T')K,\(¢). (56)
In the limit of slow modulation (A/D « 1), Eq. (53¢) becomés
®®(t,, ty, t;) = exp[—(D*/2)(ty £ t)%]. (57)

Substitution of Eq. (57) into Egs. (53) gives the nonlinear
response function of a system with a static Gaussian distri-
bution of electronic transition frequencies (inhomogeneous
line broadening).

Making use of Egs. (563) and (21), we can evaluate the
response function in the frequency domain

R(wl + Wy + w3, Wy + Wa, (.01) = Z P(a)“abubc”’cd”da
a,b,c,d

[—¢7(s5 + Qug, 82 + Laer 81+ L)
+ ¥ (s + Quer 52+ Qg 81 + Q)
YT (sy F Qo 82+ Dapy 51+ Dp)
+ Yt (55 + Qger S9 + ger 51+ Q)
+ ¥ (55 + Qpg, 59+ QM, sy + Qy0)
— U (55 + Qs Sg + iy 51+ Q)
= YH(s3+ O 85+ Qe 51 F Dgo)

— (53 + Qo Sg + Qg 57 + Qo). (58a)

where
81 = —iwy, (58b)
8y = —i(w, + wy), (58¢c)
83 = —i(w; + wy + wy), (58d)
Q= 1w,y + (1/2) (v, + 7). (58e)

The functions y* are defined as follows:
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\bi(SS’ 821 31) =] dt3[ dtzf dtl
0

o o
X exp[—s;t; = soby — SgtaldE(ts, to, t1).  (59)

In Appendix A, we outline a convenient compdtational
method for evaluating this triple integral using a simple
recursive formula.®041 Note that x® may be obtained by
simply permuting the frequency factors in R, according to
Eq. (31). :

There is currently great interest in the application of
4WM to obtain dynamical information from systems whose
absorption line shape is dominated by static inhomogeneous
broadening.1011,14-17,283444  The information content of
4WM observables is usually established on the basis of the
Bloch equations. The more general model of this section
can be used to gain further insight into the line-narrowing
capabilities of time- and frequency-resolved 4WM experi-
ments. The information content of specific nonlinear spec-
troscopic observables for a system interacting with a bath of
arbitrary time scale can be analyzed using the present mod-
el. :

5. COHERENT RAMAN
SPECTROSCOPY—GROUND-STATE VERSUS
EXCITED-STATE CARS

As an example of the way in which the present work can be
used to establish the relationships between T4WM and
S4WM, we consider coherent Raman measurements
[CARS and coherent Stokes Raman spectroscopy
(CSRS)].10:26-324546 Thege experiments usually involve two
fields (i.e., k3 = k;), and the signal mode is

k, = 2k, — k,, (60a)
W, = 20; — wq. (60b)

We shall start with an ideal S4WM and focus on x® [Eq.
(81)]. Since two fields are equal, there are only three per-
mutations of the frequencies (and not six). Setting wy equal
to —ws in Eq. (31) and writing the frequency permutations
explicitly, we get

X (—wyy w05, = wg, wy) = R(2w) = wy, @) ~ @y, w7)
+ R(2w; — wy, w; — wy, —wy)
+ R(Zwl - (‘)2, 2‘01: wl)’ (61)

where R is given in Eq. (48). x® thus contains 3 X 8 = 24
terms. In CARS we look for two-photon resonances in the
signal that occur when w; — wy equals an energy difference
between two ground-state or excited-state vibrational
states. For our level scheme (Fig. 3) such resonances oceur
for wy — wg = Fwe, or for wy; — wy = twgp. The labels CARS
and CSRS refer to the cases in which w; > ws and w; < ws,
respectively. Since there are no fundamental differences
between the theoretical treatments of the two, we shall focus
on the CARS resonances

