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A correlation function formulation, based on the Liouville equation for the density matrix, provides a microscopic theory 
for solvation dynamics and establishes a general fundamental connection between the calculation of rate processes and nonlinear 
optical processes in solution. The present rate theory requires the calculation of four-point correlation functions of the nonadiabatic 
coupling, which is formally identical with the calculation of four-wave-mixing processes and the nonlinear susceptibility ~ ( ~ 1 .  
A novel semiclassical propagation scheme (the Liouville-space generating function, LGF) is developed and used in these 
calculations. The connection with xO) may allow the direct use of solvent correlation functions obtained from nonlinear 
optical measurements, in the calculation of molecular rate processes. The present theory interpolates continuously from 
the adiabatic to the nonadiabatic limits. A new criterion for adiabaticity is derived, and the role of the solvent time scale 
in inducing the crossover from the nonadiabatic to the adiabatic regimes is clarified. The present results generalize the Kramers 
theory of isomerization and the Marcus theory of electron transfer in polar solvents. Both static (polarity) interactions, which 
affect the reaction energetics and dynamic (friction) effects, are properly incorporated. 

I. Introduction 
The dynamics of solvation plays an essential role in controlling 

rate processes as well as the optical properties of molecular sys- 
tems.14 The limiting step in electron-transfer (ET) pr~cesses~- '~  
is a proper dielectric fluctuation which compensates for the ac- 
tivation energy and allows the ET to proceed. Isomerization 
reactions in condensed phases are strongly affected by the friction 
originating from the interaction with the s o l ~ e n t . ' ~ - ~ ~  Similarly, 
the optical properties of solvated molecular systems are often 
dominated by the dephasing processes induced by the ~ o l v e n t , " ~ ~ ~ - ~ ~  
which result in spectral shifts and line broadening. Recent de- 
velopments in laser spectroscopy provide a broad range of fre- 
quency-domain and time-domain linear and nonlinear optical 
techniques with femtosecond r e s ~ l u t i o n . ~ ~ - ~ '  Many of the most 
widely used nonlinear techniques are some form of four-wave 
mixing (4WM). Transient grating, coherent anti-Stokes Raman 
(CARS), hole-burning, and photon echo spectroscopies, degenerate 
four-wave mixing, and the Kerr effect are just a few examples 
of 4WM. A calculation of any 4WM process requires the 
evaluation of a four-time correlation function of the dipole op- 
e r a t ~ r . ~ *  In recent years, we have developed a systematic meth- 
odology for relating a variety of 4WM observables to the same 
four-point correlation f ~ n c t i o n . ~ ' - ~ ~  Various stochastic and 
microscopic models were then developed and applied toward the 
calculation of the four-point correlation function. We have further 
shown how spontaneous Raman and fluorescence can also be 
treated in the same way.42%43 Rate processes in condensed phases 
are commonly treated by using stochastic methods.',2 The Marcus 
theory for ET uses a dielectric continuum model for the ~ o l v e n t . ~  
Isomerization reactions are often treated by means of the Kramers 
t h e ~ r y , ~ ~ , ~ ~  which is based on a Langevin e q u a t i ~ n . ~ ~ ~ ~ ~  We have 
further shown how the dynamics of rate processes can be related 
to the same four-point correlation functions which appear in  
4WM.46 This provides an important and fundamental link be- 
tween the dynamics of rate processes and nonlinear optical 
measurements. It allows us to clarify the precise information 
content of nonlinear spectroscopy and how it can be directly 
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utilized to predict rate processes. In this article, we review these 
recent developments and discuss the connection between rate 
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theories and nonlinear optical line shapes. 
In section I1 we define the linear and the nonlinear response 

functions ( J ( t l )  and R(t3,tZ,ti), respectively) and show how 
four-wave-mixing ( x ( ~ ) )  measurements as well as rate processes 
may be expressed in terms of these quantities. In section 111, we 
develop a specific model of a damped harmonic coordinate coupled 
to the electronic transition and derive explicit expressions for the 
response functions and for isomerization rates. These expressions 
assume a particularly simple form when the static (high-tem- 
perature) limit holds. In section IV, we show how the expressions 
derived in section I11 may be applied to electron transfer in polar 
solvents. The solvation dynamics are expressed, in this case, in 
terms of the dielectric properties of the solvent. In section V we 
consider the special case where the solvation coordinate has an 
exponential correlation function exp(-At). This model applies 
for isomerization in the Smoluchowski limit, for electron transfer 
in Debye solvents, and for spectral line broadening when the 
molecular frequency undergoes a stochastic Gaussian-Markovian 
process. For this case, a more general expression for the rate, 
not restricted to the static limit, may be derived. In section VI 
we present numerical calculations of electron-transfer rates and 
time- and frequency-resolved fluorescence and hole-burning line 
shapes in polar solvents. Finally, we summarize and discuss our 
results in section VII. 
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11. The Nonlinear Response Function: A Unified Description 
of Nonlinear Spectroscopy and Rate Processes 

