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is much smaller than those observed in the photoreduction of 
carbonyl  molecule^.^^^ Thus, the effect due to the HF coupling 
mechanism is considered to be too small to be detected in the 
present reaction in spite of the large HF coupling constant of P 
(36.5 mT). The decrease in the decay rate of the A ( t )  curve 
observed above 0.1 T in the present study can be explained by 
a relaxation mechanismI2 as shown in the following paragraph. 

The A( t )  curves observed in the time range t = 70 ns to 9 ps 
in the absence and presence of a magnetic field of 1.2 T could 
be analyzed well by sets of two and three exponential functions, 
respectively. The results of the analysis using the method of least 
squares are shown in Figure 3 and by the following equations: 

a t  0 T 

A(t’) = 0.8923 exp(-t’/139 ns) + 0.1077 exp(-t’/75 ps) (1) 

a t  1.2 T 
A(?’) = 0.7296 exp(-t’/l60 ns) + 0.1498 exp(-t‘/677 ns) + 

0.1206 exp(-t’/100 ps) (2) 

Here, t ’=  t - 70 ns. Because the S/N ratios of the nearly constant 
components with lifetimes of 75 and 100 ps, respectively, are very 
small, the magnetic field effect on these components is considered 
to lie within the experimental errors. However, an extra decay 
component with a lifetime of about 680 ns appeared at  1.2 T for 
the decay of the radical pair other than the decay with a lifetime 

of about 160 ns. Such an extra component could not be observed 
at 0 T, where the decay of the radical pair can well be represented 
by an exponential function with a lifetime of about 140 ns: The 
appearance of the second decay component upon application of 
a magnetic field is characteristic of a magnetic field effect due 
to a relaxation mechanism in the case when a radical pair is 
prepared from a triplet precursor.I2 

Thus, the radical pair produced in the photodecomposition of 
TMDPO in an SDS micelle can be shown to be prepared more 
efficiently from the triplet state of TMDPO than from its singlet 
excited states. Sumiyoshi et al. estimated the lifetime of triplet 
TMDPO as 0.3 ns.” Indeed, such a triplet state is considered 
to be too short-lived to be detected with conventional nanose- 
cond-laser flash photolysis techniques. 

The second decay component observed in the presence of a 
magnetic field originates from the relaxation from the T+l levels 
of a radical pair to its To and S levels.I2 Thus, for the present 
reaction, such an extra component was found to be induced by 
a magnetic field. From an analysis of the 31P H F  coupling tensor 
of the diphenylphosphonyl radical trapped in a single crystal,13 
the 3s and 3p characters of 31P were obtained to be 0.1 1 and 0.60, 
respectively. Thus, the odd electron of this radical was found to 
be nearly localized on 31P. Therefore, in the present study, we 
could observe an appreciable magnetic field effect on the rate of 
reaction between phosphorus- and carbon-centered radicals with 
the laser flash photolysis technique. 
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A theory for electron-transfer rates in a polar medium is developed using an expansion of the density matrix in Liouville 
space and utilizing the analogy with the problem of nonlinear optical line shapes. A separation of time scales between the 
populations and coherences (diagonal and off-diagonal elements of the density matrix, respectively) allows us to carry an 
approximate summation of the rate to infinite order in the nonadiabatic coupling. A closed expression for the rate and a 
novel criterion for adiabaticity, involving the entire frequency and wavevector-dependent dielectric function of the solvent 
c(k,w) are derived. A proper definition of the relevant solvent time scale in terms of c(k,w), which is not restricted to the 
Debye model, is obtained. The role of the solvent longitudinal dielectric relaxation in inducing the crossover from the nonadiabatic 
to the adiabatic regimes is analyzed. 

