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Dielectric response, nonlinear-optical processes, and the
Bloch-Maxwell equations for polarizable fluids
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Reduced equations of motion, which generalize the Bloch-Maxwell equations to polarizable fluids with intermolec-
ular interactions, are derived. Local-field effects are analyzed using the solvable limiting case of a perfect crystal.
The dielectric function e(k, ) and the nonlinear susceptibility x(3) are explicitly evaluated for a model system. Two
four-wave mixing techniques, which provide a direct probe for transport processes, are analyzed: the transient
grating and its frequency-domain analog. A unified picture is provided for transport phenomena, cascading, and
polariton effects.

1. INTRODUCTION

Nonlinear spectroscopic techniques, particularly four-wave
mixing (4WM) processes, provide important tools for moni-
toring the dynamics of molecular electronic and vibrational
excited states in condensed phases.'- 6 The most common
4WM techniques include transient grating,7 -'0 station-
ary 5""',12 and time-resolved'3-'9 coherent Raman spectrosco-
py, hole burning,2 0'2' and photon echoes.2 2-25 Considerable
theoretical effort was devoted toward calculating the nonlin-
ear susceptibilities of dilute absorbers that do not interact
with one another but do interact with a thermal bath. Such
single-absorber models can be used in the interpretation of
nonlinear-optical experiments performed on low-concentra-
tion impurities in mixed crystals,2 42 6 glasses,20 and dilute
solutions.27 -3 0 The resulting nonlinear susceptibilities de-
pend on the frequencies of the various fields (wj) but do not
depend explicitly on the wave vectors (kj). The nonlinear
process itself depends on the wave vectors through the
phase-matching condition but not through the nonlinear
susceptibility. In perfect molecular crystals, where the ab-
sorbers do interact, the nonlinear susceptibilities depend
explicitly on wave vectors. 3 9 10 31 32 In these cases, it is pos-
sible to use translational invariance and to use the exact
eigenstates of the crystal toward the calculation of nonlinear
susceptibilities. The situation is more complicated, howev-
er, for molecules in solution, mixed crystals, or glasses. In
these cases the system is disordered, and interactions among
the absorbers can be significant, leading to various trans-
port, energy-transfer, and relaxation processes. Much of
this information is contained in the wave-vector dependence
of the nonlinear susceptibilities. Because the exact many-
body eigenstates of disordered systems are not readily avail-
able, an approximate theoretical framework needs to be de-
veloped for the calculation of nonlinear-optical processes in
disordered media. Considerable attention was given recent-
ly to studies of 4WM processes in interacting absorbers.
The transient-grating (TG) technique was used to study
excitonic motion in a wide variety of systems, including
molecular crystals, 37 26 ionic crystals,8 and solutions. 7 Lor-
ing and Mukamel 9"0 studied the exciton motion in a perfect
crystal by using the Haken-Strobl model. Several 4WM

experiments were performed in an attempt to observe the
Anderson transition.33-35 The possibility of using the pho-
ton-echo experiment to investigate the excited-state dynam-
ics of interacting absorbers in disordered systems was con-
sidered by several authors.36 -38

In this paper we consider the linear (dielectric) and the
nonlinear-optical response of a fluid of interacting polariz-
able molecules. Our approach is based on the derivation of
reduced equations of motion (REM) for a set of relevant
molecular variables. 39 The REM are expanded perturbati-
vely in the intermolecular interactions. Our REM general-
ize the conventional Bloch-Maxwell equations40 to include
explicitly transport processes and intermolecular interac-
tions. The resulting nonlinear susceptibilities are therefore
both frequency and wave-vector dependent. In Section 2
we define the nonlinear-optical processes and susceptibil-
ities. In Section 3 we introduce general formal definitions
for the lowest nonlinear susceptibilities, x(2) and X(3), repre-
senting three-wave mixing and 4WM, respectively. Local-
field and cascading effects are discussed. In Section 4 we
specialize to a simple model of a polarizable fluid consisting
of interacting two-level systems. Using projection-operator
techniques, we derive the generalized Bloch-Maxwell equa-
tions that include the effects of intermolecular interactions.
In Section 5 we analyze the linear response and the dielectric
function predicted by our REM. There are several options
for defining the local field by properly modifying the inter-
molecular interactions. To clarify this point, we derive in
Appendix A the dielectric constant e(k, w) for a perfect
crystal of interacting absorbers, including an arbitrary inter-
molecular interaction JO(r). That function is used to ana-
lyze the proper choice of the local-field corrections. In Sec-
tion 6 we present explicit examples of 4WM processes (i.e.,
the TG and its frequency-domain analog) in which intermo-
lecular interactions play a significant role. Finally, in Sec-
tion 7 we summarize and analyze our results.

2. NONLINEAR RESPONSE FUNCTIONS AND
SUSCEPTIBILITIES

In this section we introduce the notation and the basic defi-
nitions and dynamic variables to be used throughout this
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paper. Consider an electromagnetic field E(r, t) propagat-
ing in a nonlinear infinite optical medium. It satisfies the
Maxwell equation 1 3

VXVXE = 012 E 4 a2 P. (1)c2 at2 c2 at2

Here P is the polarization in the medium. For an isotropic
medium we can separate the transverse and longitudinal
parts of E(r, t) and P(r, t), and the transverse parts are
related by the wave equation

V2E _ 1 2E 47w a2P
c

2 at2 C2 

Hint -E AmE,(rm, t).
m

(8)

EL is the local field acting on the mth molecule and Am is its
dipole operator. As noted by Lorentz, EL in general is dif-
ferent from the Maxwell field E, which is the average field in
the medium. 41-49 We shall assume that EL and E are related
by a formula of the form

EL(r, t) = E(r, t) + 47r dr'n(r - r')P(r', t), (9a)

(2)

In Eq. (2) and in the remainder of this paper, E and P will
denote the transverse part of the Maxwell field and the
polarization, respectively. We shall adopt a complete mi-
croscopic description of the material system and shall as-
sume that it consists of interacting neutral molecules whose
density matrix is p(t). We further assume that the intermo-
lecular interactions do not allow for charge transfer, which is
usually the case when the intermolecular separation is suffi-
ciently large. We thus allow for the formation of Frenkel
excitons but not for Wannier excitons. The polarization
operator can be expressed as a sum of single-molecule opera-
tors, i.e.,42

,
43

P(r) = > (-1)YVj ' >j-3: gm(')b(r - rm). (3)
j=1 m

Here the index m runs over the molecules. rm is the center of
mass of the mth molecule, itm(i) is its jth multipole, and we
are using a tensor notation. The first (j = 1) term in Eq. (3)
is the dipole operator

P(r) = mb(r - rm), (4)
m

where Mim m(') is the dipole operator of the mth molecule.
In this paper we adopt the dipole approximation and use Eq.
(4). The polarization P(r, t) is the expectation value of the
polarization operator

P(r, t) - Tr[P(r)p(t)], (5)

where p(t) is the complete many-body density matrix of the
material system, which evolves in time following the Liou-
ville equation

dp = -iLp - iLntp. (6)dt

Here L is the Liouville operator, defined as

LA - [H, A], (7a)
h

LjntA _ [Hint, At (7b)
h

where H is the total Hamiltonian for the material system and
Hint is the radiation-matter interaction, which in the dipole
approximation assumes the form

or, on transforming to k, w space,

EL(k, w) = E(k, ) + 4-b -(k)P(k, ). (9b)

