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A unified theory of quantum transport processes and spectral lineshapes in condensed phases in terms of frequency-dependent 
dephasing rates is developed. The effective dephasing approximation (EDA) provides a self-consistent procedure for calculating 
the transport properties of a quantum particle in a disordered medium. It is based on mapping the averaged Liouville space 
propagator into the propagator of a particle moving in an ordered lattice with an effective frequency-dependent dephasing rate. 
The effective dephasing rate is determined self-consistently. The Liouville equation for the averaged density matrix is isomorphic 
to a linearized Boltzmann equation, and the effective dephasing rate represents a generalized BGK strong-collision operator. 
Applications of the EDA to the Anderson model of static disorder and to a model of dynamical disorder with a finite timescale 
are presented, and are shown to be in agreement with scaling theories. The frequency-dependent dephasing which determines the 
transport processes is found to be much more sensitive to quantum localization than the dephasing which enters into the calcula- 
tion of optical lineshapes and densities of states. 

1. Introduction 

Dephasing processes play an important role in controlling the optical properties of matter. The width of speo 
tral lineshapes is often dominated by the loss of phase among the optically active levels, and the interpretation 
of linear and nonlinear optical measurements depends heavily on the understanding of the underlying dephasing 
mechanism [ 1,2]. The concept of dephasing is not restricted, however, to spectroscopy. Any complex dynamics 
involving many degrees of freedom requires a reduced description whereby we follow explicitly only a small set 
of dynamical variables and the effects of the other degrees of freedom result in dephasing and relaxation. We 
have recently developed a theory of rate processes (e.g., electron transfer) in condensed phases which is based 
on the analogy with the problem of spectral lineshapes and interprets the dynamics of solvation in terms of 
dephasing [ 3 1. Similarly transport processes in condensed phases (the Anderson model [ 4-6 1, the polaron 
problem [ 7 ] ) may also be conveniently interpreted in terms of properly defined dephasing processes. The ef- 
fective dephasing approximation (EDA) yields a self-consistent mode-coupling equation in Liouville space that 
provides a simple and systematic method to calculate transport properties of a quantum particle in a disordered 
medium [ 8- 111. In the EDA, the Liouville equation for the ensemble-averaged density matrix is mapped onto 
the equation of motion of a particle whose dynamics are characterized by a frequency-dependent dephasing rate 
r( e ) . r( c ) is determined self-consistently. The transport properties at long times are determined by the behav- 
ior of r( c ) for small e. If r= 0, the particle undergoes coherent motion on an ordered lattice. In this limit, the 
system is characterized by extended Bloch states. If r is large but finite, the motion is diffusive (incoherent) 
and can be described by a Pauli master equation. Ifr( e) has an infrared divergence, r(e) cc t-i, the particle is 
localized. The signature of the localization (metal-nonmetal) transition is the crossover from a dephasing rate 
that is finite at small frequencies to one that displays an infrared divergence. This approach provides a straight- 
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forward way to calculate the transport properties of a particle or quasiparticle in a condensed phase medium, 
and to relate these properties to linear and nonlinear optical lineshapes. In section 2, we consider the absorption 
lineshape of a single absorber and introduce the frequency-dependent dephasing. In section 3, we show how 
intermolecular dephasing affects excitation transfer in dimers. The problem of excitation transport is considered 
in section 4 where we introduce and analyze the averaged Liouville equation with a frequency-dependent de- 
phasing rate. In section 5, we show the connection between the. effective dephasing introduced in section 4 and 
the BGK strong collision model within the Boltzmann equation. In section 6, we introduce and analyze the EDA 
for the Anderson model of static disorder. In section 7, we consider a model of dynamical disorder and compare 
the frequency-dependent dephasing for the absorption lineshape (intramolecular dephasing ) and for the trans- 
port (intermolecular dephasing ). The intermolecular dephasing is found to be much more sensitive to the lo- 
calization transition than the intramolecular dephasing. We summarize our results in section 8. 

2. Dephasing in single absorber spectra 

In this section we introduce the concept of frequency-dependent dephasing by analyzing a simple model of 
spectral broadening in a dynamically disordered medium [ 1,2]. We consider a molecule with two electronic 
states, the ground state 1 g) with energy Eg and an excited state 1 e) with energy Eg + fro,,. The molecular Ham- 
iltonian is 

H= IgX(gl+ Ie>(E~++fZWeg-ifiY,/2)(eI . (2.1) 

y; ’ is the lifetime of the excited state. For an isolated molecule, CO,, is a constant. We shall assume, however, 
that due to the interaction with an external bath (e.g., phonons, solvent motions), CO,, undergoes a time-depen- 
dent stochastic modulation, i.e., 

w eg=&+8%,(0 9 (2.2) 

where oj_ is the mean electronic energy gap. 60,(t) is taken to be a stationary Gaussian Markovian process 
with zero mean [ 1,2,12-141 

(8&g(t) > =o 9 (2.3a) 

and a correlation function 

(gw,,(O8o,,(o) > =A2 exp( -A ItI ) . (2.3b) 

Here (...) denotes averaging over the stochastic variables. A denotes the magnitude of the fluctuations and A - ’ 
is their time scale (correlation time). The averaged density matrix element representing the coherence between 
the ground and the excited states,&(t), satisfies the equation 

<AJO > = -i&(&(t)) -1 drexp[ -ir&Jt-t)] P(t-r) (&Jr)) . 

0 

The Laplace transform of any function of timef( t) is defined as 

f(e) =J drexp( -cf)_?(f) , 3=&,J,P:etc. 
0 

The solution of eq. (2.4) is 

O,,(e) > =J(e+i%) (&JO) > , 

(2.4) 

(2.5) 

(2.6) 
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with 

J(7) =exp] -g(7) 1 , 

and 

T 7, 

g(7) = s I d7, d7z (S~,,(7z)g~,,(O)> . 

0 0 

Upon the substitution of eqs. (2.3) in eq. (2.8) we get 

g(r)=(A*/A*)[exp(-A7)-l+A7]. 

Alternatively eq. (2.6) can be recast in the form 

A* 
l-(c)= , 

2A2 
c+A+ 

3A2 
c+u+- 

~+3/1... 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where r( e ) is a frequency-dependent dephusing rate. The absorption lineshape at frequency w is given by [ 1,2,12- 

141 

~(o)=(l/x)ReJ[y,/2-i(w-d&s)]. (2.12) 

We next introduce the definitions 

r[ -i(o-ci&)+y,/2] =P (0)-P (0)) (2.13) 

where P and r” represent the real and the imaginary parts of r[ - i ( w - d& ) + yJ2 1, respectively. Eq. ( 2.12 ) 
takes the form 

a(o)= [r(o)+YJ2l/x 
[o-~~*+~<w)]*+[~(o)+ye/2]*’ 

(2.14) 

The absorption lineshape depends on the dimensionless parameter K&/A. For ICB 1 the lineshape assumes a 
Lorentzian form and the line is homogeneously broadened whereas for KQ= 1, the lineshape is inhomogeneous 
and assumes a Gaussian form. The full-width at half maximum ( fwhm ) of the lineshape is [ 12- 14 ] 

6= 
2.355+ 1.761~ A 

1+0.85~+0.881~* ’ 
(2.15) 

r( E ) is displayed in fig. 1. We have varied K by varying A and A keeping 6= 1. For KS 1, r(e) = AZ/A, whereas 
forrc4:1,wehave 

~(~)=[(1@I*)“*exp(e*/2A*) erfc(e/&)]-l-e. (2.16) 

Fig. 1 illustrates how r(c) vanishes for E s A. 
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Fig. I. The frequency-dependent dephasing rate I-(c) for a single 
-2 I c molecule is calculated from eq. (2. II ). Each curve is labeted by 

-2 -1 0 2 3 4 KE A/A. A and A are varied keeping the fwhm of the absorption 
tineshape (eq. (2.15) ) fixed at 6= I. 

Another spectroscopic observable of interest is this system in the steady state dispersed emission when the 
system is subject to a monochromatic field with frequency w. That emission consists of a broad fluorescence 
and a sharp Rayleigh (or Raman) component. We have recently shown [ 141 that the quantum yield of the 
Raman component is 

yR(~)=Ye/[Yc+~(~)l* (2.17) 

The vanishing of P (CO) for large detuning w makes this yield go to unity for large detunings. Fig. 1 implies that 
the variation of r( CO) with o occurs on an w range corresponding to the typical bath time scale in the problem 
(A-‘). 