I. Introduction 
The effects of solvation dynamics and relaxation on the rates 

of electron-transfer (ET) processes had received considerable 
attention It has long been recognized that the ET 
rate is usually controlled by the dynamics of dielectric fluctuations 
in the surrounding medium (the Favorable fluctu- 
ations, which make the initial and the final states temporarily 
isoenergetic, are crucial in inducing the electron transfer. The 
theory of Marcus6 uses a classical dielectric continuum formulation 
to express the rate to second-order perturbation theory in the 
electronic coupling matrix element Vbetween the initial and the 
final states. This theory had remarkable success in predicting the 
electron-transfer rate in terms of the static and the high-frequency 
dielectric constants of the solvent (to and E-, respectively). A 
parabolic dependence of the logarithm of the reaction rate (the 
activation free energy) on the exothermicity has been predicted 
and ~ o n f i r m e d . ~  As the coupling matrix element V increases, 
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this perturbative expression in V will no longer be valid. It is 
expected that for large V, or when the solvent motions are suf- 
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final result is given in terms of the entire solvent dielectric function 
E(k,W) and is not restricted to the Debye model. It interpolates 
between the adiabatic and the nonadiabatic limits and holds for 
high as well as low activation barriers. The effects of the solvent 
on the rate are analogous to the dephasing processes which 
dominate the optical spectral line shapes. In section 11, we in- 
troduce the solvation coordinate and present a general expression 
for the rate (eq 3) in terms of an ordinary line-shape function a@), 
the equilibrium distribution of the solvation coordinate S,(E),  and 
a solvent characteristic time T , ~ ( E ) ,  j = a, b. Here la) and Ib) 
denote the initial and the final states for the electron-transfer 
process (Figure 1). These quantities are then related to the 
wavevector and frequency-dependent dielectric function of the 
solvent c(k,w). A unified criterion for adiabaticity (eq 17), which 
is not restricted to high activation barriers, is obtained. In section 
111, we apply these results to the Debye model of e and derive an 
explicit expression for the rate in terms of to, e-, and the longi- 
tudinal relaxation time T ~ .  Numerical calculations show the 
Kramers turnover regime as well as the Marcus free energy curve. 
These results are summarized and discussed in section IV. 

11. The Solvation Coordinate and the Electron-Transfer Rate 
We consider an electron-transfer process between two molecules 

in a polar solvent. We denote the electronic state of the system 
when the electron is on the donor and the acceptor by la) and Jb), 
respectively. The Hamiltonian of the system is 

H = la)Ha(al + Ib)(Hb - E ) W  + v(la)(bl + Ib)(aO (1) 

Here Ha and H b  are the solvent Hamiltonians when the charge- 
transfer system is in the states la) and Ib), respectively. E is the 
exothermicity of the reaction. We assume that initially the system 
is in the state la), and we shall be interested in calculating the 
rate constant K for electron transfer to state Jb) .  The solvation 
coordinate U is defined as 

l l  

E \ I  

1 \I/ X 

s a  sb 
Figure 1. The free energy surface for electron transfer as a function of 
the solvation coordinate x. 6, is the equilibrium value of x, and AG,* 
is the free energy of activation when the electron-transfer system is in 
state la). 8b and AGb* are the corresponding quantities when the system 
is in the state Ib). V i s  the electronic coupling matrix element. 

ficiently slow, the rate will become independent on V, and the 
nonadiabatic reaction will become adiabatic. In that limit the 
E T  dynamics can be described by a motion on a single potential 
surface with a barrier. Kosower and Huppert' had demonstrated 
that adiabatic barrierless photochemical intramolecular elec- 
tron-transfer rates in alcohols are correlated with the inverse 
solvent longitudinal relaxation time. The problem of adiabatic 
rate processes has been the subject of extensive studies following 
the pioneering work of K r a m e r ~ , ' ~ ' ~  who derived an expression 
for the effect of the solvent on the rate using a stochastic Langevin 
approach. Zusman13 had developed a nonperturbative expression 
for the rate assuming that the solvent dielectric function is 
Lorentzian in frequency (the Debye model) and that the activation 
barrier is high.I6 His formulation cannot be easily generalized 
to barrierless reactions and to non-Debye solvents. 