Throughout this paper we shall adopt the following defini-
tion of a Fourier transform:

A(k, w) = J dr J dt exp(iwt - ik r)A(r, t), (lOa)

A(r, t) = I dk d exp(-it + ik r)A(k, w). (lOb)(2r) 4 J

The choice of ??(k) depends on the nature of the system.
The local field accounts for part of the intermolecular inter-
actions. The form of 77(k) is therefore intimately connected
with the nature of the material Hamiltonian H. In principle
we could have included in Eq. (9a) a convolution over space
and time, letting -q depend on r and t. In Eq. (9b) this
generalization amounts to replacing (k) by (k, ). We
shall show in Section 5 that Eqs. (9) provide an adequate
definition for the local field for point dipoles in a cubic
lattice. In that case, Eqs. (9) hold in the long-wavelength k
- 0 limit, provided that we eliminate the dipole-dipole
interactions in the Hamiltonian H [Eqs. (7)] and we set i7(k)
= 1.41,44,4649 For extended charge distributions, -q(k) is usu-
ally less than one.3 For metals50 or free excitons,31 32 we
usually take q(k) = 0, i.e., the local field is assumed to be the
same as the Maxwell field. In the remainder of this section
and in Sections 3 and 4 we shall assume that 77(k) is known
since it may be calculated from a detailed knowledge of the
microscopic charge distribution. A procedure for calculat-
ing in(k) and constructing the Hamiltonian H in a systematic
way that avoids overcounting of intermolecular interactions
is developed in Section 5. Equations (2)-(6) and (9) provide
a closed set of equations that permit us, in principle, to solve
simultaneously for the density matrix of the material system
(p) and for the electromagnetic field E. These equations are
still too complicated since they contain the entire material
many-body density matrix. The main goal of this paper is
to develop an appropriate reduced description toward the
approximate evaluation of the polarization [Eq. (5)] for non-
linear-optical processes. We shall now introduce the non-
linear response functions that will be calculated later. They
are defined by expanding P(r, t) in a power series in EL(r, t),
i.e.,
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P(r, t) = j dt, J dr 1R(l)(r - rl, t)EL(rl, t - t)

+ J dt1 J dt2 J dr, f dr2 R(2)(r - rl, r - r2 , t1, t2 )

X EL(rj, t - tl - t2 )EL(r 2 t - t2)

+ J dt, J dt2 J dt3 J dr1 J dr2 J dr3

X R(3)(r - r1, r - r2, r - r3 t, t2, t3)

X EL(r1, t - tl- t2-t 3 )E(r 2 , t- t2 - t3 )

X EL(r3, t - t 3) + , (11)

where we assumed that the electromagnetic field interacts
with the system at times T1, T2, and T3, and we have intro-
duced the time variables t1 = T2 - T1, t2 = T3- T2, and t3 = t -

T3 to denote the intervals between successive radiation-mat-
ter interactions. We can write the polarization in the k, w
domain as

P(k, ) = f?(1)(kwo)EL(k, wo)

+ J dwo, J dW 2 J dkl |dk 2 fk(2)(kll, k2 w2 )

,< EL(kj, wl)EL(k 2 , W2 W( - - W2)6(k - k- k2)

+ J dw, J dW 2 J dw 3 Jdkj Jdk2 J dk 3

X ?(3) (kjwj, k2W2, k3W3)

X EL(kj, wl)EL(k2 , W2)EL(k3, W3)

X O - - - 3)(k - k- -k2-k 3 ) + * ..

(12)

Here R(n) is the nonlinear response function to nth order in

EL. g(n) are related to Rin) by a simple Fourier transforma-
tion:

kl)(kco) = J dr J dt X exp(iwt - ik r)R(1)(r, t),

(13a)

?(2) (klwl, k2 W2 ) = f dr, |dr 2 f dt, f dt 2

X exp[iltl + i(WI + W2 )t2 - ik, * r,

- ik2 * r2jR(2)(rl, r2 , t1, t2), (13b)

R(3 )(kw, k2W2, k3W3) = J dr, J dr2 J dr3 J dt1 J dt2 J dt3

X exp[iltl + i(W 1 + o2)t 2

+ i(W 1 + W2 + W3)t3

- ik, -r, - ik 2 -r2 - ik 3 -r3 ]

X R (3) (rl, r2, r3, t1, t2, td). (13c)

The microscopic calculation of Rfn) and (n) is the main goal
of the present paper. Once R(n) and j?(n) are evaluated, Eqs.
(12) can be substituted into Eqs. (2) and (9), and a closed

equation for the Maxwell field E can be obtained. R n) or
A?(n) thus contain the complete microscopic information nec-
essary for the calculation of any nonlinear-optical experi-
ment. Finally, it will be useful to expand the polarization P
in powers of the Maxwell field E rather than the local field
EL. We thus define

P(r, t) = P(l)(r, t) + PNL(r, t), (14a)

where p(l) is to first order in E and PNL represents the
nonlinear contribution to the polarization

PNL(r, t) = P(2)(r, t) + P(3)(r, t) + .... (14b)

We further introduce the frequency and wave-vector-depen-
dent dielectric function e(k, w)

P(')(k, o = E, ) - 1E(k, w).
4-7r

Combining Eqs. (2), (14), and (15) results in

1 2 
V2 E(r, t) - -d -2 dt, J dr1 E(r - rl, t)E(rl, t - t)

47r 02PNL(r, t)
C2 at

2

which may be recast in k, cw space as

[c2k2
- w2E(k, w)]E(k, w) = 4Irc 2PNL(k, w),

(15)

(16)

(17)

where k = k!. In the following sections we shall use the
definitions and the formal relations introduced here to de-
velop a microscopic theory for the linear and the nonlinear-
optical response of molecular fluids.

3. THREE-WAVE AND FOUR-WAVE MIXING
INCLUDING LOCAL-FIELD AND CASCADING
CORRECTIONS

In Section 2 we introduced the nonlinear response functions
Rin) and their Fourier transforms 1(n) [Eqs. (11)-(13)], which
carry the complete microscopic information required for the
description of any nonlinear-optical process in the medium.
The response functions may be obtained by solving the
Liouville equation for the material system [Eq. (6)], treating
EL as an external perturbation, and expanding the material
density matrix in powers of EL. It should be emphasized
that the calculation of Rin) can be made by using Eq. (6)
alone, and we do not need to consider the Maxwell equations
[Eq. (2)] at this stage. The calculation of the nonlinear-
optical signal requires, however, the solution of the Maxwell
equation [Eq. (16)] for E(r, t). To this end, we need to
expand EL in a power series in E and recast the expansion
[Eqs. (11) and (12)] in terms of E. When this expansion is
substituted into Eq. (16), we obtain a closed (nonlinear)
equation for E. We shall now consider a stationary experi-
ment in which we have a few relevant modes of the radiation
field. We shall then expand E, EL, and P in a discrete
Fourier series, i.e.,

EL(r, t) = E [EL(kj, wj)exp(ikj . r - iwjt) + EL*(kj, cc)

X exp(-ikj- r + iwjt)], (18a)
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E(r, t) = Z[E(kj, wj)exp(ikj * r - ijt) + E*(kj, w1)

X exp(-ikj r + ijt)], (

P(r, t) = I[P(kj, wj)exp(ikj r - ijt) + Pj*(kj, wj)
i

X exp(-ikj r + icojt)].