3. The role of dephasing in excitation transfer in dimers 

In the previous section, we introduced a stochastic model of dephasing for a single two-level molecule. For 
that system the relevant dynamical observables are the absorption and the emission lineshapes. In this section, 
we consider the simplest model of energy transfer involving two molecules. An excitation can reside on the first 
molecule (state 1 1) ) or on the second molecule (state 12) ). The two excited states are coupled by a matrix 
element H ,*= J allowing for excitation transfer. In addition the energy of each molecular excited state is 
undergoing independent fluctuations as given by eqs. (2.2) and (2.3). The equation of motion of the density 
matrix p for the dimer is 

@/at= [A+Bo,,(t)]p, 

with 

(3.la) 

o,,(t)=&&(t)-&&(t). (3.lb) 

Here&,(t) (SC+(~)) is6a,(t) of’state 11) (12)). Usingeqs. (2.2) and (2.3), weget 

(~E(OW~~(O) > =2& exp( -A I tl) - (3.lc) 

The density matrix of the system has four elements which form a column vector whose components (from top 
to bottom) are taken to be: b,, , j&, j& and p zI . Here & represents the probability that the excitation resides at 
moleculej, and Fiji represents a coherence between moleculesj and k. The operators A and B are represented by 
4 X 4 matrices with elements Aij,k, and Bij,k,, where i, j, k, I= 1,2: 
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A=iJ (3.2) 

\ -1 1 0 \ 0 0 0 -11 

The solution of eq. ( 3.1 a), averaged over the stochastic fluctuations, is given by 

<P(t) > =@MO) - (3.3) 

LiketheoperatorsAandBineq. (3.1),e(t)isa4>(4matrix.Eqs. (3.la)and(3.lb)areidenticalwiththe 
equations of motion of a two-level system with Gaussian frequency modulation in an electromagnetic field of 
arbitrary intensity [ 15,161. The equation of motion in that problem is identical with eq. (3.1 a), if the Rabi 
frequency is replaced by 2J, and the rate of population decay from level 2 to level 1 is set to zero. (The Rabi 
frequency is ,&/A, where p is the transition dipole moment of the two-level system and E is the electric field 
amplitude. ) G ( e ) , the Laplace transform of e ( t), can be represented as a matrix continued fraction [ 9,15,16 ] 
and is given by 

G(E)= [c-A-y(c)]-‘, 

-f(e)= 
242 

4A2 B’ 
E+A-A-B 

c+U-A-... 

(3.4a) 

(3.4b) 

7 ( E ) represents a frequency-dependent dephusing matrix. It has only four nonzero matrix elements y1 =, I =, yl =,=I) 
y2,, , 2 and y2, ,=, . We shall denote them r, , r2, r, and r,, respectively. Note that r, and r, represent the damping 
of intermolecular coherence, whereas r2 and r, represent transfer of intermolecular coherence (interchange of 
p12 and p2, ). In contrast, r(e) introduced in section 2 represents the dephasing of an intrumoleczdur optical 
coherence. In the absence of dephasing (A=O), eq. (3.4) represents a coherent evolution among the two states. 
In the fast modulation limit K> 1, we get 

Yl2.12 =Y21.21 =U2/A 9 Yl2.21 =Y21,,2=0 (3.5) 

7 (E ) is independent, in this case, of E, and G (c ) reduces to the Green function of the optical Bloch equations. If 
in addition y, =, , 2 > J, G ( e ) becomes the Green function solution to coupled rate equations (Pauli master equa- 
tion) with a rate of excitation transfer between the molecules equal to J2/y,2,12. 

In fig. 2, we display y12,12 and Y,~,~, for various values of rc, which is varied by changing A and A and keeping 6 
(eq. (2.15) ) fixed. We have taken J= 1 and 6= 1.5 x 105. In figs. 3 and 4, we repeat these calculations for 
6= 1.5 x 10’ and 6= 0.15,respectively. 

Another quantity of interest is gO( t ) , the probability for the excitation to remain at time t on molecule 1, when 
it was on molecule 1 at t = 0. The Iaplace transform of @-, ( t ) is 

Po(c)=t-'-f[e-'-G,,,,,(~)]. (3.6) 

S+, ( t ) was calculated by inverting the Laplace transform (eq. ( 3.6) ) numerically using the Stehfest algorithm 
[ 17 1. In fig. 5, we display % ( t ) . The various curves in fig. 5a were obtained by setting J= 1, A = 0 (infinite 
correlation time ) , and varying the fwhm 6. In fig. 5b, we repeat these calculations for the same values of S but 
with a short correlation time, A = 100. For small 6, the A = 0 and A = 100 curves are similar and represent almost 
coherent motion. As 6 increases, the time evolution becomes substantially different reflecting the effects of the 
bath time scale A- ’ . 
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Fig. 2. (a) The diagonal element of the frequencydependent dephasing matrix for the dimer r, =y ,r.,r is calculated from eq. (3.4b). 
Each curve is labeled by K=A/A. A and A are varied, keeping the fwhm of the absorption spectrum (eq. (2.15) ) fixed at 6= 1.5~ IO’. 
(b) The off-diagonal element of the frequency-dependent dephasing for the dimer rr=y,r.r, is calculated from eq. (3.4b). The other 
parameters are the same as in (a). 
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Fig. 4. (a) The same as fig. 2a, but with cLO.15. (b) The same as fig. 2b, but with 6=0.15. 
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Fig. 5. (a) S&(t), the probability for the excitation to remain at the origin at time t is shown for the dimer in the static limit (A=O). The 
calculation was made using eq. (3.6): (i) A/U= lo-‘, 6/2J=2.35X IO-‘; (ii) A/ZJ= 1,6/2J=2.35; (iii) A/21= 100, a/21=23.5. For 
AeJ, the excitation moves coherently from site to site, and %(t) is oscillatory. As A is increased, the oscillations are damped, and their 
amplitude decreases. (b) q(t), the probability for the excitation to remain at the origin at time t is shown for the dimer for A/2J= 100. 
curves (i)-(iii) have the same values of 6 as the corresponding curves in (a). (i) A/U=l.OS, 6/2J=2.35x lo-*; (ii) A/21= 10.7, 
6/2J=2.35; (iii) A/25= 136, S/25=23.5. The exciton moves coherently for small A, and a(t) displays oscillations. For large A, q(t) 
decays monotonically. 

4. Excitation dynamics with a fkequencydependent effective dephasing rate 

In this section we extend the notion of an intermolecular dephasing rate introduced in section 3 for a dimer, 
to excitation transport in an infinite lattice. We consider a quantum particle whose motion on a lattice is de- 
scribed by the tight-binding Hamiltonian 

H=;E,lx) (xl +xpJ(x-x’ 1 Ix> <x’ I . (4.1) 

IX) denotes the state in which the particle is localized at the lattice point x. &r-x’) is the transfer matrix 
element between sites and E, is the particle energy at site X. The Hamiltonian (4.1) can contain various types 
of disorder. Both E, and J(x-r’ ) can be randomly distributed with some specified statistical properties. In the 
Anderson model [ 4-61 of diagonal disorder, for example, {Ex} are independent random variables with a distri- 
bution R (E,), and J(x-x’ ) is translationally invariant. The disorder can be static or dynamic in nature. In the 
latter case, E, or .&r-x ) undergo random fluctuations. At this stage the precise nature of the disorder need 
not be specified. Specific models for disorder will be considered in sections 6 and 7. The density matrix of the 
excitation obeys the Liouville equation 

j= -ifi-‘[H,jl]=-i&5. (4.2) 

It is convenient to change variables from x and x’ to r and s, which are defined by 

x=r-r/2, x’ =r+s/2 . 

The density matrix element fi (r, s, t ) is defined by 

(4.3) 

B(r,s, t)=(r--s/2l~lr+s/2) . (4.4) 

p(r, 0, t) is a diagonal element of the density matrix, and gives the probability that the excitation is located at 
position r at time t. For s # 0, fi (r, s, t) is a coherence that carries information on the phase relationship between 
two sites separated by a displacement s. Substitution of eq. (4.1) into eq. (4.2) yields the equation of motion 
offi(r, s, t): 
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j(r,s,t)=-i ~J(a)[~(r+a/2,s-a,t)-~(r+a/2,s+a,t)l-i~-’(E,_,~~-~,+,~~)B~r,s,t) . 
a 

(4.5) 

The index a runs over all displacements in the lattice. Our goal is the calculation of the ensemble averaged 
density matrix 6( r, s, t): 

b(r,s,t)r(P(r,s,t)). (4.6) 

The angular brackets in eq. (4.6) represent an average over any random variables (E or J) in the model. We 
introduce the following ansarz for the form of the reduced equation of motion of t3( r, s, t) [8-l 11: 

B(r,s,t)=--ix (J(a))[6(r+a/2,s-a,t)-b(r+a/2,s+a,t)] 

- s drf’(t--T)[c?(r,s,T)--f(s)&(r,O,t)]. (4.7) 
0 

The first term in eq. (4.7 ) describes motion on a translationally invariant lattice. The second term contains two 
functions which remain to be specified, 1”(t) andf(s). If we choose f(t) to decay rapidly on all relevant time 
scales, p(t) =7&t), and choosef(s) = &,, then eq. (4.7) reduces to the Haken-Strobl equation of motion for 
the density matrix of an exciton in a molecular crystal [ 181. For this choice of r(t) andf(s), the second term 
in eq. (4.7 ) causes all coherences a( r, s, t) for s# 0 to decay with a dephasing rate y. Thus f‘(t) can be viewed 
as a generalized time-dependent dephasing rate. 