W~ Wy = Wy, (62a)
and

W, — Wy = Wy (62b)
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Equation (62a) represents ground-state CARS, and Eq.
(62b) represents excited-state CARS. For the sake of clar-
ity and simplicity, we shall restrict the present analysis tc
the optical Bloch equations (Section 3). The generalization
to the stochastic model is straightforward and ¢an be made
by replacing each of the relevant terms in Eq. (48) by its
counterpart in Eqgs. (568). From Eq. (48) it is clear that
CARS resonances [Egs. (62)] can come only from the middle
Green function. We shall thus consider only the terms con-
taining Icq(w; — wo) and Igp(w; — wg). Itis also clear from Eq.
(61) that the third term R(2w; — ws, 2wy, w;) cannot contrib-
ute to CARS, since its two-photon resonances are at 2w; and
not at w; — wp. We shall therefore ignore this term. Let us
denote the eight diagrams of the first term in Eq. (61) by
(1)—(viii) and the corresponding ones for the second term in
Eq. (61) by (i)’ ... (viii)’ (see Fig. 5). Starting with ground-
state CARS, we note that there are four terms containing
I.a(w; — wg). These correspond to diagrams (v), (viii), (v)’,
and (viii)’, i.e.,

Xca(a) = z P(a)”ab“bcﬂcd”da[jba(2wl - wz)jca(wl - w2)
b,d

- ch(2wl - wZ)jca(wl — wy)]

X [Tgolwy) + Ip(=wp)], (63)

where the subscript in x., denotes that these .are ground-
state (w; — ws = w.,) resonances. We shall now invoke the
rotating-wave approximation (RWA) in which we retain
only resonant terms, in which all denominators contain a
difference of a field frequency and a molecular optical fre-
quency, and neglect all terms in which at least one denomi-
nator is antiresonant. For the ground-state CARS, the only
term that survives is diagram (v):

Xca(a) = Z P(a)/"ab”bc“cd“dajba(zwl - “’Z)jca(wl - w2)jda(wl)'
b,d

(64)

Similarly, for the excited-state CARS we have eight terms in
Eq. (61) that contain Iy(w; — ws). These correspond to
pathways (ii), (iii), (vi), and (vii) and (ii)’, (iii)’, (vi)’, and
(vii)”:

de(3) = ZP (a)#ab#bcﬂcdﬂda[jdc@% - wZ)jdb(wl — wy)

_jcb(zwl - wz)jdb(% — wy)]
X [Tda(wl) + 2da(_(’)Z) + jab(wl) + 1ab(_w2)]' (65)

Within the RWA, only two terms contribute to x4,®, which
come from pathways (ii) and (iii)’, i.e.,

X = Z Pla)paphpcttedttaa

X Tdc(2w1 - ‘-"2)jdb("’1 - w2)[7da(w1) + Tab(—wz)]. (66)

Making use of the explicit form of I,\(w) [Eq. (45)] and Egs.
(64) and (66), we therefore have
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1
® =N P(a :
Xea Z ( )”ab“bc/"cd“da 20, — wy — wpg T irba

bd

1
X : L (67a)
Wy~ Wy~ Wy T il op = wg, +1Tg,

and
3) —
de( ) = ZP (@) Rqphpctedtda
a.c

1 1
20)1 — Wy — Wy, + ich W)~ Wg T Wy + LTdb

X

x L L | m
Wy~ Wy + lrda _(02 — Wep + lI‘ab

Equations (67) show that the excited-state CARS arises
from two pathways that interfere, whereas the ground-state
CARS is associated with only one pathway. To make the
interference in Eq. (67b) more explicit, we rearrange it in the
form

3) _
de( )= Z P(a)pgptpchodtda
a,c

1 1
2(.01 - (1.727_‘ Wye + irdc W) = Wye + irda

X

X LI P LA
—wg = g T il wy = wy — wg, T il
(68)
where

PeT+ Ty —Tyy=v,+ T+ T —Tpe  (69)