The present notation is different from the continuous trans-
forms used earlier, i.e., EL(r, t) and EL(k, c) are not related
by Eqs. (10). We shall first introduce the microscopic sus-
ceptibilities (a, y, . .. ) defined as

P(r, t) = a a(kjwj)EL(kj, wj)exp(ikj r - icojt)

+ P f(kj(,j, knfn)EL(kj, coj)E(kn, n)
jn

X exp[i(kj + kn) r -(j + Wn)t]

+ Y y(kjwj, kncon, kmwm)
jn~m

X EL(kjcw)EL(kn, Wn)EL(kmwm)

X exp[i(kj + kn + km) r - i(wj + cn + Wm)t] + * ..

(19)

Comparing Eq. (19) with Eq. (11) and using Eq. (18a) results

a(kjcoj) = ()(kjcj) (20a)

fl(kjxcj, kncon) = f v(2)*(kjj, kn,),
U,nI

-(kjwj, knun, kmcm) = A(3)(kjcj, knxCn, kmcom).

jnim

(20c)

fl(2)(kjwj, knwn) represents a nonlinear process in which the
system interacts first with the k field and later with the kn
field [Eq. (13)]. The sum U n in Eq. (20b) is over the two
permutations of j and n and represents the fact that the
interaction with the two fields can occur in all possible or-
ders in time.6 Similarly the sum U, n, m in Eq. (20c) is over
the six permutations of j, n, m. We further note that we
have included in Eq. (19) only the k + kn or kj + kn + km
Fourier components of P(r, t). In fact, the possible Fourier
components are all choices of signs in kj+kn or
+kjikni+k. These Fourier components may be obtained
from Eq. (19) by changing one (or more) k and j to -kj and
-c and replacing EL(kj, wj) by EL*(kj, wj). For brevity we
did not write all these possibilities explicitly.

At this point we introduce the molecular susceptibilities
that relate the polarization P(r, t) to the Maxwell field, i.e.,

P(r, t) = P(')(r, t) + P(2 )(r, t) + P(3 )(r, t) + . . . , (21a)

18b) P(')(r, t) = Z x(1)(-ki - wj, kj,.)Ej(kj, co)exp(ikj r - ijt),

(21b)

(18c)

P(3 )(r, t) = X( 3 )(-kj-kn-km-j -Wn -M;

X kjwj, knCn, kmcom)E(kj, wj)E(kn, wn)E(km, om)

X exp[i(k; + kn + km) r - i(Wj + Wn + Wm)]-

(21d)

xM1) is the ordinary (linear) susceptibility and is responsible
for the dielectric properties of the medium when the incom-
ing fields are weak. x)2 ) describes three-wave mixing (e.g.,
second-harmonic generation), and x(3) is responsible for
4WM.1-6 x(2) can have any of the Fourier components
+kjkn; x(3) can have the Fourier components kjikntkm.
In Eqs. (21) [as for Eq. (19)] we have written explicitly only
the components with the pluses. All other components may
be obtained by changing one (or more) k and coj to -kj and
-wj and by changing E(kj, wj) to E* (kj, cj). We are now in a
position to express the susceptibilities (n) [Eqs. (21)] in
terms of the microscopic susceptibilities a, fi, y [Eqs. (20)].
To that end, we first combine Eqs. (9b), (14a), and (15) and
recast the local field in the form

EL(k, c) = S(k, co)E(k, c) + 4v n(k)PNL(k, w),

where

S(k, c) = 3 + 77(k)[E(k, co) - 1]
3

and PNL(k, w) is given by Eq. (14b). The linear polarization
is given by

P(')(k, (,) = x(')(-k - co; kco)E(k, co),

where

x() (-k - o; kco) = a(kco)S(k, cv) = -(k )-1
47r

For second-order nonlinear processes we assume two incom-
ing fields: k and k2cv2. The nonlinear polarization is
then given by

P(2)(k, C) = X(2(-k - c; k1w1, k2C02)E(k1 , co)E(k 2, C2),

(24a)

where

x()(-k - ; kwl, k2W2) = 3(klcl, k2CO2)

X S(kj, Wl)S(k 2 , W02)S(k, c) (24b)

and

(20b)

P(2)(r, t) = E1 x (2)(-kj -kn -'Wj - n; kjcoj, knun)

jin

X E(kj, +j)E(kn, +n)

X exp[i(kj + kn) r - i( + n)t]I (21c)

(22a)

(22b)

(23a)

(23b)
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k = k + k2; o = + W2- (Z4c)

For third-order nonlinear processes we introduce three in-
coming fields: ki, k2W2, and k3W3. We then get for the
polarization at k = kj + k2 + k3

P(k, ) = y(kjwI, k2W2, k3s3)EL(kl, L)EL(k2 , C2)EL(k3, cO3)

+ 0(k 1 + k2wl + o2, k3W3)E,,(k1 + k2, Wl + W2)EL(k3, O)

+ f(k 1 + k3W1 + 'O3, k2w2 )EL(kl + k3, x1 + WO)EL(k 2, w2)

+ 0(k2 + k3o2 + W3, klw)EL(k2 + k3, 2 + W3)EL(kl, oI)

are coupled further by intermolecular interactions. We as-
sume that the transition energies of the molecules are suffi-
ciently different from those of the solvent that there is no
solvent-absorber resonant interaction. The material Ham-
iltonian is taken to be9 10

H = Ho + H1 + H2 , (27a)

with

(27b)Ho = h Q Z amtam,

m

+ a(k, w)EL(k, w). (25)

By substituting Eq. (22a) into Eq. (25) and collecting terms
to third order in E, we get

P(3)(k, w) = X(3)(-k - w; kicw1, k2W2, k3w3)E(kj, W1)

H = 2 Y J(rn-rm) (am
n,m

+ amt)(an + ant),

and

X E(k2, W,2)E(k 3, W3 ) (26a)

where

x(3) (-k - ; kco,1, k2w2, k3wo3) = [y(klwl, k2W2, k3W3)

+ f(klwj, k2W2)3(k 1 + k2wol + W2, k3W3)Q(k 1 + k2, W1 + WL2)

+ f3(klwj, k3c 3)3(kI + k3wl + W3, k2W2)Q(k 1 + k3, W1 + Wd)

+ 0(k 2W2 , k3W3)0(k 2 + k3W2 + W3, klaw)Q(k 2 + k3, W2 + 3)]

X S(kj, wl)S(k 2, W2)S(k3 , W3 )S(k, c), (26b)

with

k=k 1+k 2 +k 3 , W=W1 +W2 +w 3, (26c)

Q(k, w) = -7- n(k)S(k, C), (26d)

and k = Jkl. From Eqs. (26), we see that the low-order
nonlinear processes () contribute to the higher-order non-
linear process x(3). This effect is called cascading.3' 48 Let
us examine Eq. (26b) more carefully. The first term in Eq.
(26b) represents the nonlinear process by which three waves,
kiwi, k2 c2, and k3W3, mix to generate a new wave kw. The
second term in Eq. (26b) represents the nonlinear process
whereby two waves, kcL, and k2W2, mix to generate a wave k'
= ki + k2, W' = C1 + W2, and this generated wave mixes
further with the third wave, k303, to generate the final wave
with wave vector k = k' + k3 and frequency w = ' + W3. The
last two terms in Eq. (26b) represent the same sequence of
events with all possible permutations of the three fields.