In this article we develop a theory for ET rates in polar solvents 
by utilizing the formal analogy of this problem with the calculation 
of nonlinear optical line shapes. The perturbative calculation of 
the rate (to order v)  is formally equivalent to the calculation of 
ordinary spectral line shapes in a weak electromagnetic field. 
Similarly, the nonperturbative calculation of the rate and the 
transition to the adiabatic limit bear close formal resemblance 
to the problem of nonlinear optical line shapes. The transition 
to the adiabatic regime is strikingly analogous to the saturation 
of spectral line shapes in a strong radiation field (the Karplus- 
Schwinger line We have developed equations of 
motion for the density matrix in Liouville space which allow the 
calculation of spectral line shapes in nonlinear optical processes.18-20 
In this article, we use that formulation to derive a closed form 
expression for the electron-transfer rate in a polar solvent. The 
approach is based on projection operators in Liouville space,2' 
followed by an approximate resummation of the perturbative series 
for the rate to infinite order in the electronic coupling V. Our 
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1949. 

Here Da(r) and &(r) is the electric field, at point r, produced by 
the static charge distribution of the donor and acceptor in the states 
la) and Ib), respectively, P(r)  is the polarization of the solvent 
a t  the point r. 

The calculation of the rate was carried out using an expansion 
of the density matrix in Liouville space.18-21 It is assumed that 
the only dynamical variable of the solvent relevant for the electron 
transfer is the solvation coordinate (eq 2). A projection operator 
is then constructed which projects the complete solvent dynainics 
into that of the solvation coordinate, and the ET rate is expanded 
in a power series in V. An approximate infinite resummation of 
this series, analogous to the calculation of nonlinear optical line 
shapes, is then carried out. The resummation makes use of the 
separation of time scales between the off-diagonal elements, which 
undergo rapid dephasing, and the diagonal elements which survive 
for longer times. The final expression for the ET rate is22 

with 

Here a(E) is an ordinary absorption line-shape functioxi for the 
la) to Ib) electronic transition, Sa(E)  is the probability of the 
solvation coordinate to have the value E at equilibrium when the 
electron is in the la) state, whereas T ~ , ~  is a characteristic solvent 
relaxation time when the electron is in state la) and the solvent 
is perturbed around configurations with energy E - 6,. &(E) and 
Ts,b are the corresponding quantities when the charge-transfer 
system is in the state Ib). T~ is an averaged solvent relaxation time 
which is relevant for the dynamics of the ET process and controls 

(22) Sparpaglione, M.; Mukamel, S., to be published. 
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its adiabaticity. Assuming that the solvation coordinate U is a 
Gaussian process and making use of the second-order cumulant 
expansion, we obtain the following expressions for these dynamical 
quantities: 

a(x) = - R e  L- dt exp[(i/h)xt - g(t) ]  (5) a 

with 

g ( t )  = A: Re L r d r l  L “ ~ T ~  Ma(72) 

Aj2 = (V2pj) - (Upj)’ (6c) 

(6d) 
Here pj is the equilibrium density matrix of the solvent, when the 
system is in the state u ) ,  and the angular brackets (...) denote 
a trace over the solvent degrees of freedom. Note that Mj(0) = 
1. We further have 

Aj2Mj(t) = (exp(iHjt)U exp(-iHjt)Upj) -   UP^)^, j = a,  b 

1 (x - Sj)’ 
Sj(X) = - 

(27r)II2A, 

with 

exp(-[(x - 6j)2 + 1 
Rj(x,t;x’) = 

(1 - Mj2(t))”2 

and 

1 Mj(t)(E - 6j)’ 

Rj(E,t;E) = (1 - Mj2(t))’/Z At[ l  + Mj(f)]] (9b) 

Here Rj(x,t;x9SJ(x’) is the conditional probability for the solvation 
coordinate to have the value x at time t given that it had the value 
x’at t = 0, and that the molecular system is in state lj), j = a, 
b. Note that rSJ depends only on the diagonal part of R,, Le., 
Rj(E,t;E). rS j  can be interpreted as a typical time scale for the 
solvation coordinate to relax when it is perturbed around x = E 
and the electron is in state ti). In eq 3-9, the effects of the solvent 
enter in the shifts Sj, the variances At ,  and the correlation functions 
Mj(t). Using perturbation theory in the solvent system interaction, 
we can express these quantities in terms of the dielectric function 
of the solvent t(k,w). Within this approximation, A, and M, are 
independent of j, and we shall omit the subscript j .  We then get 