We next turn to the calculation of the density matrix ~3, which can be determined by solving eq. (4.7). The 
Fourier-Laplace transform of d( r, s, t ) is defined to be 

.X: 

o(k,s, t)=N- dtexp( -ct+ik*r)b(r, s, t) , (4.8) 
0 

and the Liouville space Green function G is given by 

o(k,s,c)=C G,,.(k,t) N-II2 C exp(ik*r)b(r,s’,O) , (4.9) 
S’ ( r > 

We have developed a novel procedure based on the Liouville space t-matrix, by which G.,, (k, t ) can be obtained 
in closed form. This method is described in appendix A of ref. [ IO]. The final result is 

G,,.(k,E)=Gj,9)(k,t)+G6,9,(k,~)K,(k,t)/[l_r(E)Ko(k,E)l, (4.10a) 

where 

K(k, e)=Cf(s’)G,,,(k e) 3 (4.1Ob) 
I’ 

and 

( > 

-I 

Gj,?‘(k,t)=N-’ 1 exp[iq*(s-s’)] e+r(e)+2 C exp(iq.a)(J(o)) sin(k.e/2) . (4.1Oc) 
Q 0 

r( e ) is the Laplace transform of p( t ) , 

r(s)=Tdfexp(-ef)p(f). (4.11) 
0 

In sections 6 and 7, we shall make the following choice for f (s ) , 

f(s)=&.o. (4.12) 
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Forthischoiceoff(s),eqs. (4.10a)-(4.10~) assumetheform 

G,.(k,~)=G~,9,(k,t)+G~oO’(k,~)G~~(k,~)r(~)/[1-r(~)Q(k,~)], (4.13a) 

with 

Q(k, t) =G&=j’ (k, E) . (4.13b) 

The transport properties of the quantum particle can be determined from B (r, t), the probability that the 
particle undergoes a displacement r in time t. P(k, c), the Fourier-Laplace transform (eq. (4.8 ) ) of B (r, t) is 
related to the Green function by 

P(k, e) =G,(k, t) . (4.14) 

The generalized wavevector and frequency-dependent diffusion coefficient D( k, e ) is defined by 

P(k, e)= [c+PD(k, e)]-’ , (4.15) 

and is related to r( t ) by 

k2D(k, t)=Q-'(k, c)-I-(E)-e. (4.16) 

If D(k, e) approaches a finite value D(0, 0) for small e and k, then in this limit, P( k, t ) assumes the form of the 
propagator of a diffusion equation with diffusion constant D(0, 0). Eq. (4.16) shows that if r( e) approaches a 
finite limit for small frequencies, then D(0, 0) exists, and transport is diffusive at long times and for large 
displacements. Let us consider the implications of an infrared divergence of r( c ): r(e) a ema, where (Y > 0. For 
r(c) =8 (J(a)), eq. (4.16) becomes 

k’D(k, c) =& ; (J(a)) 2 sin2(k.a/2) . (4.17) 

For an isotropic lattice in which the small wavevector limit of D( k, c) is independent of the direction of k, then 
the k+O limit of eq. (4.17) in d dimensions is 

D(0, c) = d[e+;(r)l p2<J(w2 - (4.18) 

Eq. (4.18) shows that if r( e) has an infrared divergence, r( t ) a c -a, then D( 0, t ) vanishes as P. The mean- 
squared displacement of the particle ( r2 (t ) ) is related to the diffusion coefficient by 

00 

s 
dtexp(-et) (r2(t))=2d~-2D(0,t). (4.19) 

0 

Application of the Tauberian theorem for Laplace transforms [ 191 shows that if D(0, e) vanishes as P, then 
( r2 (t) ) is proportional to tlma. If (Y = 1, then ( r2 ( t) ) reaches a finite limit at long times, and the particle is 
localized. For 0 < CY < 1, ( r2 ( t ) ) is unbounded but increases more slowly than in the diffusive case ((Y = 0). The 
case in which 0 < cx < 1 is known as weak localization [ 201. 

The reduced equation of motion introduced in this section (eq. (4.7) ) can be used to describe the motion of 
particles (rather than excitations) in a disordered medium. In that case, we shall introduce the complex electri- 
cal conductivity a(o) which is related to the diffusion coefficient by [ 93 

a(o) = (ne2/kT)D(0, iw) , (4.20a) 

where 

(4.2Ob) 
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0’ (0) and 0” (0) are the real and imaginary parts of the complex conductivity, respectively, n is the number 
density of charge carriers, and e is the magnitude of their electrical charge. The ac conductivity is proportional 
to 6’ (co). If LY = 1, then Q’ (0) sz w for small frequencies, and the system has zero dc conductivity. If Q = 0, the 
dc conductivity is finite. Thus, the existence of a metal-insulator phase transition implies critical behavior for 
r(e). The effective dephasing approximation (EDA) which will be presented in sections 6 and 7 is based on 
mapping specific models of disorder into eq. (4.7 ) and determining r( t ) self-consistently. 

5. The effective dephasing rate as a generalized strong collision operator 

We can gain further insight into the physical significance of the reduced equation of motion (eq. (4.7) ) and 
off(f) andf( s) by transforming to the Wigner representation [ 11,2 1,22 1. The Wigner phase space distribution 
function @(r, p, t) is defined by 

@(r,p, t)=N-’ C exp(ip*s/fi)&(r,s, t) . 
s 

(5.1) 

N is the number of lattice sites. Eq. (5.1) is the discretized version of the usual Wigner function, in which r and 
p are continuous variables. Applying the Wigner transform in eq. (5.1) to eq. (4.7) yields the equation of 
motion of @( r, p, t) 

d(r,p, l)=2 ; (J(a)> sinbwlfiM(r+a/2,p, t) 

+ s d7f’(t-7) C [J’(pM(r,p’, 7)--F(P’M(r,p, 711, (5.2a) 
0 I’ 

F(p)=N-’ 1 exp(ips/fi)f(s) . 
I 

(5.2b) 

F(p), the Wigner transform off(s), is normalized according to 

f(O)=C F(p)=1 . (5.2~) 
P 

The first term on the rhs of eq. (5.2a) represents the free (coherent) motion of the particle on an ordered lattice. 
If we take f(t) = yS( t), then the second term has the form of the BGK strong-collision operator in the Boltz- 
mann equation, in which y is the collision rate and F(p) is the distribution of momentum after a collision [ 231. 
The choice off(s) taken in eq. (4.12) corresponds to the equilibrium momentum distribution: 

F(p) = 1 /N, ifp is in the first Brillouin zone , (5.3) 
=o, otherwise . 