4. THE BLOCH-MAXWELL EQUATIONS FOR
A POLARIZABLE FLUID

We consider a nonlinear-optical medium consisting of polar-
izable molecules (absorbers) distributed randomly in a sol-
vent.49-54 We denote the static pair distribution function of
the absorbers by g(r).53-55 We shall be interested in transi-
tions between two electronic states of the molecules. These
states are well separated from other electronic levels; thus
each molecule may be described as a two-level system with
transition energy hQ. The transition dipole matrix element
between these two states will be denoted ,. The molecules

(27d)H2 = h E Am(t)amtam,

m

and the radiation-matter interaction [Eq. (8)] in this case
assumes the form

(28)Hint = - Z (amt + am)EL(rm, t).
m

Here amt and am are the creation and annihilation operators
for the electronic excitation on the mth molecule located at
rm. They satisfy the Fermi anticommutation relations,
i.e., 31

ant, an-amtan + anamt = 6m,n + 2amtan(l - mn) (29)

The total intermolecular interaction between molecules n
and m will be denoted J(rn - rm). In Eq. (27b), J(rn - rm) is
a modified interaction that should be chosen consistently
with the local-field factor -(k) to avoid the overcounting of
intermolecular interactions. This point will be discussed in
detail in Section 5. hAm(t) is a stochastic modulation of the
energy of site m and is assumed to be a Gaussian-Markov
process with

(Am(t)) = 0,

(A/m(tI)An(t 2 ) = frmn(tl t2 ).

(30)

(31)

The angle brackets in Eqs. (30) and (31) indicate an average
over the stochastic fluctuations. The summations in Eqs.
(27) and (28) are over all molecules, and EL(rm, t) in Eq. (28)
is the local electric field [Eq. (9)]. Equations (30) and (31)
represent an ideal homogeneous line-broadening mecha-
nism whereby level fluctuations on different sites are uncor-
related, and the time scale for solvent motions is short com-
pared with h divided by the magnitude of level fluctuations.
An additional broadening mechanism, which is dominant in
low-temperature glasses, viscous solvents, polymers, and
molecular crystals, corresponds to the opposite extreme of
inhomogeneous broadening in which the solvent configura-
tions are static on the time scale corresponding to h divided
by the linewidth. This mechanism is not included in the
present paper. A discussion of the range of applicability of
the present model and its limitations and possible exten-
sions will be given in Section 7.

(27c)
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To calculate the optical response of the system, we start at
t = -- and assume that the system is in thermal equilibrium
with respect to its Hamiltonian H (without the radiation
field), i.e.,

(--) = exp(-fH)/Tr exp(-O3H), (32)

where fi = (KT)-1 . The many-body density matrix of the
system then evolves in time according to the Liouville equa-
tion

dp = -_LP - i~nt-dt (33)

We shall also define a Liouville-space matrix element, 30 i.e.,

((AILIB)) = Tr(AtLB). (34)
The Liouville equation [Eq. (33)] describes the dynamics of
the disordered system. In this paper we derive REM that
will allow us to solve Eq. (33) approximately and calculate
the polarization Eq. (5)]. The REM are derived in the
following steps. We first define a set of operators, whose
expectation values are of interest. In our case we choose a
complete set of single-body operators:

AO= 1, (35a)

A3 = E pam(r - rm),
m

(38d)

where p0 = 0) (01 is the ground state of the disordered sys-
tem in which all molecules are in their ground state. In
addition, we define the scalar product of our variables

(39a)

Using Eqs. (35), (38), and (39), we have

SOO= ((A01A0)) = 1,

SOr ((A0 IA1(r))) = 1,

Sir,ir'= ((Ai(r)IAi(r'))) = (r - r'), - i = 1, 2, 3; (39b)

all other matrix elements of S not specified in Eqs. (39) are
zero. We next introduce the projection operator

P = J J drdr' ZIAi(r)))SirjV-((Aj(r')I

L)

(40)

and the complementary projection Q = 1 - P. The density
matrix can now be partitioned as

p(t) = Pp(t) + Qp(t),

(35b) where

(35c)

(35d)

The expectation values of these operators will be denoted

(36)

where Tr represents a trace over the internal degrees of
freedom and an average over the random configurations.
By definition oo = 1. a1(r) is the excited-state population at
position r, and 0r2(r) and a3(r) represent the polarization at
position r. We further denote

P(r) = [ea2 (r) + cr3(r)], (37a)

V(r) = i4 2(r) - o3(r)], (37b)

W(r) = ui(r). (37c)

The only material variable necessary for solving the Maxwell
equations [Eq. (2)] for the radiation field is the polarization
P(r). The other variables V(r) and W(r) are included to
obtain a simple, reduced description of the system.

We next introduce a complementary set of operators:

A = Po, (38a)

Al = atpam(r - rm), (38b)
m

A2 = E amtpob(r - r), (38c)
m

Pp(t) = J J drdr' ((Ai(r)))Sir'jr((Aj(r)Ip(t))).
ii

(42)

Using standard projection-operator techniques,3 9 we can de-
rive the REM for aj(r, t). The REM can be written formally
as

dt = -i ((Aj(r)IPL(t)P|p(t)))

- d ((Aj(r)lPL(t)QK(t, r)L(r)Pp(r))),

(43a)
with

K(t, T) = exp+ i J dTrL(-rl)f, (43b)

where exp+ stands for the positive time-ordered exponen-
tial, i.e.,

K(t, T) = 1 - i dTL(-r)Q

+ ( iX d-rl | dr2L(rl)QL(r2)Q + * ..

(43c)
The significance of the projection operator P [Eq. (40)] is

as follows. Given the expectation values of the dynamic
variables of interest aj(r, t), we construct an approximate
density matrix Pp(t). We require that the expectation val-
ues of our relevant operators A(r), calculated using the
exact (p) and approximate (Pp) density matrices, be the
same, i.e.,

((Aj(r)lp(t))) = ((Aj(r)lPp(t))) = j(r, t). (44)

Al(r) = E amtam3(r - rm),
m

A2 (r) = E at(r - rm),
m

A3(r) = > amb(r - rm).
m

(41)
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The actual density matrix at time t is given by Pp(t) and the
correction term Qp(t) [Eq. (41)]. The first term on the
right-hand side of Eq. (43a) is a mean-field term obtained
assuming that 7Pp(t) = p(t). The second term represents
fluctuations [the fact that actually Pp(t) Fd p(t)]. We have
calculated the first term exactly and the second term to
second order in H, and to zeroth order in Hint. The resulting
equations are

dP(r, t) = QV(r, t) - rP(r, t),
dt

(45a)

drV(, t) - - QP(r, t) - PV(r, t) - 2C dr'J(r - r')P(r', t)

- 2u2EL(r, t)[2W(r, t) - C],

dW(r, t) = _yW(r, t) + 1EL(r, t)V(r, t)
dt h

- 2C dT exp[-2r(t T)j

X {J dr'T(r - r')[W(r, T) - W(r', )jl,

V2E(r, t) _ 1 2E(r, t) 4 82 P(r, t)
c 2 at2 c2 at2

EL(r, t) = E(r, t) + 4 J dr'n(r - r')P(r', T).