A2M(t) = 
l l d r l  dr2 [Da(rl) - Db(rI)l [Da(r2) - Db(r2)1CPP(rl-r2it) 

( loa)  

Sj = - A(XBn-’dh l d r ,  dr2 [Da(rl) - Db(rl)]. 

= l m d k  exp[-iwt - ik(r, - r2)] X 2(245 -- w 

Here Dj(r) is the electric field produced by the static charge 

distribution of the system in state ti), A2 equal to the right-hand 
side of eq 10a at  t = 0, so that M(0)  = 1. Cpp(r,t) is the equi- 
librium correlation function of the solvent polarization, which is 
related to its dielectric function. 

Equations 10 relate the electron-transfer rate to the wavevector 
and frequency-dependent dielectric function of the solvent e(k,w). 
Usually, only the long wavelength (k = 0) component of c is known 
e~per imenta l ly .~~ A procedure by which t(0,w) may be used to 
obtain c(k,o) for polar fluids was developed.24 Using that pro- 
cedure, we may then evaluate all the relevant quantities (eq lo), 
using t(0,w). Hereafter, we assume that t is independent of k and 
set 

t(k,w) = t(0,w) (1 1) 
upon the substitution of eq 11 in eq lOc, we get 

Making use of eq 10-12, we can express all the dynamical 
quantities appearing in the rate (eq 3) in terms of t(0,w); i.e. 

M ( t )  = QW/Q(o) (15b) 

T~~ = exp(qj2/2) r(qj) j = a, b (16a) 

The line-shape function u is given by eq 5 with Aa = A and Ma(t)  
= M ( t ) .  We further have 

with 

and 
E - 6; 

(16b) 

r(q,) is a characteristic relaxation time for the solvent fluctuations 
when the solvation coordinate is perturbed around x = E - 6, = 

Equation 3 provides us with a novel criterion for adiabaticity. 
(kBq6a - 6b1)1/2qj* 

We introduce the adiabaticity parameter 

( p / h ) [ S a ( E )  + Sb(E)lrs (17) 
When v is small, the reaction is nonadiabatic, and the rate is 
proportional to P; i.e. 

K = ( P / h ) u ( S ,  - E)  Y << 1 (18a) 
In the other extreme, the rate is independent on V, and we get 

r, is, therefore, the characteristic solvent time scale which controls 
the adiabaticity of the E T  process. An ET process which is 

(23) Bottcher, C. J. F.; Bordewijk, P. Theory of Electric Polarization; 

(24) Loring, R. F.; Mukamel, S.  J .  Chem. Phys., in press. 
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Figure 2. The line-shape function a(x) for the Debye model is displayed 
for different values of the longitudinal relaxation time T ~ .  Each curve 
is labeled by the corresponding relaxation time T ~ ,  given in units of h/A. 
The coordinate x is given in units of A. As T L  increases a(x )  changes 
from a Lorentzian to a Gaussian. 

nonadiabatic for small T ,  will eventually become adiabatic as T ,  

is increased. The precise definition of 7, (eq 4 and 16) is one of 
the major results of this article. 

111. Appiication to the Debye Model 
Equation 3 provides an expression for the ET rate for a solvent 

with an arbitrary dielectric function t.(O,w). We shall now analyze 
it for the Debye m ~ d e l ; ' ~ . ~ ~  Le. 

e(O,w) = em + (€0 - &)/(I - iwTD) (19) 

where T D  is the Debye relaxation time. Using eq 12 and 13, we 
then get 

Sj = ( 4 ~ ) - ' [ 1 / ~ ~  - l/t ,]Sdr [Da(r) - Db(r)]Dj(r) (20a) 