According to eq. (5.3), the momentum is uniformly distributed after each collision. This choice will be adopted 
in the following sections. The transformation to the Wigner representation shows that the generalized dephasing 
rate p( t ) can be regarded as a generalized collision rate in the Boltzmann equation. Eq. (5.2a) has the form of 
a discretized Boltzmann equation. If the transfer matrix element (J(o) ) is taken to have the value J for nearest- 
neighbor sites and to vanish otherwise, then in the continuum limit,p*a/&O, eq. (5.2a) becomes 

$(r,p,r)=@lm).Vb(r,p,r)+idrP(r-7) sdp’ [P@)~(r,p’,r)--F~‘)~(r,p,r)l, 
0 

(5.4a) 
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m=fr/2Ja2. (5.4b) 

In eq. (5.4b), a is the lattice spacing. P(p) is defined in analogy to F(p), but has continuum normalization: 

I 
P(p)dp=l. (5.5) 

Eq. (5.4a) has the form of the Boltzmann equation in the BGK approximation of a classical particle of mass m 
with a generalized collision rate r(t) [ 231. We shall now sum eq. (5.2a) over the coordinate r and retain only 
the momentum. The result is 

@@, +j drf(t -~)wP)-wP,~)l, 
0 

(5.6) 

The solution of eq. (5.6), with the initial distribution !PQ, 0), is given by 

~~,t)=‘Y(p,O)S(t)+F(p)[l-S(f)l I (5.8) 

where s( t ) is the inverse Laplace transform of S( e ) , 

s(e)=[c+r(c)]-‘. (5.9) 

The bimodal distribution (eq. ( 5.8) ) is a characteristic of strong collision models. Note that if’Q e ) is indepen- 
dent of C, we have 

S(t)=exp( -Z?) . (5.10) 

6. The effective dephasing approximation (EDA) for the Anderson model 

In this section, we outline an approach by which the frequency-dependent dephasing rate F(E) is determined 
self-consistently for the Anderson model of the motion of a particle on a lattice with diagonal disorder. We 
consider a quantum particle or excitation, whose motion is described by the tight-binding Hamiltonian in eq. 
(4.1) . The site energies {E,} are assumed to be independent random variables with a distribution R (E,), and 
the transfer matrix elements .&x-x ) are taken to have the value J for nearest-neighbor sites, and to vanish 
otherwise. The EDA self-consistent equation for r(e) is derived by considering two dynamical quantities: r(e) 
and PO ( E ) , the Laplace transform of 6 ( t ) . % ( t ) is the averaged probability that the particle is located at the 
same position at time t that it occupied at time zero. Inversion of the Fourier transform in eq. (4.15) at r= 0 
yields 

P,(t)=B-’ J dk [t+k2D(k, c)]-’ . (6.1) 

The integration in eq. (6.1) is carried out over the first Brillouin zone, whose “volume” is Q. Eq. (6.1) is an 
exact relation betweenP,(e) and D(R, c). D(k, c) is related to r(e) in eq. (4.16). Eq. (6.1) thus provides one 
relation between r( E ) and PO ( E ) . We require a second relation between these quantities in order to have a closed 
equation. In ref. [ 10 1, a second, approximate relation between these two quantities is derived. This relation is. 
based on a comparison of the short time (large e) expansions of the approximate propagator P(R, e) in eq. 
(4.14 ) and of the exact propagator for the Anderson model, 

(6.2a) 
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m 

f, 262 - - j dEE’R(E). 
-m 

(6.2b) 

In eq. (6.2b), A2Jz is the second moment of the distribution of site energies. Eq. (6.2a) contains a frequency- 
independent dephasing rate r,, that accounts for processes not included in the Hamiltonian of eq. (4.1)) such 
as electron-phonon scattering. In the Anderson model we have Z,- - 0. The role of Z, will be discussed later in 
this section. Substitution of eq. (6.2a) into eq. (6.1), and making use of the relation between D(k, E) and r( E) 
in eq. (4.16) yields a closed equation for the dephasing rate, that we shall denote the EDA equation: 

Z(t)=Z-‘,+2bL!-’ s dk [Q(k, E)-‘-Z(e)]-’ , (6.3a) 

Q(k,e)=nbjdn..j ( dqd e+Z(e)+4i.Z i sin(qj) sin(kj/;!) 

--I 

, 

0 
j=l 

(6.3b) 

k, =k*Xj e (6.3~) 

Xj is the lattice vector in the jth direction. Q(k, E) is defined for any J(a) in eq. (4.13b). d is the spatial dimen- 
sionality. The EDA self-consistent equation predicts the existence of a metal-insulator transition in three di- 
mensions for Z( e), and assumes a simple form in the vicinity of the transition [ IO, 111. If the particle is localized, 
the frequency-dependent diffusion coefficient D( 0, E ) vanishes as e approaches zero, which implies an infrared 
divergence in r( t ) (eq. (4.18 ) ). If the particle is delocalized, D( 0,O) is finite, but becomes arbitrarily small in 
the vicinity of the critical point, which implies that Z(0) becomes arbitrarily large. Thus, in the vicinity of the 
transition, on either side of the critical point, the condition Z( E ) B .Z is satisfied for sufficiently small E. The 
form of the EDA equation in this limit can be derived by substituting eq. (4.17) rather than eq. (4.16) into eq. 
( 6.1). The result is 

ZYe)=Z0+fX[e+Z(e)lZd(e[e+ZYe)l/4J2), (6.4a) 

where 

xd2/J2. (6.4b) 

Id (JJ), the diagonal element of the Green function of the d-dimensional analog of a simple cubic lattice, is given 

by 

Z&)=n:-” 1 dk, em*! dkd(Y+dmji, COS(kjj)-’ m 
0 0 

(6.5) 

The argument of Id in eq. (6.4a) becomes arbitrarily small in the vicinity of the critical point, so that the behav- 
ior of the solution of eq. (6.4a) near the transition can be determined from the limiting behavior of Z&J) for 
small y [ 10,24-261 

d=l, 

=-(2x)-‘In (y), d=2, 

=Z3(0)-x-‘(y/2)“2, d=3. (6.6a) 

Z,(O)xO.5055. (6.6b) 

Substitution of eqs. (6.6a) into eq. (6.4a), and solution of the resulting equation in one and two dimensions 
yields the following behavior for r( E ) . At x= 0, r( e ) = ro. For x> 0, r( e ) diverges as e - ’ for small frequency. 
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The implications of these results for the motion of the particle can be obtained from eqs. (4.18) and (4.19 ). 
The particle is predicted to be localized in one and two dimensions for any finite disorder, in agreement with 
the scaling theory of localization [ 27,281. Our criterion for localization is the limiting behavior at long times of 
( r* ( t ) ) , the mean-squared displacement. If ( r*(t) ) is bounded for all times, the particle is considered to be 
localized, and if ( r*(t) ) increases linearly in time, the particle is considered to be delocalized. If ( r*( t ) ) 
increases less strongly than linearly in time, the particle is weakly localized [ 20 1. If the particle is localized, the 
dc conductivity is zero, and if the particle is delocalized, the dc conductivity is finite (eq. (4.20a) ). Substitution 
of eq. (6.6a) with d= 3 into eq. (6.4a) yields a self-consistent equation for Z( E), which is cubic in Z”*, that is 
valid in the vicinity of the critical point in three dimensions. 

[~(~)l~ol{l -x/f+ (x/2n) [~Q~)W*l”*)= 1 . (6.7a) 

Eq. (6.7a) predicts a metal-insulator transition at x=X, where f is given by 

x*=2/1,(0)=3.957. (6.7b) 

For x>X, r(e) diverges as e-’ as r+O. For x<f, r(e) approaches a finite limit as e-*0. At x=x*, Z(e) di- 
verges as e-‘13. P has been estimated by a variety of numerical methods for the original Anderson model, in 
which the site energies are uniformly distributed between - W/2 and W/2. The extent of the disorder is char- 
acterized by W/J, which is related to x by 

W/J= mx . (6.8) 

Recentresultsforthecriticalvalueof WIJare 14.9kO.4 [29], 14.5 [30], 19.0f0.5 [31], 16.5kO.5 [32],and 
15.95f0.25 [33]. OurvalueofX*W3.957 correspondsto (W/J)*= 6.9. The analytical EDA approach yields a 
prediction for ( W/J)* that is within a factor of two of the current numerical predictions. Solving eq. (6.7) for 
r(e) allows us to calculate D(0, e) from eq. (4.18), (r*(t)) from eq. (4.19), and 9?!(t) from the inverse 
Laplace transform of eq. (6.2a). We then get 

~(0,~)=(2J2~*lm(l-XIX), x-e 3 

=~*[(4d7)(XIP-l)1-*~ x>x*, 

,a2(J2~123’2Xr,)2’3~“3, xq”’ ; (6.9) 

Z-(e)=Z&l-X/X*)-‘-t “~(~/2~)Z’~‘~(8J~)-~‘~(1-~~~)-~‘~, jy<f , 
=8J2[(2xl~)(~Ix+-l)]*c-‘+2Z,,(xI~-1)-l, P-x”, 

= (4,/%&J/f)2’3e-“3, x=x* ; (6.10) 

~0(t)=t-3’2(~2)-‘(~/2x)f~‘2(8J2)-”2(1-~/~)--2’2, x<f, 

=4(~1~)*)2(2ni~)(xiX*-1)1*, x>x* 3 

=,-2’3(26)-‘(25’27$,,Jlf)2’3, x=x* ; (6.11) 

(r2(t))=2fJ2u2(1-x/X*)/Z,-,, X-M 3 

=a2[(47dx)(XIX+-1)l-2, x>x’, 

=t2~3a2(J2X+123~2n.&,)2~3, pp. (6.12) 