Here we have introduced the following definitions:

Au2 =A 2/h,

J(r) = J(r)g(r),

T(r) = J2 (r)g(r),

r = - ( + F).
2

ly-1 is the lifetime (radiative or nonradiative) of the electron-
ically excited state, r is the total dephasing rate of the
transition, and C is the number of molecules per unit vol-
ume. Equations (45) are the basic REM that couple the
material variables P, V, and Wwith the local field EL and the
Maxwell field E. These basic REM should be solved simul-
taneously for these five quantities. If we set J(r) = 0, Eqs.
(45) reduce to the ordinary Bloch-Maxwell equations in
which intermolecular interactions are not incorporated.4 0

Equations (45) can be used to study the nonlinear-optical
properties of disordered systems in the presence of trans-
port. The nonlinear susceptibilities calculated from Eqs.
(45) will be explicitly wave-vector (k) dependent. It will be
convenient to rewrite Eqs. (45) in k space as

dP(k, t) -

dt QV(k, t) -rP(k, t), (47a)

dV(k, t) - _ [Q + 2CJ(k)]P(k, t) - rV(k, t)
dt

- 2,A J dk'EL(k', t)[2W(k - k', t)

dW(k _ t) = _ yW(k, t) + (1/h)f dk'EL(k', t)V(k -k', t)

- 2C[T(k = 0) - T(k)]
rt

X L dT exp[-2r(t - T)]W(k, T), (47c)

where T(k) is given by the Fourier transform of T(r) [Eq.
(46c)], i.e.,

T(k) = J drT(r)exp(-ik r). (47d)

5. THE LINEAR SUSCEPTIBILITY AND THE
DIELECTRIC FUNCTION

(45b) In this section we derive the linear susceptibility and the
dielectric function, using the REM obtained in Section 4.
For a perfect lattice and in the absence of disorder, it is
possible to obtain the dielectric function independently by
diagonalizing the entire radiation-matter Hamiltonian fol-
lowing the procedure of Hopfield.5 6 The detailed derivation
is given in Appendix A. The result allows us to explore the
proper definition of the local field and to define J(k) in a way

(45c) that is consistent with this solution.
The linear polarization in the frequency domain is given

by Eq. (15), where E(k, w) is the averaged field in the medi-
(45d) um. By solving Eqs. (47) to first order of the field, we obtain

the linear polarization, which is proportional to the local
field. We then define the effective linear susceptibility [Eq.

(45e) (19)] as

(46a)

(46b)

(46c)

(46d)

P(1'(k, w) = a (kw)EL(k, w) + .... (48)

The dielectric function E(k, wo) is defined as [see Eq. (21b)]

P(')(k, w) = X(1)(-k - ; k.)E(k, C), (49a)

with
e(k, co) - 1(4b

x(')(-k - o; k,.) 47r (49b)

When we ignore the nonlinear polarization PNL in Eq. (22a),
we further have

EL(k, ) = 3 E(k O

Equations (48)-(50) result in

XI')(-k, w; k, ') = 1 d(kw)
1 -4rnkako3

and

[ E(,(k, w) - 1] = 43 (k ).
3 + n(k)[c(k, co) - 1] 3

(50)

(51)

(52)

In Eqs. (51) and (52) we have expressed xM') and E in terms of
the microscopic response function a(kw), which can be ob-
tained by solving Eqs. (47) to linear order in EL(k, t). Our
linearized equations are obtained by setting W(r) = 0 in Eqs.
(47), resulting in

dP(k, t) = QV(k, t) - rP(k, t), (53a)

dt

dVk t)= - [Q + 2CJ(k)]P(k, t) - rV(k, t) + 2A'CEL(k, t).

(53b)(47b)- C(k -k')],
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By solving Eqs. (53) and using Eq. (48), we obtain

a(kw) = 2CWQ
(-iw + r)2 + Q[Q + 2CJ(k)]

Equation (54) together with Eq. (52) results in

e(k, w) = 1 +

(54)

87rCt2o
(-iw + r)2 + Q[Q + 2CJ(k) - 87r7(k)C7u/3]

At this stage we reiterate that the forms of the intermolec-
ular interaction J(k) [Eq. (47)] and the local-field correction
7(k) are related. The local field [Eq. (9)] takes into account
part of the intermolecular interactions. Therefore J(k) and
n(k) should be defined consistently to account for intermo-
lecular interactions and to avoid overcounting. To gain
some insight on this issue, we derive in Appendix A the
expression for (k, ) for a special case of the present model
in which the molecules occupy a perfect cubic lattice and
have an intermolecular interaction J(r) [Eq. (A5)]. This
model is solvable by using the method first employed by
Hopfield.5 6 The final result [Eq. (A20)] is

(56)]. The applicability of these relations to nonlinear op-
tics is an interesting open problem.

6. SOLUTION OF REDUCED EQUATIONS OF
MOTION FOR FOUR-WAVE MIXING: THE
TRANSIENT GRATING AND ITS STEADY-
STATE ANALOG

In this section we solve our REM Eqs. (47)] for some special
cases. We first note that for the two-level model presented
in Section 4, /3 and x(2) vanish. We shall therefore focus on
4WM and x(3)- In this case Eqs. (26) assume the form

X(')(-k. - w,; kewl, k2cO2, k3 3)

= 'y(kjw,, k2W2, k3W3)S(kl, w)S(k2, W,)S(k3, w3)S(k, Ws).

(61a)

A 4WM process involves the interaction of three incoming
laser fields with wave vectors kj, k2, and k3 and frequencies
W1, 2, and co3, respectively, with the nonlinear medium. A
coherently generated signal with wave vector k and fre-
quency us is then detected, where

k,= ±kj + k2 d k3,
(56)

We are now in a position to address the issue of what system-
atic choice of J(k) and q(k) in our formulation will make the
resulting E(k, ) [Eq. (55)] identical to the crystal result [Eq.
(56)]. J(k), Jo(k), and 7(k) have to satisfy the relation

J(k) = J(k)-+ 4A2 (k). (57)
3

One possible choice that can be made for J(k) and for 7(k) is

J(k) = 0, (58a)

O(k) = - 3J(k)(47rW'). (58b)

For the special case of dipole-dipole interaction we have56'57

jd(' = __ 3(lr) (59a)

In the long-wavelength limit (k - 0) we then have5 6-5 8

Jd(k) = - 4ru2/3, k - 0. (59b)

For this case (k) = 1. The local field with 1(k) = 1 thus
takes properly into account the dipole-dipole interactions.
A common phenomenological way to incorporate local-field
effects in nonlinear-optical processes 4'4 7 is based on the Lo-
rentz-Lorenz equation and corresponds to choosing i7(k) =
1. The present derivation shows that this procedure takes
into account the long-wavelength (k - 0) contribution of the
dipolar interaction Jd(k). If this procedure is adopted, J(k)
in Eq. (55) should be defined as the total interaction Jo(k)
minus the long-range dipolar interaction, i.e.,

J(k) = Jo(k) - Jd(k), (60a)

1(k) = 1. (60b)

Otherwise Jd(k) is counted twice. It should be emphasized
that Eq. (57) and the choices [Eqs. (58) or (60)] guarantee
that the linear optical properties, as given by (k, ), ob-
tained from the REM, agree with Hopfield's result [Eq.