We start our analysis by considering a spectroscopic experiment 
involving a molecular system with two electronic levels (la) and 
Ib)) in a solvent. The total Hamiltonian is 

H T  = H + H,,, (11-1) 

H = la)H,(al + Ib)Hb(bl (11-2) 

and HI,, represents the interaction with the electromagnetic field 

where the molecular Hamiltonian is 

Hint = - ~ E ( r M I a ) ( b l  + Ib)(al) (11-3) 

Here Ha and H b  represent the Hamiltonians for the intramolecular 
(vibration, rotation) and for the solvent degrees of freedom, when 
the system is in the electronic states la) and Ib), respectively. p 
is the electronic transition dipole matrix element. We shall treat 
the electromagnetic field classically and decompose it into Fourier 
components: 

E(r,t) = x E , ( t )  exp(ik,r - iw,?) + C.C. (11-4) 

The optical properties of the system may be related to the wa- 
vevector and time-dependent polarization P(k,t). The polarization 
is usually expanded in a Taylor series in E:31938 

I 

P(k,t) = fll)(k,t) + P’”(k,t) + fi3’(k,t) + ... (11-5) 

fl’) is related to the linear optical properties, whereas p2), p3), 
etc., constitute nonlinear contributions. In an isotropic medium 
f i 2 )  = 0. In this article, we shall focus on fl’) and p3). 

To first order we consider a single field E,,  and we have 

P”)(k,,t) = ilp12Ladtl [ J ( t l )  - J*(tl)] exp(iwlfl)El(t-tl) 

where [ J ( t l )  - J*(tl)] is the linear response function. Turning 
now to f13), we assume that the incoming field has three Fourier 
components, j = 1, 2, 3. The resulting polarization can have any 
of the wavevectors f k , ,  fk2,  f k 3  and the corresponding fre- 
quencies fwl ,  fwz, fw3. We shall hereafter calculate the following 
component of the polarization 

k, = k, + k, + k, (11-7a) 

(11-6) 

ws = w ,  + w2 + w3 (I 1-7 b) 

It is given by 

f13)(k,,t) = i 3 1 ~ 1 4 ~ J a d t l  0 Jadtz 0 Jmdt3 0 [R(t3,tZlt1) - 

~*(t3,~z,~i)l~l(~-tl-~2-t3) E2(t-tz-t3) Edt-t,) x 
exp[i(w1+wZ+w3)t3 + i(wl+wZ)t2 + iwltl] (11-8) 

The summation in eq 11-8 implies that we have to sum over all 
the permutations of E l ,  Ez, E3 (and wl, wz,  w,). Other Fourier 
components of f13) may be obtained from eq 11-8 by changing the 
sign of one (or more) wJ to -wJ and E, to E,*. [R(t3,t,,t1) - 
R*(t3,tz,tl)] is the third-order nonlinear response function. 
Equations 11-6 and 11-8 allow for an arbitrary temporal profile 
of E,(t) and are valid for pulsed as well as steady-state experiments. 
In a steady-state experiment we take E,(t) = E, independent of 
time. We can then factorize E, out of the integrations, and eq 
11-6 and 11-8 may be recast in the form 

P(’)(k,,t) = x(’)(-U1;w1)E, (11-9a) 

fi3’(k,,t) = X(3) ( -W, ;Wi ,W2,W,)E1,Ez ,E3 (11-9b) 

x(’) and x ( ~ )  are the first- and the third-order optical suscepti- 
bilities, re~pectively.~’*~* 

The functions J ( t l )  and R(t3,t2,tl) may be calculated starting 
with the Hamiltonian and with the Liouville equation for the 
density matrix of the system 

dfi/dt = -i[H,fi] - i[Hlnt,C] (11- 1 Oa) 
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culations of the nonlinear polarization we have applied the last 
interaction from the left.40 The connection with rate processes 
is somewhat more transparent if we apply the last interaction from 
the right. This is why we make this choice in this article. Let 
us first consider the linear polarization. There are two distinct 
pathways in Liouville space for the first Hh, interaction. However, 
only one of the pathways is independent. The pathway is displayed 
in Figure 1A and corresponds to the calculation of the function 
J ( t l )  (eq 11-1 1). The other pathway is simply the complex con- 
jugate and corresponds to J*(tl). We now consider the third-order 
nonlinear polarization. There are 2, = 8 distinct pathways in 
Liouville space corresponding to the possible choices of “left” and 
“right” for the three H,,, interactions. However, only four of these 
pathways are independent; the other four are simply their complex 
conjugate. We thus need to consider only the four pathways (i), 
(ii), (iii), and (iv) displayed in Figure lB, which correspond to 
R,,  R2, R,, and R4 (eq 11-13), respectively. 

