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Gaussian wavepackets in phase space, which are constructed to have the exact first and second moments with respect to the 
coordinates and momenta, are used to develop self-consistent equations of motion for the semiclassical time evolution of inter- 
acting anharmonic systems. The equations apply to pure as well as to mixed states and may, therefore, be pa~~ularly useful for 
molecular dynamics in condensed phases. 

1. Introduction 

The const~ction of approximate ~gorithms for 
solving the time evolution of interacting quantum 
systems is one of the major problems in molecular 
dynamics. Considerable recent activity in this area 
has focused on the usage of Gaussian wavepackets 
and their propa@ion according to the prescription 
developed by Heller [ l-6 1. This method is exact for 
harmonic systems. Its applicability to anharmonic 
systems has been analyzed by several authors [ 4-71, 
A new type of self-consistent semiclassical reduced 
equations of motion, which is based on projection 
operator techniques of non-equilib~um statistical 
mechanics, was suggested recently 171. To lowest 
order the equations provide a time-dependent self- 
consistent field approximatioh (TD SCF) , which can 
then be systematically improved. Under certain lim- 
its, it reduces to Heller’s procedure [ 11. It should be 
noted that the existing Gaussian wavepacket formal- 
ism [l-6] treats the time evolution of pure states 
using the Schrijdinger equation. Our approach is 
capable of handling mixed states as well, since it is 
based on the density matrix [ 7,8]. It therefore has a 
multitude of potential applications to molecular 
dynamics in condensed phases. In this note, we eval- 
uate explicitly the TD SCF equations of motion using 
the formalism developed earlier [ 7,9]. 

’ Camille and Henry Dreyfus Teacher-Scholar. 

2. The TD SCF equations in phase space 

We consider a qu~tum system characte~z~ by i? 
coordinates x,, j= 1, . . . . IV, their conjugate momenta 
p,= -ifidlax,, and masses m,. Its Hamiltonian is 

H= C pj2/2m, + V(x, , x2, . . . . xN) , 0) 
I 

where V is the interaction potential. We wish to 
develop a semiclassical self-consistent procedure for 
the approximate solution of the Liouville equation 

dp/dt= -il;ps (-i/fi)[H,p] . (2) 

Here L is the Liouville operator and&x, x’, t) is the 
total density matrix where x is a vector with N com- 
ponents x1, . . . . xN. If the system is in a pure state with 
a wavefunction ~(x, t), then p(x, x’, t) = y(x, 
t) v*(r’ , t) and eq. (2) is identical to the Schriidin- 
ger equation. Eq. (2) applies, however, to mixed 
states as well. The self-consistent procedure for solv- 
ing eq. (2) is obtained in the following steps [ 7,9]. 
We start with a set of dynamical operators, whose 
expectation values are believed to be relevant for the 
dynamics. In the present reduced description, we shall 
focus on the following set of 5N operators: 

AE,=& > A,=P, 5 AU=+@ t A,=P~ > 

A, =X,pl +p,X, , j= 1, . . . . N . (3) 

The expectation values of these operators will be 
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denoted a,,, 

a,,(t) = (A, > =Tr[A,&, x’, 01 , 

a= 1, . . . . 5, j=l,..., N. (4) 

We next construct an approximate density matrix 
a(x, x’, t) chosen to be in the form of a product of 
single-particle density matrices 

o(-& X’, t) z ,fi, @j(X,, $3 1) * (5) 

@, are taken to be Gaussian 

@,(xj,XJ, t)=exp(-b,,-b,,x,-b$xj 

- b,x; - b:, x;” - b,x,x; ) . (6) 

The time-dependent parameters boli may be uniquely 
expressed in terms of a,j by requiring that the expec- 
tation values of our operators A, evaluated using the 
exact (p) and the approximate (cr) density matrix 
will be the same, i.e., 

a,,(t) =Tr[A,p(x, x’, 01 

=Tr[A,a(x, x, ‘t)] . (7) 

Making use of projection operator techniques [ 10,111 
we can then derive closed equations of motion for 
a,. The equations are constructed to yield the exact 
values of a, ~(x, x’, t) may then provide a reason- 
able approximation for p( X, n’ , t ) . The detailed deri- 
vation of the equations is given elsewhere, resulting 
in [ 7,9] 

&,= pi<.&, ILlo(0> 
I 

+ s dr &At, z, a(~)) . (8a) 
0 

Here the dot represents a derivative with respect to 
time, i.e. & = da,,ldt, and 

CL, IL1 a(t) > =Tr[A,W01 

=Tr[A,Ha(t)-A,o(t)H] . (8b) 