(61b)

and

C = W1 i @2 i W3 (61c)

Equations (61) imply that k and w, are given by any linear
combination of the incoming wave vectors and frequencies.
The various types of 4WM processes differ by the particular
choices k and ws [i.e., the particular choice of signs in Eqs.
(61)].6 They also differ according to the temporal charac-
teristics of the incoming fields. In one limit the incoming
fields (and the signal field) are stationary. In the opposite
limit the incoming fields are infinitely short pulses, resulting
in an ideal time-domain 4WM. In this section we shall
discuss two examples of 4WM techniques: the TG and its
steady-state analog. Both examples provide a sensitive
probe for transport processes9"0 through the wave-vector
dependence of the nonlinear response function R) and the
nonlinear susceptibility X(3)- We shall consider a lattice
model in which the molecules occupy a fraction f = Ca3 of the
lattice sites, where a is the lattice spacing, and the interac-
tion J(r) is equal to J for nearest neighbors and is zero
otherwise.9 "10

A. Transient Grating
We shall first consider a time-domain 4WM process, the
transient grating (TG), which is commonly used for the
direct measurement of transport processes in disordered
systems. In a TG experiment, the sample initially interacts
with a pair of simultaneous laser pulses with wave vectors ki
and k2. After a delay period T the sample is probed by a
third pulse with the wave vector k, and a coherent signal
with wave vector k = 2k - k2 is detected.7-9 This TG
signal, measured as a function of the delay time between
excitation and probe, will decay, owing to the excited-state
lifetime and to exciton motion that occurs over distances
that are large compared with the grating wavelength.
Therefore, by measuring the generated TG signal as a func-
tion of the decay time T we can monitor directly the dynam-
ics of excitations in the medium. We assume that the in-

E(k, w) = 1 + 8rCc29
(-ix + r)2 + ow + 2CJO(k)]
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coming fields are short enough to be described by a func-
tion but are long enough to make the rotating-wave approxi-
mation valid. In this case the time-dependent in-
coming field is given by

E(r, t) = [El exp(ikr) + E1 exp(-ik~r) + E2 exp(ik2r)

+ E2 exp(-ik2 r)j6(t) + [El exp(ikr)

+ El exp(-iklr)]6(t - T). (62)

P(ks, t) may be found by substituting Eq. (62) into Eqs. (47)
and by solving Eqs. (47) perturbatively to third order in E.
We shall ignore the local-field corrections (setting E = EL)

and invoke the rotating-wave approximation 4 0 whereby
high-frequency components of the polarization are neglect-
ed. The transient signal I(k,, t) (omitting proportionality
and geometric factors) for t - T is then given by

I(k8, t) = IP(k8, t)12. (63)

Equation (63) is simplified considerably when the excitation
motion is incoherent, i.e., r >> J. In this case the transport
of excitations can be described by a simple diffusion equa-
tion and we get

I(ks, T) exp[-2'yT - 2D(k, - k2)2 T1, (64)

where D is the excitation diffusion constant

D = (Caf a* (65)

This result is identical to the result of Loring and Mukamel
[Eq. (3.20) of Ref. 10]. A plot of log I(k, T) versus (k1 -
k2 )2T will yield D directly in this case.7-10

B. Extra Resonances in Degenerate Four-Wave Mixing:
Steady-State Analog of the Transient Grating
The possibility of probing transport processes by using fre-
quency-domain 4WM was explored by Loring and Muka-
mel.9 10 Using Green-function techniques, they derived ex-
pressions for the frequency- and wave-vector-dependent x(3)

for the Haken-Strobl model. Extra resonances, which are
the frequency-domain analog of the TG, in degenerate 4WM
were then predicted. Extra resonances permit the direct
probe of transport by using a steady-state 4WM experiment.
We shall now repeat that calculation by using the present
REM. We consider a 4WM experiment in which the disor-
dered medium is irradiated by two stationary incoming
fields, k, and k2, and a stationary signal is generated at the
direction k, = 2k1 - k2 with the frequency ws = 2wo - w2-
Within the rotating-wave approximation, the signal (omit-
ting proportionality and geometrical factors) is given by

I(ks, ws) = IP(k,, Ws) 2, (66a)

P(k8, w,) =El 2E2X(3)(-ks --o,; kl, klwl,-k 2 -' ,2), (66b)

X(3) (-kS - ws; kl 1o, klw,, -k 2 - w2) = y(k1c1, klw),

-k2 -W 2)S
2(kl, wl)S(k 2 O2)S(k, cas), (66c)

ks = 2kl - k2 , (66d)

w, = 2w, - W2- (66e)

-y can be obtained by solving Eqs. (47) to second order in El
and to first order in E2 -

When >> J, the transport of excitations is diffusive.
Within the rotating-wave approximation we get

I(ks, ws) (67)
(&1 - 2) + [y + D(k, - k2)

2]2

In this case the degenerate 4WM signal has a single reso-
nance at wl = W2, and its width consists of a k-independent
(lifetime) part y and a contribution from transport processes
that is proportional to (k1 - k2)2.

These results are similar to those obtained by Loring and
Mukamel'0 for the exactly solvable Haken-Strobl model.
The agreement between our results obtained using the ap-
proximate REM [Eq. (47)] and those obtained for the exact-
ly solvable model 0 supports the validity of the present
REM. Relations (64) and (67) were derived for incoherent
transport, where P >> J. When this condition does not hold,
the transport becomes partially or totally coherent. The
transient grating signal will then decay in a more complicat-
ed oscillatory form. In the frequency domain, the extra
resonance [relation (67)] will be split into two lines, whose
splitting, intensity, and width reflect the nature of the exci-
tation motion. This behavior was analyzed in detail earli-
er.10 In concluding this section we compare the TG and its
steady-state analog. In general, these two experiments car-
ry different information regarding the disordered system.
For example, in the stationary 4WM experiment the gener-
ated coherent signal contains information about population
transport as well as the transport of the polarization P. On
the other hand, the time-resolved TG experiment contains
only information regarding the transport of populations W.
Only under the condition whereby Eqs. (64) and (67) hold do
both experiments measure the transport of population and
contain precisely the same information. In this case both
signals are related by a single Fourier transform.9 1 0