In eqs. (6.9) and (6.12), a is the lattice spacing. In the delocalized regime (x(f), the transport is diffusive at 
long times: (r*(t) ) increases linearly with time, and 9%(t) decays as tw3/*. In the localized regime (x>f), 
( r* ( t ) ) is bounded, and S$, ( t ) decays to a nonzero value, indicating that there is a finite probability at all times 
that the particle is to be found at its original site. At the critical point (x=x*), the particle is weakly localized. 
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(r2(t)) increasesas~~/~,andg~(t)decaysatt- . 2/3 ForX>f, D( 0, t ) is linear in c for small E, with a coefficient 
that diverges as (X-X*)-~“. ForX<f, D(0, E) approaches a constant value at small e that vanishes as (P-X)“. 
The critical exponents in eq. (6.9) are Y= 1 and S= 1, which obey the scaling relation of Wegner, s= (d- 2 ) v 
[ 281. Numerical estimates of the exponent Y range from 0.6 to 1.8 [ 3 l-341. As discussed in refs. [8-l 11, the 
critical exponents in eqs. (6.9)-( 6.12) are identical to those obtained by Vollhardt and Wijlfle [ 35 ] for a gas 
of noninteracting fermions at zero temperature in a random potential. A comparison between their self-consis- 
tent equation for the diffusion kernel, which was derived with a diagrammatic approach, and eq. (6.4a) is made 
in ref. [ 81. The limiting behavior of the complex conductivity at small frequencies near the transition can be 
determined from eqs. (4.20): 

a’(O)=~~(l-X/X*)+A,(l-X/X*)-“2W”2, x<x, 

o”(O)=A,(l-X/XI)-“20”2, 

tr’(W)=A2(~/X*-l)-%U2, 

o”(0)=A3(~/X*-1)-2t2, 

6’ (0) =A&o”3 , 

att(o.I)=d(0)/fi, 

a0 = (ne2/kT)2J2a2/ro, 

(6.13a) 

A, =o,,,x~;/~/~IcJ, A2=q,f~/2g7c4J4, A3=ao~21’o/32~2J2, A4=r301-~‘3(~/ti)2’3,/5/8. (6.13b) 

The ac conductivity is proportional to 6’ (0). The dc conductivity is zero for x>f, and is finite for x<P. The 
critical behavior of transport properties within the EDA can thus be determined analytically. 

This concludes our discussion of the asymptotic (long time and small frequency) behavior of the Anderson 
model in the vicinity of the transition. Before turning to a more general analysis of the model, valid for any time 
scale, we should comment on the role of the external dephasing r, and its interplay with the localization, as 
shown in eqs. (6.9)- (6.13 ). This will allow a direct comparison of the present results with the original Anderson 
model which assumes r,,= 0. If we approach the transition from above (,y>f ), i.e., from the localized side, we 
note that the existence of the transition, the critical disorder, and the critical behavior are independent of r,. 
When the transition is approached from the delocalized side (xc~). r, makes the motion incoherent (diffu- 
sive) with a diffusion constant Dx J’a’/I’,,. The reason why r, is irrelevant in the vincinity of the transition 
from above, is that for x>f, r(e) diverges as e-i and is dominating the dephasing. The inclusion of r,, in our 
model restricts our asymptotic analysis to time scales tc+~r,- I. Since r, can be made arbitrarily small, r& ’ may 
correspond to arbitrary long time scales, so that our analysis holds for any physically realistic time scale. In 
conclusion, it should be emphasized that had we been interested in approaching the transition only from the 
localized end (as is done in other self-consistent procedures) [ 51, we could have simply set r,=O without 
affecting our analysis. The inclusion of r, allows us to approach the transition also from the conducting (delo- 
calized) end. In that case, r0 makes the electron motion incoherent. 

We next turn to the calculation of transport properties for any time scale and degree of disorder, using eqs. 
( 6.3 ) . Evaluation of the right side of eq. ( 6.3a) involves performing 2d nested integrations over {G} and { kj}. 
We shall make a simplifying approximation [ 111 to reduce the number of integrations. In evaluating the right 
side of eq. (6.3b), we shall make the replacement 

fi sin(qj) sin(k,/2)+sin(q,) sin(k,/2) . (6.14a) 

The integration over q, can then be carried out analytically to yield 
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Fig. 6. The frequency-dependent dephasing rate for the Ander- 

o- 02 
son model is calculated by a numerical solution of eqs. (6.3) for 
a simple cubic lattice [ 111. The transition occurs at ( W/ 

-1 J)*% 5.34. Each curve is labeled by the value of W/J. rO=2J. 
I 

-2 -1 0 1 2 3 4 For W/J> ( W/J)*, T(e) diverges as e-’ for small e, whereas for 

%O(J W/J< ( W/J)* it approaches a constant limit. 

Q(&,e)={[~+~(e)]*+16J*sin*(ku/2)}-’I*. (6.14b) 

Since Q(&, e) in eq. (6.14b) depends only on the magnitude of R, of the integration over R in eq. (6.3a) reduces 
to a one-dimensional integral: 

r(c)=C,+2@(~2/7+~ /cd-‘dk[Q(k, t)-‘-r(e)]-’ . (6.15) 

As discussed in ref. [ 111, the critical exponents predicted by eq. (6.15 ) are identical with those predicted by 
eqs. (6.3 ), although the value of X is slightly different. In fig. 6, we display r(e) for various values of W/J, as 
indicated. For W/J> ( W/J)*, r(e) diverges as e- I, as ~0, whereas for W/J< ( W/J)*, it approaches a finite 
value in this limit. In fig. 7a, we display the ac conductivity Q’ (cc) for various values of W/J- (W/J)* as 
indicated. The same calculations are displayed on a log-log scale in tig. 7b. The frequency dependence obtained 
in our analytical analysis (eqs. (6.13) ) is clearly demonstrated. In fig. 8, we display the dc conductivity versus 
W/J- ( W/J)*. The dc conductivity vanishes linearly as [ ( W/J)* - ( W/J) ] for W/J< ( W/J)*, as predicted 

by eqs. (6.13). 

Fig. 7. (a) The ac conductivity for the Anderson mode1 CT’ (o) is calculated for a simple cubic lattice [ 111. us= 1. Each curve is labeled 
by the value of W/J- ( W/J)*. r,= 2J. (b) The calculations of (a) are presented in a log-log graph to illustrate the power law frequency 
dependence of the ac conductivity in different frequency mgimes. For W/J< ( W/J)*, u’(w) approaches a finite limit as O-DO: the dc 
conductivity. For W/J> (W/J)*, u’ (w) vanishes as w2 for small CO. For w/J= 1, u’(w) decays as ~-~for all W/J. 
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OA- 

02- Fig. 8. The dc conductivity for the Anderson model [ 111 u’ (0 ) 
is shown as a function of W/J- ( W/J)*.u,,= I. The calculation 
was made using eqs. (6.3). For W/J-c ( W/J)* the motion of the 

0 , 
-5.34 

carrier is diffusive at long times, and 6’ (0) is finite. As W/J ap- 
proaches ( W/J)* z 5.34, u’ (0) vanishes linearly with W/J- ( W/ 
J)*. For W/J> ( W/J)*, the carrier is localized, and 0’ (0) is zero. 

7. Carrier motion in dynamically disordered systems 

The interaction of an electronic excitation or a charge carrier with the nuclear degrees of freedom of the 
surrounding medium is a central topic in the chemistry and physics of condensed phases. Such interactions play 
a crucial role in the dynamics of excess electrons in solids (the polaron problem) [ 7 1, in solution [ 36-38 ] and 
in the electrical conductivity of disordered materials such as solid electrolytes [ 39,401. The problem of carrier 
motion in a condensed phase medium is considerably simplified, when the correlation time of the medium is 
short compared to the time scale of the carrier dynamics. In this case, it is possible to construct an effective 
Liouville operator for the carrier, in which the effect of the medium is given by a dephasing rate or friction. The 
Haken-Strobl model [ 181 of exciton motion in molecular crystals, in which the phonons enter through a de- 
phasing rate, is based on such a separation of time scales. The reduced equation of motion for the Haken-Strobl 
model is eq. (4.7) with P(t) =@(t) andf(s) =&,. The exact solution of this equation is given in eq. (4.13a) 
with r(e) = y. Alternatively, in the Wigner representation the Haken-Strobl equation of motion is eq. (52a) 
with r(t) =$(t) and F(p) as in eq. (5.3). The Anderson model corresponds to the other extreme in which the 
bath motions are infinitely slow. The Anderson model is not exactly solvable, and in section 6 we developed an 
approximation scheme, the EDA, to calculate the transport properties. The dynamics of electronic excitations 
interacting with nuclear degrees of freedom whose time scale is not necessarily short or long compared to the 
time scale of the excitation have received considerable attention from theorists [ 4 l-48 1. Sumi [ 4 I] has inves- 
tigated a model of exciton dynamics in molecular crystals, in which the system is represented by an ordered 
lattice with site energies that are Gaussian, stochastic variables, whose fluctuations are characterized by a finite 
time scale (eq. (2.3)). He calculated the absorption line shape and the density of states within the coherent 
potential approximation (CPA). Blumen and Silbey [ 421 have obtained similar results for the absorption line 
shape for this model, using a truncated cumulant expansion. It should be emphasized that the absorption line 
shape and the density of states do not contain sufficient information to yield transport properties, such as the 
mean-squared displacement of an excitation. In general, the approximate methods that are used to calculate a 
line shape or density of states cannot be extended in a simple way to the calculation of transport properties, and 
new methods must be developed. An example is the two-particle CPA of Velicky [ 49-5 11, which, however, does 
not have the capacity to predict a quantum localization transition. 