The CARS resonance is contained in the term in Eq. (68)
that is proportional to I'. When |a) is the actual ground
‘vibronic state, v, = 0, and I' is then a combination of pure-
dephasing widths that vanishes in the absence of pure de-
phasing. The two pathways thus interfere destructively,
and, in the absence of pure dephasing, the CARS excited-
state resonance disappears. Inthe presence of pure dephas-
ing, the cancellation is not complete, and a dephasing-in-
duced resonance appears. Such resonances have been ob-
served experimentally. They have been denoted PIER4
(pressure-induced extra resonance in four-wave mixing)?
and DICE (dephasing-induced coherent emission).1?
Equations (67) and (68) show that in SAWM there is a
fundamental difference between the ground-state and the
excited-state CARS resonances. The interference in Eq.
(66) occurs between two pathways in which the first interac-
tion occurs, respectively, with w; and with —we. In a S4WM
we have no control over the relative order in time of both
interactions. Both pathways contribute equally, and they
interfere. The situation is quite different when the CARS
experiment is done in the time domain (T4WM). A time-
domain CARS experiment is usually performed by sending
two time-coincident pulses with wave vectors k; and ks into
the sample. After a variable delay, T, a second k; pulse is
applied, and the total coherent emission at k; = 2k; — ko is
detected. We shall assume that all pulses have the same
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shape, E(t), and that the pulse duration is short compared
with T. Since the last interaction has to be with w;, there are
only two permutations of frequencies that will contribute to
Eq. (19):

©

P(k, ) = (=i)? L dt, L dt, L dt, Rty ty t,)

X E(t — t5 — T)exp[i(2w; — wo)tal{E* (¢t — ty — t3)
X E(t - tl - t2 - t3)exp[iw1t1 + i((l)l - (02)t2]
FE(t = ty— t)E*(E — b, — ty — t3)

X exp[—iwgt; + i{w; — wy)to]}.

(70)
Equation (70) is the time-domain analog of Eq. (61) and
contains 16 terms. We now make the following assump-
tions: The pulse envelope E(7) is sufficiently long that its
spectral bandwidth is narrow enough to select a particular
resonance (w; — wg = wgp OF W] — Wy = Wg). We further
assume the RWA so that the same terms that contribute in
the frequency domain will contribute here. On the other
hand, we take the pulses to be sufficiently short that I,,(t)
cannot evolve appreciably during the pulses. We can there-
fore select the same terms that contributed to Eqgs. (63) and
(65) and set

E(r) = Eé(1) (71)
in Eq. (70). We then get for the ground-state CARS

Pca(ks’ t) = E? Z P(a)ﬂab"‘bc“cd”daIba(t - T)Ica(T)
a,b,c,d

X exp[i(2w; — wy)t — iw, T] (72a)
and for the excited-state CARS

de(ks’ t) = 2E3 z P(a)“ab“’bcy’cdﬂdaldc(t - T)Idb(T)
a,b,e,d

X expli(2w, — wy)t — iw; T1. (72b)

The frequency-domain interference of Eq. (67b) is no longer
present. The system does not have time to evolve between
the first two interactions, and the two pathways that con-
tribute to Eq. (72b) [(ii) and (iii)’] give an identical contribu-
tion. When the signal is probed as a function of Tat ¢ = T,
we have

S (T) « |I,(T)|*= exp(—2T,,T) (73a)
and
So(T) = |1(T)|? = exp(—=2T 3, T). (78b)

The time domain CARS can be used to probe excited-state
resonances even in the absence of pure dephasing, since the
destructive interference of the frequency-domain CARS dis-
appears. This point was discussed recently by Weitekamp
et al.32 The present analysis clarifies the origin of this
difference.

6. CONCLUDING REMARKS

In this paper we developed a general theory of 4WM process-
es in terms of the nonlinear response function of the nonlin-
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ear medium R(t3, to, t;). The response function is an intrin-
sic molecular property that contains all the microscopic in-
formation relevant to any type of 4WM process. The details
of a particular 4WM experiment are contained in the exter-
nal fields, E1(¢), E5(t), E3(t), and in the particular choice of
the observable mode k;. The generated signal is calculated
by convolving the response function with the external fields
and choosing k, [Eq. (19) or (22)]. It is only at this stage that
the distinction is made among the various 4WM techniques
(photon echo, transient grating, CARS, CSRS, etc.). We
have shown that the response function contains eight terms
(Fig. 5). We can express each term using the four-point
correlation function of the dipole operator, i.e.,