7. DISCUSSION

In this paper we developed REM that can be used for the
calculation of the frequency- and wave-vector-dependent
dielectric function E(k, w) as well as nonlinear-optical pro-
cesses and nonlinear susceptibilities X(, X(, etc. in polariz-
able fluids. The present formalism applies to a broad range
of condensed-phase optical media, including polarizable liq-
uids, solutions, pure and mixed molecular crystals, poly-
mers, and glasses. In the model presented in Section 4 [Eq.
(31)] we included only the simplest line-broadening mecha-
nism, i.e., homogeneous broadening in which the solvent
motions are infinitely fast compared with h divided by the
linewidth (or by the magnitude of level fluctuations). Line
broadening is, however, not always homogeneous. The sol-
vent time scale can be comparable with h divided by the
linewidth. In that case our REM [Eqs. (47)] should be
modified to include additional memory corresponding to a
non-Markovian description of the line broadening.3 0 The
other extreme of inhomogeneous broadening, in which the
solvent is static on the relevant time scale, is of great impor-
tance in low-temperature glasses, polymers, viscous fluids,
and disordered solids. A proper treatment of inhomogen-
eous broadening is straightforward in principle, although it
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may be quite tedious in practice. The molecules should be
divided into groups, depending on their solvent environ-
ment. Each group should have its own polarization, and the
total polarization is the sum of contributions from the vari-
ous groups. In practice, this generalization implies that we
may still use REM of the form of Eqs. (47) but with more
dynamic variables corresponding to the various groups of
molecules. This procedure becomes tedious for broad con-
tinuous distributions of solvent configurations, which re-
quire the introduction of many additional variables. The
present REM [Eqs. (47)] apply to solutions and to mixed
molecular crystals at sufficiently high temperatures such
that the bath motions are fast. The present formalism in-
corporates explicitly and systematically effects of transport
(spatial dispersion), local-field corrections, cascading, and
the propagation of the electromagnetic fields. Effects of
polaritons are naturally incorporated when we solve Eq.
(45d) for the propagation of the electromagnetic field. The
present equations generalize the Bloch-Maxwell equa-
tions,40 which do not include spatial dispersion. They pro-
vide a unified and convenient starting point for the micro-
scopic description of molecular nonlinear-optical processes.

In Section 2 we introduced the basic model. The optical
medium is assumed to consist of randomly distributed inter-
acting molecules with the static pair distribution function
g(r). 55 We further assumed that the intermolecular dis-
tances are sufficiently large that electron tunneling and
charge-transfer processes can be ignored. The molecules
can thus exchange excitations but not charges. Using mo-
lecular crystal terminology, 3' we consider Frenkel excitons.
We then introduced the linear and nonlinear response func-
tions Ran) [Eq. (11)] and A(n) [Eq. (12)]. The three dynamic
variables of interest are the Maxwell field E(r, t), the local
field EL(r, t), which actually acts on the molecules, and the
polarization field P(r, t), which is the expectation value of
the polarization operator P(r) [Eq. (3)]. The polarization
operator may be expressed as an infinite sum of charge
multipoles, 42 43 and the leading term in that sum is the dipole
operator. Because the material system actually interacts
with EL, we can assume that EL is given and can define a set
of material response functions a, , ... [Eq. (19)].

In Section 3 we introduced these functions, which can be
calculated using a perturbative expansion of the material
equations alone (i.e., without using the Maxwell equations),
and related them to the actual susceptibilities X(2), X(3), etc.
x(2) describes the simplest nonlinear-optical processes in-
volving three-wave mixing (e.g., second-harmonic genera-
tion), whereas X(3) describes 4WM, coherent anti-Stokes Ra-
man spectroscopy, transient grating, etc.). Transport (spa-
tial dispersion), local-field, and cascading corrections
appear naturally when our expansion is used. The effects of
transport are reflected in the explicit wave-vector depen-
dence of the nonlinear susceptibilities and response func-
tions. Local-field effects are controlled by the parameter
n(k), whose value is discussed in Section 5. (k) = 0 implies
no local-field corrections, and (k) = 1 results in the Clau-
sius-Mosotti, Lorentz-Lorenz equation and the local-field
corrections, as introduced by Bedeaux and Bloembergen. 47

Cascading implies that lower-order nonlinear processes af-
fect the higher nonlinear processes. We note that the cas-
cading terms are of higher order in density C of the material
system and can be ignored if the density is sufficiently low.

In Section 4 we derived the REM, which permit the micro-
scopic calculation of the molecular response functions and
susceptibilities. We adopted a two-level model for the ab-
sorbers and introduced a set of operators Aj(r) [Eqs. (35)],
which constitute a complete set of single-body operators.
These operators form the basis for our reduced description
of the system in which we follow only the expectation values
of these operators. Our chosen relevant variables carry
much less information than the information contained in the
entire many-body density matrix of the interacting disor-
dered system. The level of description is adequate, howev-
er, for the treatment of nonlinear-optical processes. Our
relevant dynamic variables are the polarization varibles P(r,
t) and V(r, t) and the excited-state population W(r, t) [Eqs.
(37)].

Using projection-operator techniques, we derived the for-
mally exact REM [Eq. (43a)]. The second term on the right-
hand side of Eq. (43a) is the relaxation kernel. On expand-
ing the kernel to second order in the intermolecular interac-
tions and to zero order in the electromagnetic field, we
obtained our final REM. Because the ensemble-averaged
system is translationally invariant, it is convenient to write
these equations in k space. Our final generalized Bloch-
Maxwell equations [Eqs. (47)] are for the variables P(k, t),
V(k, t), W(k, t), E(k, t), and EL(k, t), and they constitute the
main formal result of this paper.

The problem of nonlinear-optical processes in disordered
systems with interacting absorbers received some theoreti-
cal attention. Warren and Zewail36 and Root and Skinner3 7

used the methods of moments and the cumulant expansion
with respect to the intermolecular interaction to calculate
the photon-echo signal in a disordered system. The density
expansion method was used by Loring et al.38 to obtain
photon echoes in impurity crystals with inhomogeneous
broadening. Unlike the present theory, these treatments do
not include the effects of transport and local-field correc-
tions. Takagahara 62 derived equations of motion to study
the dephasing relaxation of excitonic polaritons in perfect
crystals. These equations allow for spatial dispersion
through the propagation of coherences (P and V) but do not
contain the transport of population (W). In addition, these
equations do not include the local-field corrections.

The first application of our REM was made in Section 5,
where we calculated the linear susceptibility x(1)(-k - ;
kco) and the dielectric function E(k, ). The linear suscepti-
bility is related directly to the absorption spectrum of the
medium and to the propagation of weak electromagnetic
fields in the medium (reflection, refraction, and polariton
effects). A special case of the present model is that of a
perfect crystal of polarizable molecules. We assumed an
arbitrary intermolecular interaction J(r) (including both
short- and long-range dipole-dipole interactions). We fur-
ther introduced a coupling with a thermal bath, which
causes dephasing. e(k, ) for this model may be calculated
by using the method of Hopfield.5 6 This calculation, which
does not rely on our REM [Eqs. (47)] and does not require
the introduction of a local field, is carried out in Appendix A.
That calculation [Eq. (56)] is then used to analyze our REM
and to discuss the proper choice of the local-field correc-
tions. Strictly speaking, the local-field corrections arise
from the intermolecular interactions. Our equations con-
tain explicitly the intermolecular interactions J(r) as well as
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the local-field correction, which is controlled by the (yet
unspecified) parameter n(k). The problem is how to choose
7(k) and J(k) in a consistent manner so that intermolecular
interactions are properly incorporated and to avoid double
counting of intermolecular interactions. Possible choices of
J(k) and (k) were discussed [Eqs. (57), (58), and (60)].
None of these procedures is exact for nonlinear optics. The
conventional procedures 4 47 for the incorporation of local-
field corrections are, therefore, approximate in nature.