M ( t )  = exp(-t/TL) 

where the longitudinal dielectric relaxation time is 
TL E ( & / € ~ ) T D  (20c) 

and Az is given by eq loa. We shall start our analysis with the 
nonadiabatic rate (eq 18a). The line-shape function a(x), (q 5), 
has a maximum at  x = 0. Near the line center for x << h / ~ ~ ,  
the line shape assumes a Lorentzian form'9 

In the wings, i.e., x >> h / sL ,  the line shape is Gaussian 

The full width at half-maximum of the line shape a(x) isI9 

The line shape U(X) is dominated by the parameter 

(23) 

The following conclusions may be obtained by a close examination 
of eq 20-23. For K >> 1 the line shape is Lorentzian over many 
widths since r0 << ~ / T L .  For K << 1 the line is Gaussian since 
ro >> h / ~ ~ ,  and the onset of Gaussian behavior occurs near the 
line center. In Figure 2 we show u(x) for various values of T~ 

(as indicated). The transition from Lorentzian to Gaussian as 
T~ increases is clearly demonstrated. 

Equation 18a together with eq 21-23 allow us to predict the 
variation of the nonadiabatic rate with TL. Suppose we start with 
a very short T ~ .  In this case the line shape a(x) will be a very 
narrow Lorentzian (motional narrowing) and assuming that IE 

h h 
K = - =  

"L (kBq6a - 6b))1'2TL 

-3 -2 -1 0 1 2 

Log T 
L 

Figure 3. The ET rate vs. the longitudinal relaxation time for small 
barriers. The solid lines represent our result (eq 3) for A = 1, V = 1, 
6, = 1, 6b = 2. Each curve is labeled by the value of the exothermicity 
E .  The dashed curves are the nonadiabatic rates (eq 18a), shown for 
comparison. For small T~ the nonadiabatic limit holds, and the rate is 
proportional to T ~ .  As T~ increases, the nonadiabatic rate assumes a 
constant value independent of T ~ ,  whereas the complete expression (eq 
3) decreases as 1 / ~ ~  The solid lines clearly show the Kramers turnover 
regime. T~ is given in units of h/A. 

I \ , I I , I 
-3 -2 -1 0 1 2 

Log TL 

Figure 4. The same as Figure 4 but for larger values of the exothermicity 
(as indicated), corresponding to larger activation barriers. 

- Sal is finite, the rate will be given by eq 21a where x is in the 
line wings x >> kBq6, - 6bITL. Under these circumstances K will 
grow - T ~ :  As TL is increased further, the line shape will remain 
a Lorentzian but with a larger width ( - T ~ ) .  When x kBi16, 
- b&L, the rate will be given by eq 21a at the center (x = 0) and 
will decrease as T ~ - ~ .  When T~ is increased even further, the line 
shape will eventually turn into a Gaussian (eq 21b) and the rate 
will become independent of T ~ .  We thus have a crossover between 
three regimes: the wings of a Lorentzian for very short T ~ ,  the 
center of a Lorentzian for intermediate T ~ ,  and the Gaussian for 
large TL. The rate when plotted vs. TL will show a maximum and 
then reach a plateau. This behavior is illustrated by the dashed 
curves in Figures 3 and 4. 

We shall now consider the transition to the adiabatic regime 
whereby the rate (eq 3) gradually attains the limiting form (eq 
18b) with the solvent time scale T~ defined in eq 16, together with 
eq 20c. The function T ( q )  (and consequently T,) is proportional 
to 71. In Figure 5, we display T ( q ) / T L  vs. q. The behavior of T ( q )  
for small and for large q can be found analytically, Le. 