F(Tl» T9y T3 7'4) = Tl‘[V(Tl)V(T2) V(T3) V(T4)P(_°°)]
= (V(r)V(r) V(r3) V(ry)), (74a)
where

V(r) = exp(iHT)V exp(—iHr). (74b)

Here, H is the molecular Hamiltonian [Egs. (33)], and Vis
the dipole operator [Eq. (34)]. In terms of this four-point
correlation function, we have!2

R(tg, ty, t)) = —F(0, ty, t; + by, t; + by + tg)
+ F(ty, by + to, £y + ty + £, 0)
+ F(0, ty + by, bty + ty + tg, t)
+ F(0, by, ty + ty + g, by + £)
+ F(ty+ ty+ by t) + ty, £, 0)
—F(0, t; + ty+ g, ty + by, £;)
= F(t;, t; + ty+ tg, £, + £y, 0)
— F(t) + to, b, + ty+ t5,£,,0),  (75)

where the eight terms correspond, respectively, to diagrams
(i)-(viii) of Fig. 5. Itis therefore clear that the various 4WM
processes probe different features of the four-point correla-
tion function of the dipole operator. The response function
discussed in this article is closely related to that introduced
by Butcher.? Our time arguments ¢1, to, and ¢3 (Fig. 2) were
chosen, however, differently. With the present choice, the
relations between T4WM and S4WM are clearer. Since the
response function is probing the four-point correlation func-
tion [Eqgs. (74) and (75)], it necessarily contains more infor-
mation than the ordinary absorption line shape that is given
by the two-time correlation function (V(r)V(0)). This can
be utilized, e.g., to eliminate inhomogeneous broadening se-
lectively, as is done in photon echoes.417 The extra reso-
nances (PIER4, DICE)%10 discussed in Section 5 can be also
used selectively to eliminate inhomogeneous broadening.
We have evaluated R for a stochastic model for a bath with
an arbitrary time scale. Our solution [Egs. (53) or (58)] is a
generalization of the results of the optical Bloch equations
and reduces to that solution in the limit of fast modulation.
The stochastic expression for R permits a better under-
standing of the interplay between homogeneous and inho-
mogeneous broadening in 4WM. We further note that in
T4WM we may control the order in time of the various
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radiative interactions. In a steady-state experiment
(S4WM), however, all time orderings contribute equally.
The T4WM is therefore simpler, and some interesting inter-
ference effects may show up in S4WM. This was demon-
strated in our discussion of ground-state and excited-state
CARS in Section 5.

APPENDIX A
We wish to evaluate \D* [Eq. (59)], which is the triple Laplace
transform of ®* [Eq. (563c)]. Following Takagahara et al.40
and Mukamel,*! we shall first write Eq. (53c) explicitly,
using Eq. (53d), as
®*(1y, 79, 73) = expl—g(r;) — g(r3)

+ 7 exp(—A7y)[1 — exp(—A7)][1 — exp(—A7y)]}, (A1)
where

n = D?/A% (A2)

If we expand Eq. (A1) in a Taylor series in exp(—Ary) and
substitute back into Eq. (59), we can carry out the o integra-
tion resulting in

- .
Vilowspsg) = X ED" 1 T T, (A9)

n=0

where
J(s) = [ " dr[l - exp(—An)]" expl=s7 — g(r)]. (Ad)
(i}

On integrating Eq. (A4) by parts, we get the recursion rela-

tions
1A 11(8) = nAd,_i(s) = (s + nA) (s), n=12,...,

(A5)
and
1A (s) = — sdy(s). (A6)

Equations (A5) and (A6) can now be used to generate a
continued fraction representation of Jy
1
DZ
2D?

Jo(s) =
s+

s+ A+

3D?
+oAF— O
§ stsa+.... D

Equations (A5)-(A7) allow us to calculate J, recursively.
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