The kernel Km, has an explicit formal expression in 
terms of projection operators, and it may be evalu- 
ated approximately [ 7,9 1. Eqs. (8) are SNequations 
for the 5N quantities a,. The first term in the rhs of 
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eq. (8a) represents the mean field dynamics. If 
a(t) =p( t) at all times, the second term vanishes 
identically, and the first term represents the exact 
evolution. The second term represents the effect of 
fluctuations (the fact that the actual density matrix 
p(t) is different from cr( t)). The TD SCF equations, 
which will be developed here, are obtained by 
neglecting the second term, i.e. taking 

a,, - --i<&,I~l40). (9) 

It will be convenient to make a minor change of vari- 
ables and use instead of ao, the following 5N vari- 
ables (T,~. 

a,,=<x,> 3 Uz,=(PJ) 3 

U3J=c+-<x,)2 7 

U4,=<P;)-(PJ2~ 

asj=(x,Pj+P,xj)-2(x,)(P,) * (10) 

Making use of eqs. (7)) we can express the parame- 
ters bol, (eq. (6)) in terms of the moments ga,, result- 
ing in [ 7,9] 

bo,= [a:,+~, log(2na,)l/2a3, , (1 la) 

h, = [ -fig,, +i(a,,o,, --2o,,fJ3,,)/2fi~3, , (1 lb) 

b2j=(40,a,+~2-~~~-2iji~5j)/8j2263,, (1 lc) 

b3~=(~2+ffZ-463,U4j)/4j22u3, e (1 Id) 

We have evaluated eq. (9) explicitly for the Hamil- 
tonian, eq. (1). The final result, recast in terms of the 
new variables u,, is [ 91 

b,=U2,l??lj, (12a) 

02,=-<qa 9 (12b) 

i,=U~jlT?l, , (12c) 

a,= - < V,,(x) >U5J , (12d) 

6, = (2/m,b, -2< Ux) >o, , WeI 

where 

y(x) = d v/ax, , U3a) 
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y,(x) = a2 vlaxj , (13b) 

(v,(x) > = J dr V,(r) 4x3 x, t) , (13c) 

(13d) 

@j(X,, XJ, t)=(22cC3j)-1'2 

xexp[ -(~,-0~,)~/26~,] . (13e) 

( V,(n) ) is defined in an analogous way to eq. (13~) 
by replacing V,(X) with V,,(X). Eqs. (12) are the phase 
space TD SCF equations, and they will be analyzed 
in section 3. 

3. Discussion 

We shall now discuss the significance of the phase 
space TD SCF procedure (eqs. (12)): 

(1) The problem of constructing an approximate 
density matrix for a complicated system using the 
expectation values of a few dynamical variables is 
common to many areas of non-equilibrium statisti- 
cal mechanics [ 10-141. A powerful way to achieve 
that goal is provided by the maximum entropy for- 
malism [ 12-141. Within this formalism we con- 
struct a density matrix a(x, X’ , t), which maximizes 
the entropy subject to the constraints (eqs. (7)). For 
our chosen set of variables (eq. (3)), the maximum 
entropy distribution is in the form of eq. ( 5)) where 

@,ME(x,,x;, O=exp -&j- i L/L, (14) 
cy=l 

where A,, are numerical coefficients which may be 
expressed in terms of Up,. We have shown that our 
Gaussian choice (eq. (6)) is identical to the maxi- 
mum entropy distribution @,Me [ 91. This provides an 
additional physical insight for our choice (eq. (6)) 
and connects the present semiclassical procedure with 
the more general problem of the derivation of reduced 
equations of motion in non-equilibrium statistical 
mechanics. 

(2) Note that eqs. (12) do not contain 12, this sug- 
gests that they are completely classical. Indeed, the 

present procedure may be repeated for classical 
mechanics by replacing L in eq. (2) with the classi- 
cal Liouville operator. a,(~,, x;, t) should then be 
replaced by a phase space distribution function of 
coordinates and momenta 6, (x,, p,, t). Taking 4, to 
be Gaussian in x, and p,, we can repeat the present 
derivation step-by-step and derive eqs. ( 12). The TD 
SCF for the moments using Gaussian wavepackets is 
therefore completely classical. 

( 3) If Q,( x,, x;, t) is to represent a pure state, it 
should be factorized in the form of a product of a 
function of x, and a function of x;. A necessary and 
sufficient condition for that is b,=O, i.e. 

&,=4a,,a+-fi2. (15) 

In this case, gs, (up to a sign) is uniquely determined 
by Do, and tr4, and is not independent. The density 
matrix (eq. (6)) may represent, however, mixed 
states as well, whenever eq. (15) is not satisfied. 