(27r)"2 
=- q 2  >> 2 

4 T L  

The dashed curve in Figure 5 shows the asymptotic form (27r)'I2/q. 
Since T ( q )  and the adiabaticity parameter Y (eq 17) are pro- 
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Figure 5. The function 7(q) (eq 16b), which controls the relevant solvent 
time scale T~ and the adiabaticity parameter, is plotted vs. q for the Debye 
model. The solid line is the exact 7(q ) / rL ,  calculated numerically. The 
dashed curve is the asymptotic form - ( 2 r ) I / * / q ,  which holds for q k 
2. 

portional to T ~ ,  we predict that for large T ~ ,  the adiabatic rate 
will decrease as T ~ - I .  The plateau regime of the nonadiabatic rate 
(dashed curves in Figures 3 and 4) will thus turn into a 
behavior. The solid curves in Figures 3 and 4 show the T~ de- 
pendence of the rate (eq 3). The maximum in the rate is the 
Kramers turnover.'" Making use of eq 18b, together with eq 16 
and eq 24, we can write a closed expression for the adiabatic rate. 
The line-shape function U ( X )  is taken to be Gaussian (eq 21b) 
and so is Sj(x); Le., 

(25) 
For high barriers ( E  - 6,)2/(kBq6a - 6bl) > 2, the adiabatic rate 
(eq 18b) thus assumes the form 

In the opposite limit of low barriers ( E  - 6a)2/(kBq6a - 6,( < 2, 
and assuming further that the reverse reaction is very slow, &(E) 
<< Sa(E) ,  we get 

a is a constant order of 1. Its exact value is determined by the 
barrier height. For bamerless reactions, we have a = In 2. Finally 
in Figure 6, we display the rate (eq 3) as a function of the exo- 
thermicity E for various values of T~ (as indicated). For small 
T~ we recover the Marcus parabolic turnover. The figure dem- 
onstrates how this curve is modified as we cross into the adiabatic 
regime (large T ~ ) .  

IV. Concluding Remarks 
In conclusion, we shall summarize the main steps and results 

of this article. The present approach is based on the assumption 
that only a single collective solvent coordinate (the solvation 
coordinate U) is relevant for the dynamics of the ET process. The 
calculation of the rate was accomplished by formulating the dy- 
namics in Liouville space using the density matrix of the ET system 
and the solvation coordinate. An approximate projection operator 
allows us to trace over all the other solvent degrees of freedom 
and focus on the solvation coordinate. In this way, the problem 
becomes analogous to the calculation of nonlinear optical line 
shapes.1s-21 When the rate is expanded in even powers of the 
electronic coupling V, the term O(V) is analogous to ordinary 

V 1 

-1 0 1 2 3 

E/A 
Figure 6. The logarithm of the rate (eq 3)  is plotted against the exo- 
thermicity E. Each curve is labeled by the value of the longitudinal 
relaxation time. For T~ = 0.5 the reaction is nonadiabatic and it changes 
to adiabatic as T~ is increased. Times are given in units of r i /A and 
energies in units of A. V = 0.2, 6a = 1, 6, = 2. 