In this section, we extend the EDA and apply it to carrier dynamics in a condensed phase system that is 
characterized both by static and dynamic sources of disorder [ 91. We consider a model in which noninteracting 
carriers move among active sites that are randomly distributed on a lattice, with site energies that are stochastic 
variables whose fluctuations are characterized by a time scale of arbitrary magnitude. The model treated here 
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unifies a variety of models that have been extensively studied in condensed matter physics. The model is char- 
acterized by three parameters: c, the concentration of active sites, A, the root-mean-squared magnitude of the 
site energy fluctations, and A, the inverse correlation time of the fluctuations. We consider six limiting cases: 
( 1) For c= 1 (ordered lattice ) , A> 0, and A > 0, we recover the model of excitons in molecular crystals that was 
treated by Sumi [ 4 11, and by Blumen and Silbey [ 42 1. (2 ) For c= 1 and A= 0 (no energetic disorder), the 
model describes a perfect lattice of interacting, quantum mechanical, two-level systems [ 241. (3) For c= 1 and 
A= 0 (static energy disorder), the model reduces to the Anderson model [ 4-6,29-341. (4) For A= 0 and CC 1, 
the model reduces to the quantum percolation problem, which has been the subject of several recent studies 
[ 3352-541. (5) For c= 1 and A Z@ A, there is a separation of time scales between the energy fluctuations and 
the carrier motion, and the Haken-Strobl model of exciton dynamics in molecular crystals is recovered [ 18 1. 
(6) For A w A and AZ/A w J, the Liouville equation reduces to a Pauli master equation with a site-to-site hop- 
ping rate of J’A/A*. This limit describes incoherent exciton motion [ 55-571. 

Our model system consists of a lattice in ddimensions with two types of sites: active sites on which the carriers 
may reside, and forbidden sites that are inaccessible to the carriers. A fraction c of the sites are active, and these 
are randomly distributed on the lattice. Since the carriers are assumed not to interact with each other, we con- 
sider the dynamics of a single carrier. For a given configuration of this random system, the single particle density 
matrix fi obeys the Liouville equation: 

d/Vdt= -i[H,p]=-i@, (7.la) 

The sums in eq. (7. lb) run over the indices labelling the active sites. I m) denotes the state in which the carrier 
resides at the active site labelled m. J,,,,, is the transfer matrix element between active sites m and n, which we 
will take to have the value J if m and n are nearest neighbors on the lattice, and to vanish otherwise. MO,(~) is 
a stochastic variable that represents the fluctuating site energy of the active site labelled m. We adopt the same 
modei for the fluctuations used in sections 2 and 3, i.e., 

(60,(t)6w,(~))=6,,AZexp(--AIt-rl). (7.2) 

The present model corresponds to a quantum mechanical treatment of the carrier, and a classical treatment of 
the medium degrees of freedom with which the carrier interacts. A microscopic model of exciton dynamics with 
exciton-phonon coupling that is linear in the phonon coordinates can be mapped into the present problem in 
an approximate fashion, in which case the parameter AZ is linear in the temperature, for kT large compared to 
lattice vibration energies [ 4 11. It should be noted that in such a stochastic treatment, the action of the carrier 
on the surrounding medium is neglected, that is, the “bath” affects the “system”, but the “system” does not 
affect the “bath”. In other words, polaron effects [ 7,47 ] are not included in this stochastic approach. 

Neither the absorption spectrum nor the transport properties can be determined exactly for this model, and 
approximate methods must be applied. The optical absorption spectrum has been calculated for this model for 
c= 1 by Sumi [ 4 1 ] who used the coherent potential approximation, and by Blumen and Silbey [ 421 who used 
a truncated cumulant expansion. Sumi’s treatment was written in ordinary Hilbert space. We shall now rewrite 
his results using our Liouville space formulation. This establishes the connection between his treatment and our 
effective dephasing theory. We shall denote the ground state of the system in which all molecules are in the 
electronic ground state by I 0). The density matrix element pm0 represents an intramolecular coherence on the 
mth site. The density of states and the optical lineshape can be expressed in terms of the following Green func- 
tion, which represents the time evolution of the intramolecular coherence, 

Bmo(0 =c &0,“0(Mo(0) - (7.3) 
n 
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This Green function is defined by 

(7.4) 

where af and a,,, are the creation and annihilation operators for an excitation at the site labeled m, and 0 is the 
lattice ground state. The angular brackets denote an electronic trace and average over the fluctuations. We define 
the Fourier-Laplace transform of the Green function by 

G(k,r)=$ TdfG ,nO,nO(f) exp[ -Et-iR*(r,-r,)] = [e+i&(e)l-’ . 
In.” 

0 

(7.5) 

Leff is an effective Liouville operator. r, is the position of the lattice site labelled m. Sumi has adopted the 
following ansatz for G( k, c ) (and LeR) 

G(k, E)= [t+r,(~)+i.@)]--’ , (7.6a) 

with 

~((R)=CJ,,exp[-ik.(r,-f,)]. (7.6b) 
WI 

The optical absorption spectrum is given by 

a(o) = - K-’ Re G(k=O, -i(o-CQ)= -x-l Im[o-tie,-J(ik=O)+iT,(-i(w-o&))]-’ , 

and the density of states is 

(7.7) 

pa(o)=-x-’ ReG(R, -i(o-&))=-rc-‘Im C [O-d&-J((k)+ir,(-i(o-tieg))]-’ 
k 

Sumi then developed the following self-consistent equation for r,(e) 

A2 
Fs(c)= 3 

2A2 
P(t+A)-‘+ 

3A2 
P(e+U)-‘+ 

E(e+3A)-‘+... 

(7.8) 

(7.9a) 

(7.9b) 

(7.9c) 

The last equality in eq. (7.9c) results from applying the Hubbard approximation to the lattice Green function 
[ 241. If the intermolecular interaction Yis set equal to zero, then eq. (7.7)reduces to eq. (2.14), the absorption 
lineshape for a single molecule. In this limit, the expression for r,(e) in eq. (7.9a) reduces to eq. (2.11), the 
single molecule dephasing rate. 

We have developed a self-consistent theory for the transport properties of a particle or excitation governed by 
the Hamiltonian of eq. ( 7.1 b). The approach is similar to the derivation of the EDA self-consistent equation 
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for the Anderson model in eqs. (6.3), except that the approximate relation that is used to close eq. (6.1) is 
based on an expansion in powers of the concentration of active sites, rather than the short time expansion that 
led to eq. (6.2a). The model investigated in this section is a generalization to an infinite lattice of the two-site 
model treated in section 3. Our treatment of the present model makes use of the exact solution of the dimer 
problem. A complete discussion of the derivation is given in ref. [ 91. The result is the following pair of coupled 
equationsforPO(e) andD(e) [9]: 

P,(e)= [a2/2D(~)14(a2E/2D(~)), (7.10a) 

D(~)=cD,(P,‘)/[1+2P,D,(P,-‘)a-*], (7.1Ob) 

where 

k*O(R, t)=2a-*D(C) d- i cos(R.u,) . 
n=l > 

(7.10d) 

D(E) in eqs. (7.10a) and (7.1Ob) is the R+O limit of D(R, e) in eq. (7.10d). Z,is defined in eq. (6.5). The 
lattice vector in the direction n is IL,, and has a magnitude a. Z,, r,, r, and r, denote, respectively, the matrix 
elementsy,2,12,Y12,21,y21,12,y21,21 ofthedephasingmatrixforthedimer (eq. (3.4b)).Eqs. (7.10a) and (7.1Ob), 
can be solved for either D(e) or for PO. The solution for D( t ) can then be substituted into eq. (7.10d) to yield 
D( R, e ) . In order to compare the solution of eqs. ( 7.10) to the work of Sumi, and to the results of the previous 
sections, we shall use eq. (4.17 ) to define a frequency-dependent dephasing rate for this model. Comparison of 
eqs. (4.17) and (7.10d) yields 

r(t)=2J*u*/D(e)-t. (7.11) 