In Section 6 we used our REM to calculate explicitly
nonlinear-optical processes that are sensitive to transport
processes. For our two-level model of Section 5, a and x(2)

vanish. Therefore the simplest relevant nonlinear-optical
process is 4WM, as given by x(3)- We focused on two 4WM
techniques: the TG and its steady-state analog. Both tech-
niques use only two incoming fields with wave vectors k, and
k2 and probe the signal at k, = 2k, - k2. In the TG tech-
nique the incident fields and the signal are pulsed. The
variation of the signal with the time delay T between pulses
and its variation with k, - k2 provide a direct probe for
transport. It was predicted 9"10 by using the Haken-Strobl
model that a frequency-domain degenerate 4WM should
contain extra resonances, which are transport induced and
carry the same information as the TG. Using our REM, we
showed that the same conclusion holds for a disordered fluid
as well.

APPENDIX A: THE DIELECTRIC FUNCTION
FOR A PERFECT CRYSTAL WITH
INTERACTING ABSORBERS

In this appendix we calculate the frequency- and wave-vec-
tor-dependent dielectric function e(k, w) for a simplified
model. The material Hamiltonian is taken to be given by
Eqs. (27) and (28), except that the molecules are now located
on a perfect lattice, and there is no disorder. In addition, we
treat the radiation field quantum mechanically. We write
the entire radiation-matter Hamiltonian and diagonalize
this Hamiltonian. In this appendix we basically follow
Hopfield's derivations but generalize the Hamiltonian to
include an arbitrary intermolecular interaction instead of
the dipole-dipole interaction used by Hopfield. Consider
the Hamiltonian for the system and the radiation field

Hee = Z E Jo(r - rm)(ant + an)(amt + am),
n,m

with A(rm) being the vector potential,

Z '27ihc 
2 1/2

A(rm) = V ) e[bk exp(ik rm)
k,e Vw/

+ bkt exp(-ik r)],

p(r.) = - iAM (am - amt),
e

(A5)

(A6)

(A7a)

where e is the polarization of the photon and ju is the dipole
moment defined by

= e(Orln).

In the derivation of Eq. (A7a) we used the relation

(n'lpln) = - iMcnnnrln).

(A7b)

(A7c)

In Eq. (A6) V is the volume of the medium, M is the mass of
electron, ju is the electronic dipole moment operator for a
single molecule, amt (am) is the creation (annihilation) oper-
ator for an exciton on the m molecule, and bkt (bk) is the
creation (annihilation) operator for the kth mode of the
radiation field. By introducing the Fourier transform

akt = E exp(ik rm)amt, (A8)
;N 

ak = E exp(-ik rm)am, (A9)

we may recast Hpe and Hee in the form

Hpe= [i( i ) -(akbkt aktbk + akb-k-aktb-kt)

+ 27rN 2 2(bktbk + bkbkt + bktb-kt + bkb-k)] (A10)

Hee = N 2 Jo(k)(akta.kt + aka.k + akakt + aktak),
k

H=Hp +He +Hpe +Hee-

Here Hp is the photon Hamiltonian, He is the exciton Hamil-
tonian, Hpe is the photon-exciton interaction, and Hee repre-
sents the exciton-exciton interaction. We further have

where Jo(k) is the discrete Fourier transform of J(r), i.e.,

(A12)Jo(k) = exp(ik * rm)J0(rm).
m

Hp = h E kbktbk, (A2)
k

He = hQ E amtam, (A3)

m

Hpe MC A(rm) p(rm) + 2Mc2 E A(rm) A(rm),

m m

(A4)

The normal modes of the Hamiltonian H will now be
expressed in terms of a new set of creation and annihilation
operators. Because the Hamiltonian H is invariant under
translation, it is sufficient to consider a single wave vector k.
We therefore look for normal modes of the form

Ak = wbk + xak + yb-kt + za-kt, (A13)

so that

Ak(t) = Ak(0)exp(-iwt). (A14)

(Al)

Mukamel et al.
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On substitution of Eqs. (A13) and (A14) in the Heisenberg
equations of motion

Ak = (i/h)[H, Ak],

we obtain the following matrix equation:
ckl + 2D -iR -2D

iR 2+a-ir -iR
2D -iR -clkl - 2D

_ -iR a iR -

where

R = E 2wN 11/2

27rNQ 2

hclklV

a = NJo(k).

(A15)

Equation (A24) can be recast in the Clausius-Mosotti form

e(O, w) - 1 = Cao(w), (A25)
E(O, w) + 2 3

where

-iR W w
-a Irx x,

- a- irJLzJ Lz J

(A17)

(A18)

(A19)

ao(w) = 2,A2Q[(-iW + P)2 + 2]1-

is the polarizability of a single absorber.
More generally, we can define

n(k) = -3J(k)(4 7rW).

Equation (A20) then assumes the form

(A26)

(A27)

In Eq. (A16) we have introduced a phenomenological de-
phasing width r [Eq. (46d)]. We have further used the
approximation [ak, akt] = 0, which is valid when the total
number of excitations is much less than the total number of
the molecules in the medium,31 and we have further used the
f-sum rule. Equation (A16) can be recast in the form

e(k, ) = 1 +
8irCy2o

(-iwo + r)2 + Q2 - 87rA2Cg2n(k)/3

which can be rearranged in the form

E(k, w)-1 47r
3 + n(k)[E(k, c) - 1] 3 °

8irCyt2g

(-iw + r) 2 + 2 + 2CJO(k)Q

X [1 - (r/) 2 + 2i(F/w)], (A20)

where C = N/V is the density of the molecules and ,u2 = pu2 Ih.
Since usually r/co << 1, we can neglect the correction terms
inside the square bracket in Eq. (A20), setting

1 - (r/w)2 + 2i(r/,u)2 1. (A20a)

Equation (A20) together with Eq. (A20a) is used in Section 5
[Eq. (56)].

Suppose that Jo(k) consists of the dipole-dipole interac-
tion

hJ(r - rm) = 3[,u (r -r,)] (A21)
n Irn - ri 3 irn - rmi5 (A1

and in k space56'5 7

hJ (k) = 4.7r [3(. k)2 2] + Jd(k), (A22)

where Jd'(k) is the part of the dipole-dipole interaction with
k 0. For transverse modes k = 0 since the polarization
of the field is always perpendicular to its wave vector. We
then have56 ,57

J 0(k = 0) = -4wu!/3. (A23)

Substituting this equation into Eq. (A20) together with Eq.
(A20a), we have

E(k = 0, ) = 1 +
87rCA2g

(-iw + P)2 + Q2 - 8i7rCWQ/3

For dipole-dipole interactions at k = 0, (k) = 1, and Eq.
(A29) reduces to Eq. (A25).
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