(weak field) absorption line shape, whereas the term O ( P )  is 
intimately related to the calculation of fluorescence, Raman, and 
four-wave mixing line shapes.18-20 An approximate resummation 
of the perturbative series to infinite order in V was then performed, 
based on the assumption of separation of time scales between the 
off-diagonal density matrix elements (the coherences) and the 
diagonal elements (populations). The resulting expression (eq 3) 
interpolates between all the known limits of the rate and relates 
the activation free energy and the adiabaticity to the solvation 
dynamics. The activation free energy is determined by E,  Sj, and 
qj, which are expected to be affected mainly by solvent polarity, 
whereas the solvent dynamics enter into the time scale function 
7(qj) through the polarization correlation function M ( t ) .  Our 
expression satisfies properly the detailed balance condition, re- 
produces the entire Kramers turnover curve as a function of the 
solvent longitudinal time, interpolates continuously between the 
nonadiabatic and adiabatic limits, allows us to define the reaction 
free energy microscopically, and generalizes Marcus free energy 
relation to the nonadiabatic regime. An important issue, which 
is the subject of a current extensive debate,'-6 is the precise 
definition of the solvent time scale relevant for the ET rate. The 
present theory shows that this is T ~ ,  (eq 4 and 16), which is 
determined by the correlation function M ( t )  (eq 10). M ( t )  may 
in turn be expressed in terms of the solvent longitudinal polari- 
zation correlation function Cpp(rI-rZ,t) (eq 1Oc). The latter is 
related to the full wavevector and frequency-dependent dielectric 
function of the solvent t(k,w) (eq IOc). The steps required to 
predict the ET rate by using the dielectric properties of the solvent 
involve therefore getting Cpp, then M ( t ) ,  and finally T ~ .  In the 
calculations presented here, we have assumed that e(k,w) is in- 
dependent of k (eq 11). Our general expression (eq 3), however, 
is not restricted to this limit. Dielectric relaxation experiments 
are usually done in the long-wavelength limit and result in the 
k = 0 component of ~ ( k , w ) . ~ ~  A systematic procedure for con- 
structing e(k,w) for a polar fluid, using c(k=O,w) as an input, was 
developed recently24 and can be used within the present theory 
(eq IO). Given E(O,W) ,  we obtain M(t)  via eq 15. Note that M ( t )  
is related to the Fourier decomposition of l/t(O,u) and not of 
~ ( 0 , w ) .  Usually, experimental data of t(0,w) are analyzed in terms 
of a correlation function F(t)  which is related to the Fourier 
decomposition of ~(0,w) .  A common practice is to interpret e(0,w) 
in terms of a sum of a few components corresponding to different 
Debye relaxation times (e.g., alcohols). Other forms use con- 
tinuous distributions of Debye times (e.g., the Cole Davidson 
form).23 It should be emphasized that these Debye times are not 
the true longitudinal time scales of the solvent.24 In general, if 
F(t)  is a superposition of N Debye relaxation functions with times 
tj, M ( t )  will also have N relaxation times ti. tj' are however 
distinctly different from t j .  It is the latter time scales that are 
relevant for the ET rate. For the Debye model we have a single 
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formulation is valid also in this case and provides an expression 
for K ( t ) .  This will be analyzed in the future. 

relaxation time tl = TD and the longitudinal time t,' = ~ ( 0 )  = 
In 2 T~ = In 2 T ~ ( E , J E ~ ) .  This relation holds only for the Debye 
model. In general we cannot go from tj to t,' by simply multiplying 
with (€../eo). The correct general procedure is to use ~ ( 0 , w )  to 
get M(t) which will subsequently yield t,'. Finally, it should be 
noted that for small barriers, simple rate equations may not hold, 
and the E T  process should be described by a generalized master 
equation with a memory (time-dependent rate K(t)). The present 
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Preparation and Structure of Fully Cs+-Exchanged Zeolite A 
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Fully Cs+-exchanged zeolite A, a most ionically crowded zeolite A, has been prepared: CS,~-A.'/~CS by the reduction of 
Na+ in dehydrated NalZ-A with cesium vapor ( M O B S  = +0.21 V), and CslZ-A.CsOH by the reaction of hydrated (NH4+),~-A 
with cesium hydroxide ( K  = 5.6 X lo4). (These rational compositions differ insignificantly from those found experimentally.) 
Their structures (a = 12.279 (1) and 12.291 (5) %., respectively) have been determined by single-crystal X-ray diffraction 
methods in the cubic space group Pm3m with final R(weighted) indices of 0.042 and 0.093, respectively. In each structure, 
2 Cs' ions are found about 4.05 %. apart in each sodalite unit, while 3 Cs' ions per unit cell are located in the centers of 
8-rings. In CS,~-A-~/~CS,  viewed as a mixture of CsIZ-A and Cs,,-A, 6 or 8 Cs+ ions per unit cell lie opposite 6-rings in 
large cavity. The electrons of the excess Cs atoms have not delocalized to form a metallic continuum among Cs+ ions with 
intercesium distances comparable to those in cesium metal. Rather they remain localized among the closest Cs+ ions to 
give linear (CS~)~ '  cations. The hydroxide ion in Cs12-ACsOH is presumed to be in the sodalite unit to relieve ion crowding. 
For the same reason, four Cs' ions in the large cavity are found opposite 4-rings rather than at the usually preferred 6-ring 
sites. 