The transport properties of this model can then be interpreted in terms of an effective dephasing rate r(e) 
obtained from eqs. (7.10) and (7.11). This dephasing rate is different from the function Z(e) obtained from 
eq. (7.9a) which determines the spectral properties of the medium. Later in this section we shall compare these 
two dephasing rates in detail. First, however, we shall determine the solution of eqs. (7.10). In order to solve 
eqs. (7.10a) and (7. lob), the matrix elements r, through r, must be evaluated. For arbitrary values of A and 
A, 7(e) may be calculated numerically from the matrix continued fraction in eq. (3.4b). We can, however, 
analytically determine the asymptotic behavior of the solution of eqs. (7.10a) and (7.1 Ob) at small frequencies, 
and hence long times. There are two cases to consider: n > 0 (dynamic fluctuations) and n = 0 (static site energy 
disorder). The small frequency (long time) behavior of the solution of eqs. ( 7.1 Oa) and ( 7.1 Ob ) is different in 
each of these cases. We begin by considering this small frequency behavior in one, two and three dimensions for 
A> 0, in which case “small frequency” means e ELI. We expect that in the vicinity of a metal-insulator transi- 
tion and for sufficiently small frequencies, PC ’ enI. (We shall solve eqs. (7.10a)-( 7.10d) within this assump- 
tion, and it is easily verified that the resulting solution is consistent with this condition.) Substitution of eq. 
(7.10a) into eq. (7. lob) yields a closed equation for D(E). Eq. (7.11) can be used to transform this relation 
into the following closed equation for r( t ): 

r(e) 
: c+m 2J2u2 _ -zd(c]e;Z$e)]). 

CD,(O) c 
(7.12) 

Eq. (7.12) has the same structure as eq. (6.4a), the EDA self-consistent equation for the Anderson model in the 
vicinity of the critical point. Eq. (6.4a) can be transformed into eq. (7.12) by making the following substitutions 

ro+2h*/~o,(0), (7.13a) 

x/2+1/c. (7.13b) 
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Inspection of eq. (3.4b) shows that for LI > 0, the matrix elements of y (e) are finite in the limit of zero t. DO( 0), 
which depends on A, A, and J, but not on PO, can be expressed in terms of the matrix elements of r( 0) by setting 
y= 0 in eq. (7.1 Oc). The solution of eq. (6.4a) is discussed in section 6, and the solution of eq. (7.12) can be 
obtained from it by making the substitutions in eq. (7.13). In d= 1 and d= 2, eq. ( 7.12) predicts that r( t ) CC c ‘, 
and hence that carriers are localized, in agreement with the scaling theory of Anderson localization [ 27,35 1. In 
d=3, a metal-insulator transition is predicted at a critical value of the concentration of active sites: 
c*=Z~(O)zO.5055. The solution of eq. (7.12) in d=3 can be obtained from eq. (6.10) by making the substi- 
tutions in eq. ( 7.13 ). For c > P, r(c) approaches a finite limiting value for small frequencies, and for C-C c*, it 
displays an infrared divergence. At c= P, r( t ) cc E ‘j3. S$(t)and (r’(t)) canbedeterminedfromeqs. (6.11) 
(6.12 ) and (7.13 ). For cc P, ( r2 ( t ) ) reaches a finite value at long time, indicating that carriers are trapped in 
a finite volume. For c> c*, the carrier moves diffusively at long times, with (r’(t) ) that increases linearly in 
time. At c=P, ( r2( t) ) a t213. The carriers are not trapped, but their motion is less efficient than ordinary 
diffusion. This phenomenon is referred to as weak localization [ 591 or anomalous diffusion [ 601. 

We have determined the long time and small frequency behavior of the transport properties calculated from 
eqs. (7.12) for A > 0 in terms of D,,( 0 ), as a function of J, A, and A. Do is defined in terms of the matrix elements 
of y( E) by eq. (7.10~). In general, these matrix elements must be determined numerically from the matrix 
continued fraction expression for y( E) in eq. (3.4b). However, Do can be determined in closed form in the limit 
n z+ A. In this limit, the correlation time of the site energy fluctuations is small compared to the inverse magni- 
tude of the fluctuations. Under these conditions, the continued fraction in eq. (3.4b) can be truncated to yield 
Y(E) =2(A2/A)B2. Substituting this result into eq. (7.10~) yields D,-,(O) in the dynamic limit (A >>A): 

D,(0)=J2a2A/A2. (7.14) 

In figs. 9a and lOa, we display the effective dephasing relevant for the optical spectra and density of states, 
obtained by numerically solving eqs. (7.9). In fig. 9a, the energy disorder is almost static A/6J= 10m4. The 
various curves are for different values of A/65 as indicated. In fig. lOa, we have fixed the magnitude of the 
disorder A/65= 1 and the various curves correspond to different values of A/65 (as indicated). For comparison, 
we present in figs. 9b and lob the corresponding calculations of the effective dephasing relevant for transport, 
obtained by solving eqs. (7.10) numerically. These figures clearly show that the spectroscopic r,(c) (figs. 9a 
and 10a) is insensitive to the localization transition and r,(e) always attains a finite limiting value as e-+0. The 
dephasing associated with transport r(e) (figs. 9b and 1 Ob), on the other hand, clearly shows the 1 /C divergence 

103 0 
3- 

Fig. 9. (a) The frequency-dependent dephasing rate associated with the absorption lineshape is calculated using Sumi’s dynamical CPA 
(eqs. (7.9)). A/6J= 10-4. Each curve is labeled by the value of A/6J. In all cases, T,(c) approaches a finite value as f+O. (b) The 
frequency-dependent dephasing rate associated with transport in a dynamically disordered system is calculated from eqs. (7.10) and 
(7.1 I ). All other parameters are the same as in fig. 9a. Note the 1 /f divergence of r( f ) near the critical point (A/6J= 0.37). which is 
absent from fig. 9a. 
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Fig. 10. (a) The frequency-dependent dephasing rate associated with the absorption lineshape is calculated using Sumi’s dynamical CPA 
(eqs. (7.9)). A/W= 1. Each curve is labeled by the value of A/W. In all cases, r,(e) attains a finite limiting value as c-0. (b) The 
frequency-dependent dephasing rate for transport with dynamical disorder is calculated from eqs. ( 7.10) and (7.11). AU other parame- 
ters are the same as in (a). Note the 1 /e divergence ofr(e) as e-0. 

which is the signature of localization. It is interesting to note that for the Haken-Strobl model (A =B A), both 
dephasing rates are independent of frequency and the dephasing rate associated with transport r=2A2/A, is 
simply twice the spectroscopic dephasing rate r, = 4*/A. When the medium time scale is finite, the two dephas- 
ing rates are, however, significantly different as illustrated in figs. 9 and 10. 

We next turn to the analysis of the solution of eqs. (7.10) for A = 0. In this limit, the site energies are static, 
random variables with a Gaussian distribution. In the absence of topological disorder, c= 1, this model reduces 
to the Anderson model of a lattice with random site energies [ 8,9,29-341, which was treated in section 6. For 
A=O,eqs. (7.10a)-(7.10d) donotreducetoeq. (7.12) astheydidfornonzeroA.Thederivationofeq. (7.12) 
relies on the fact that the limit of Do (y ) in eq. ( 7.1 Oc) as y approaches zero is finite. This limit exists for A > 0, 
but is undefined for A = 0. In the static limit, the continued fraction expression for the dimer dephasing matrix 
in eq. ( 3.4b), whose matrix elements enter into eq. ( 7.1 Oc) , converges increasingly slowly as e is decreased. It 
is thus inconvenient to analyze eqs. ( 7.10) directly in the limit of small e at A = 0. The A = 0 limit of eqs. ( 7.10) 
is derived in ref. [ 91, and is presented in eq. (4.16) of that work. This relation is derived by determining the 
dimer Green function G( t ) in eq. (3.4a) by calculating G(e) for a pair of sites with given site energies, and then 
averaging over a static, Gaussian distribution of site energies. The resulting expression is equivalent to the A = 0 
limit of the continued fraction in eq. (3.4b). It is found that carriers are always localized for d= 1 and d= 2. In 
d= 3, a metal-insulator transition is found to take place at a critical concentration c* given by 

c*=W)lWJ/A) , 

with 

(7.15a) 

H(y) = x1/2, exp(y*) erfc(y) . (7.15b) 