(4) The equations of motion of Heller [ 1 ] may be 
obtained from our TD SCF equations, ( eqs. ( 12))) if 
the following approximations are made: (i) replac- 

ing ( V,(x) > by V,( (x> ) and ( Q,(x) > by K,( (x> ); 
(ii) assuming that initially the system is in a pure state 
and satisfies eq. (15). If we then make the substitu- 
tions CT~,=X*, Ozj=pty aJ,=fi/4aiand o+=~~]cY~I’I(II~, 
we obtain Heller’s thawed Gaussian (TG) equations 
for xt, pt, and (Y,. Here (Y, is the imaginary part of cy,. 
In figs. l-4 we display the time-dependent moments 
of a one-dimensional Gaussian wavepacket propa- 
gated on a Morse potential, 

V(x) =D{ 1 -exp[ -u(x-x~)]}~ . (16) 

Shown are the exact moments (E) calculated using 
an expansion in a basis set of the bound eigenstates 
of the Morse potential, the SCF calculation (eqs. 
(12)) and Heller’s thawed Gaussian (TG) method. 
It is clear that the TD SCF provides a major 
improvement over the TG. A similar conclusion is 
obtained by comparing the Raman spectra of this 
model system [ 91. 

(5) It can be easily verified from eqs. (12) that the 
solution of OS, is 

a:,(t) =4o,(t)a,(t)+r 3 (17) 

where y is a constant determined by the initial con- 
ditions. If y = - fi ‘, then eq. (15) will be satisfied at 
all times. This shows that within the TD SCF if the 
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Fig. 1. The mean displacement u, = (x) versus time for a Gauss- 
ian wavepacket propagated on a Morse potential (eq. (16)). The 
Morse oscillator frequency is o = (2Da*lm) “* = 1, Dlfiw = 5 and 
fd/mw = 0.1. These parameters correspond to an anharmonic- 
ity of 0x,=0.05. We have calculated the dimensionless coordi- 
nate x in units of ( Alma) ‘Q and the dimensionless momentum p 
in units of (fi~m)“~. In these units, we tookx,,= -0.5, and the 
initial conditions a,(O) =0, ~(0) =0, ~~(0) =0.48, a,(O) =0.53. 
us (0) is given by eq. ( 15). Shown is the present calculation (eq. 
( 12)) (SCF), the exact calculation (E) and the thawed Gaussian 
calculation (TG). 

initialdensity matrices Q, represent a pure state, they 
will represent a pure state at all times. This is no 
longer thecase, however, once the fluctuation terms 
in eq. (8a) are included. The fluctuation terms allow 
a pure single-particle state to evolve into a mixed 
state. This is a necessary requirement for a reduced 
description which should show, e.g., how a system 
relaxes to thermal equilibrium with a thermal bath 

[Bl. 
(6) TD SCF equations using pure states were 

shown to provide useful approximations for a vari- 
ety of molecular dynamical problems including 
molecular scattering, electronic spectra, the dissocia- 
tion of clusters, and thermal desorption from sur- 
faces [ 2-5, 1% 171. They are also extremely useful 

Ii 150 300 

w 

Fig. 2. The dimensionless mean momentum u2 = (p) for the sys- 
tem of fig. 1. 

Fig. 3. The dimensionless variance of the displacement Us= 
(x2)-(x)*forthesystemof!ig. 1. 
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I SCF 

Fig. 4. The dimensionless variance of momentum u4= 
(p*)-(p)*forthesystemoftig. 1. 

for a mixed description in which some degrees of 
freedom are treated quantum mechanically and the 
others are treated classically. The present phase space 
TD SCF approach enjoys all these advantages. In 
addition, it is particularly suitable for dynamics in 
condensed phases since it may eliminate the neces- 
sity of performing tedious thermal averagings. The 
“bundle of trajectories” used by Gerber, Ratner, and 
co-workers [ 151 applies naturally within the phase 
space TD SCF. 

(7) The present equations may be extended by 
various ways [ 71. One possibility is to expand the 
fluctuation term perturbatively. Note that for har- 
monic systems the TD SCF formulation is exact, 
provided we take x, to be the normal modes. This 
suggests that an expansion of the kernel Km, in anhar- 
monicities may be appropriate. Alternatively, we may 
add more dynamical variables to our chosen set A, 
and construct a more elaborate wavepacket with more 
parameters. We may, for example, go beyond the 
Hartree approximation implied in the factorization 
of u into a product of single-particle density matrices 
(eq. ( 5 )) and consider a complete set of bilinear 
operators x,xk, p#k, and p&+x,@,. This will result 

in 21\12 + 3N dynamical variables (instead of the 5N 
used here). Such a choice may, therefore, be useful 
for few-body problems (small N) but is impractical 
for macroscopic systems because of the large number 
of variables involved. Such extension of eqs. (12) is 
straightforward, requiring the use of a multivariable 
Gaussian distribution for Q, and it was not included 
here for the sake of clarity. Another possibility is to 
add higher moments (x,‘, p,‘, etc.) and to use non- 
Gaussian wavepackets. The resulting equations will 
then provide an improved reduced description of the 
system. 
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