During the past decade, repeated attempts to prepare fully 
Cs+-exchanged zeolite A have led to gradual increases in the 
maximum extent of exchange, from 7/ 12 to 1 1 / 1 2.1-5 Fully 
Cs+-exchanged zeolite A, if it could be prepared (and dehydrated), 
would be a remarkably ionically crowded material. It is to avoid 
this crowding, presumably, that the zeolite does not accept 12 Cs+ 
ions per 12.3 A unit cell as the result of conventional ion-exchange 
procedures.I4 How might 12 such large ions (Cs', r = 1.67 A6) 
be arranged in the unit cell, and what novel properties might this 
material have? 

Two independent syntheses of Cs-A, zeolite A containing no 
exchangeable cations other than Cs', are reported here, together 
with their crystal structures. Two nonconventional ion-exchange 
methods have been employed: (1) reduction of Na+ in dehydrated 
NalZ-A with cesium vapor, and (2) reaction of hydrated 
(NH4+)12-A with CsOH. These reactions are driven by the 
following considerations, which cause the concentrations of the 
unwanted cations in the system to approach zero: 

(1) 

(2) 

A single crystalg of NaI2-A (stoichiometry: 
Na12SilzA112048~27H20), 0.08 mm on an edge, was dehydrated 
for 48 h a t  350 O C  and 1.0 X Torr, and then exposed to ca. 
0.1 Torr of cesium vapor for 16 h at 345 OC. The product (crystal 
1) had a black shiny surface. 

Na+ + Cso - Nao + Cs+ (AEO,, = +0.21 V)' 

NH4+ + OH- - NH,t + H 2 0  ( K  = 5.6 X 104)8 
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Firor, R. L.; Seff, K. J .  Am.  Chem. SOC. 1977, 99, 6249-6253. 
Subramanian, V.; Seff, K. J .  Phys. Chem. 1979, 83, 2166-2169. 
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Shannon, R. D.; Prewitt, C. T. Acta Crystallogr., Sect. B 1969,825, 
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For the second synthesis of Cs-A, single crystals of (NH4+)12-A 
were prepared by flow methods.1° They were placed in contact 
with an approximate 50-fold excess of wet solid cesium hydroxide 
for 3 h in an ultrasonic vibrator, to expedite the diffusion and loss 
of the NH, evolved. By this batch method, the number of impurity 
cations which the zeolite could scavenge from the exchange 
medium was limited." One crystal was then evacuated at  24 
OC and 1 X Torr for 14 h (crystal 2, 0.08 mm on an edge). 
Its physical appearance was unaltered by these procedures. 

The space group Pm3m was used throughout this work for 
reasons discussed previously.I2 The structures, a = 12.279 (1) 
A for crystal 1 and 12.291 (5) A for crystal 2, were solved by using 
201 and 87 unique reflections (1, > 3u(Z0)), respectively, collected 
on an automated diffractometer with monochromatic Mo Ka 
radiation. Absorption corrections (pR ca. 0.4)13 were not applied. 
Other experimental details including data reduction are as pre- 
viously presented.I4 

Full-matrix least-squares refinementI5 of crystal 1 using an- 
isotropic thermal parameters for all atoms except Cs(4) quickly 
converged to R,  = CIFo - IFcll/CFo = 0.061 and R, = (Cw(Fo 
- IFc1)2/CwF2)1/2 = 0.05 1. Inclusion of Cs(4) with an isotropic 
thermal parameter lowered these to 0.054 and 0.040, respectively, 
with occupancies converged at  2.99 (4), 7.01 (9), 2.18 (5), and 
0.78 (12) for Cs(i), i = 1 to 4, and an unusually large thermal 
parameter for Cs(4). When the thermal parameter and occupancy 
of Cs(4) were free to vary, while all other occupancies were fixed, 

(10) McCusker, L. B.; Seff, K. J.  Am. Chem. Soc. 1981,103, 3441-3446. 
(11) Dejsupa, C. M.S. Thesis, University of Hawaii, 1986. 
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