The critical concentration is a function of the magnitude of the site energy disorder. For A Q= J (weak energetic 
disorder), H(J/A) z 1, and c*=Zs(0) ~0.5055. 6’ increases as the magnitude of the energetic disorder is in- 
creased. As A/J is increased, P increases without bound, according to eq. (7.15b). Of course, c, the fraction of 
active sites cannot exceed unity. If A/J is sufficiently large that E 3 1, then the dc conductivity will vanish for 
all physically realizable values of c. If A=O, the present model reduces to the quantum percolation problem, 
which has been the subject of several recent studies [ 33,5.2-541. Our estimate of P k: 0.5055 for A= 0 should be 
compared with the following numerical estimates of the quantum percolation threshold on a simple cubic lattice: 
0.45 [ 331, 0.38 [ 521, 0.47 [ 531 and 0.70 [ 541. In the case of dynamic disorder, the critical concentration is 
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I? = Z, (0) w 0.5055, and is independent of J and A. In a dynamically disordered system, the carrier moves in a 
dynamically averaged potential on time scales that are long compared to A-‘, the correlation time of the fluc- 
tuations. Since the critical behavior in this case is determined by dynamics on time scales longer than this cor- 
relation time, the critical concentration does not depend on the magnitude of the fluctuations. The critical 
condition in eq. (7.15a) can be regarded in two ways. One can imagine fixing c and tuning A through the tran- 
sition, or fixing A and adjusting c. Fig. 11 a shows a phase diagram, calculated from eq. ( 7.15 ). To the left of the 
solid curve, the system is an insulator (zero dc conductivity), and to the right it is a conductor (kite dc con- 
ductivity ) . For c < Zj ( 0) x 0.505 5, carriers are localized for any value of A. For c> Z., ( 0 ) , carriers are delocalized 
for A= 0, but a transition occurs as A is increased. The corresponding phase diagram for nonzero /f is shown in 
fig. 11 b for comparison. At c= 1, there is no topological disorder, and the present model for n = 0 reduces to the 
model studied in section 6. Since different approximations were used in the derivation of eqs. (7.10) and eqs. 
(6.3 ), the predictions of eqs. (7.10) for /1= 0 differ in certain respects from those of eq. (6.3 ). For the original 
Anderson model, in which the site energies are uniformly distributed between - W/2 and W/2, the approach 
of section 6 leads to the prediction that a metal-insulator transition occurs in d=3 at ( W/J)*=6.9, while the 
present approach yields a prediction of ( W/J)* z 7.5. In addition, the two approaches yield different predic- 
tions for certain of the critical exponents. .For example, in eq. (6.9), it is found that the diffusion constant 
vanishes, as x-f, as x approaches f from above. Eqs. (7.1 Oa)- (7.1 Od), at n = 0, lead to the prediction that 
the diffusion constant vanishes as (x-f) ‘I2 . A complete discussion of the predictions of eqs. ( 7.10 ) at n = 0 is 
given in ref. [ 9 1. 

We have analyzed the long time behavior of the transport properties calculated from eqs. (7.lOa)-(8~. lob), 
and have elucidated the critical dynamics. Such an asymptotic analysis does not show, however, exactly when 
this limiting behavior is attained. Estimation of this time is essential in order to determine whether the asymp- 
totic analysis is relevant for a given measurement with a given experimental time scale [ 6 1,621. In order to 
determine the time regime in which the asymptotic results are valid, one must solve eqs. (710a)-(7.10d). 
Detailed numerical calculations of g? ( t ) and ( r2 ( t ) ) were presented in ref. [ 9 1, For c < P, CPO ( t ) approaches a 
finite value at long times, indicating the carriers are localized in a finite volume. For c>P, :PO( t) vanishes at 
long times and the carriers can explore the entire volume. The very long time behavior depends only on c for 
n > 0 (and A# 0), but the time scale on which this behavior is first attained depends on li and A. The time for 
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Fig. 11. (a) Phase diagram for a system with topological disorder and static site energy disorder 191. A is the root-mean-squared site 
energy, J is the intersite interaction, c is the concentration of active sites. To the left of the solid curve, the system is an insulator (zero 
dc conductivity), and to the right of the solid curve it is a conductor (nonzero dc conductivity). (b) Phase diagram for a system with 
topological disorder and dynamic site energy disorder [9] characterized by a finite correlation time A-‘. For 0~*~~0.5055. the system 
is a conductor, and for c<E it is an insulator. c’” does not depend on A/J, because for times long compared to A-‘, the carriers move in 
a dynamically averaged potential. 
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Fig. 12. (a) The concentration dependence of the real part of the dc conductivity is shown for A=O.Ol and four values of A. The dc 
conductivity vanishes for c<E and is nonxero for c> E. c” 3 0.5055. A, the root-mean-squared magnitude of the site energy fluctuations, 
and A, the inverse correlation time of the fluctuations are expressed in units of J, the intersite coupling [ 91. (b) The concentration 
dependence of the real part of the ac conductivity evaluated at u= J is shown for the same parameters used in A. u’ (J) is nonzero for 
A> 0 but still shows an abrupt increase with increasing concentration that resembles a critical point [ 91. 

which the asymptotic behavior holds becomes longer as A is decreased or as A is increased. For c> c*, ( r2 (2) ) 
increases linearly with time, whereas for CCC?, it reaches a finite limit at long times and for c=P, it increases 
less strongly than linearly in time. In addition, above the critical concentration P, 6’ (w) is finite as o+O, while 
below c*, cr’ (0) vanishes at o=O. 

In fig. 12a, we display the dc conductivity 6’ (0) and in fig. 12b, we display the ac conductivity 6’ (o=J) 
versus the concentration c. cr’ (0) vanishes for C-Z P whereas 6’ (J) is always finite. Although 6’ (0) is never 
zero for w> 0, the curves in fig. 12b display an abrupt increase with concentration which is reminiscent of the 
critical behavior shown in fig. 12a. Therefore, even for finite frequencies where a critical point does not formally 
exist, an experimental measurement of the concentration dependence of cr’ (0) would yield a threshold that 
resembles a metal-insulator transition. Figs. 12a and 12b also demonstrate that the conductivity decreases as A 

increases. 

8. Discussion 

In this article, we reviewed recent theoretical developments [ 8- 111 which allow the interpretation of spectral 
lineshapes and quantum transport processes in disordered solids using a unified viewpoint. The key quantity in 
the present formulation is a frequency-dependent dephasing rate. We first showed how spectral lineshapes of a 
single molecule in a medium are determined by an intramolecular dephasing rate which controls the relaxation 
of coherence between the molecular levels. We then introduced the intermolecular dephasing matrix and showed 
how it determines the spectroscopic and excitation transfer properties of molecular dimers. We then considered 
the motions of particles or quasiparticles in an infinite medium. The EDA is an analytical approach to treating 
the localization of a quantum particle moving in a random potential. It is based on the physical intuition that 
the ensemble averaged density matrix of a particle moving in a random potential satisfies an effective Liouville 
equation which contains a generalized frequency-dependent dephasing rate r( e ) . The EDA differs from most 
previous approaches to the quantum localization problem, in that the method focuses on the calculation of the 
ensemble-averaged density matrix, rather than the averaged wavefunction. r(e) describes the loss of phase 
coherence between different molecules. By transforming to the Wigner representation (eq. (5.4) ), we see that 
r(e) can be viewed as a generalized scattering rate in a Boltzmann equation with a BGK collision kernel. The 
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effective Liouville equation is capable of describing coherent motion (r=O) and incoherent motion (when 
r(O) is finite and large compared with the intersite coupling J). The signature of localization is an infrared 
divergence in r(e): r(e) acea. The success of the method in predicting a metal-nonmetal transiton in the 
Anderson model validates our procedure. The present mapping of the ensemble averaged equation of motion 
onto an effective Liouville (Boltzmann) equation is ideally suited for treating a broad range of models with 
static disorder (the Anderson model, quantum percolation) or dynamical disorder (e.g., electron-phonon and 
electron-electron coupling). It is also ideally suited for developing a semiclassical theory of localization. The 
applications discussed in this article demonstrate the capacity of the EDA to predict quantitatively the locali- 
zation transition and all the transport properties, in agreement with scaling theories of localization. The detailed 
comparisons presented here between the dephasing rate relevant for optical lineshapes and the density of states 
(eq. (7.9) ) and the dephasing relevant for transport (eqs. (7.10) and (7.11) ) allow us to analyze the optical 
and the transport properties in a unified way. We have demonstrated that the dephasing rate associated with 
transport is much more sensitive to the localization transition than the rate associated with spectral lineshapes. 
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