We have developed a Liouville-space semiclassical propagation 
scheme for evaluating eq 11-1 1 and II-13.47-49 The method is 
based on propagating a Liouuille-space generatingfunction (LGF) 
p ( t )  defined as follows: 

(I  I- 1 5a) p ( 0 )  = pa 3 exp(-Ha/kT)/Tr exp(-HJkT) 

P ( ~ I )  E Gmn(tl)Pa = exp(-iHrntl)pa exp(iHntl) (11-1 5b) 

ba bb ba bb 

(A)  

Figure 1. The Liouville-space coupling scheme and the four pathways 
contributing to the nonlinear response f~nction.)~ Solid lines denote the 
interaction Hint. Horizontal (vertical) lines represent action of Hi,, from 
the right (left). Starting with aa in the upper left corner, there are two 
and eight pathways which lead to bb in second and in fourth order, 
respectively. Only half of these pathways are shown. The contribution 
of the other pathways is the complex conjugate of those shown. The 
pathway labeled (A) contributes to the linear response function J ( l J  (eq 
11-1 1). The four pathways labeled (B) [(i), (ii), (iii), and (iv)] correspond 
respectively to R,, R2, R,, and R, of eq 11-13 and contribute to the 
nonlinear response function. 

Equation 11-loa is then solved perturbatively in Hi,,, assuming 
that initially the system is in thermal equilibrium within the la) 
state, i.e. 

6(0) = pa exp(-Ha/kT)/Tr exp(-Ha/kT) (11- 1 Ob) 

The polarization is calculated by taking the expectation value of 
the dipole operator b, after 3 is calculated to the desired order 
(first order for J ,  third order for R) .  Within the Condon ap- 
proximation, the linear response function is then given by 

J(tl) = (Gba(tl)pa) (11-11) 

and the nonlinear response function assumes the form 
4 

a= I 
R(t3,t2,tl) = C Ra(t3,t2,t l)  (11- 12) 

Rl(t3,t2,tl) = (Gba(t3) Gbb(t2) Gba(tl)pa) 

R2(t3,t2,t1) = (Gba(t3) Gbb(t2) Gab(tl)pa) 

R 3 ( t 3 , t 2 , t l )  = (Gba(r3) Gaa(t2) Gab(rl)Pa) 

R4(f3,t2,fl) = (Gba(t3) Gaa(t2) Gba(tl)pa) 

(11-13a) 

(11-13b) 

(11-13c) 

(11-13d) 

G,,(t) is a Liouville-space Green function,40 defined by its action 
on an arbitrary operator A 
G,,(t)A = exp(-iH,t)A exp(iH,,t) m, n = a, b (11-14) 

The Liouville-space pathways corresponding to eq 11- 13 are 
displayed in Figure 1. Initially, the system is in the la) state (and 
the density matrix is la)(al). This is represented by the aa in the 
upper left corner of Figure 1. In the Liouville equation (11-loa), 
Hint appears in a commutator, and each time it is applied, it can 
act either from the left or from the right. In Figure 1, a vertical 
(horizontal) line represents the action of Hi,, from the left (right). 
After one action of H,,, from the left, the system moves one step 
down to (b) (a1 (ba), whereas after one action of H.,, from the right 
the system moves one step to the right to la) (b( (ab). The density 
matrix to first order, or to third order, in Hh, is calculated by acting 
with Hi,, once, or three times, respectively. Finally, we calculate 
the polarization by acting with the dipole operator from the right 
and calculating the trace. In fact, the last interaction can be 
applied either from the left or from the right. In previous cal- 

P(tl+t2+t3) G~k(t3) p(rl+t2) = 
exp(-iHJt3) p(tl+t2) exp(iH,t,) (11-15d) 

The linear response function can be calculated by 
(Gmn(ll)pa) Tr P ( ~ I )  (11-16) 

whereas the nonlinear response function requires the evaluation 
of 

(G~k(t3) G / / ( t Z )  Grnn(rl)pa) Tr P(tl+t2+t3)  (I1-I7) 

The calculation of J ( t , )  (eq 11-1 1) thus requires starting with pa 
and performing a propagation for one time interval ( t l )  with the 
choice m = b and n = a, resulting in p ( t l ) .  The trace of p ( t l )  
will then yield J ( t l ) .  The calculation of the nonlinear response 
function requires propagating p for three time intervals t , ,  t2, and 
t3 successively and then performing a trace. It should be noted 
that the LGF p ( t )  is not the density matrix of the system, since 
its propagation from the left and from the right is with different 
Hamiltonians. In eq 11-15b, for example, p ( t )  evolves in time 
following H, from the left and H ,  from the right. p ( t l + t 2 + t 3 )  
denotes a Liouville-space generating function at time t l  + t 2  + 
t,. This function depends on all three time arguments t , ,  t2, and 
tj, and nor only on t l  + t 2  + t,. The reason is that in each time 
interval there is a different propagation (i.e., G,(t,), G//(rz), and 
GJr,)) .  Consequently, the functions p(t l+tZ+t3)  entering into 
the calculation of R,, R2, R3, and R4 (eq 11-13) are different, since 
they correspond to different choices of j,  k, I ,  m, and n, as shown 
by the Liouville-space pathways in Figure 1B. In order to calculate 
the trace of p ( t ) ,  we need to choose a specific representation. An 
adequate choice is the Wigner which for a single 
coordinate q and its conjugate momentum p is given by 

1 
Q@,qJ) = Z-dY ( 4  + yIdt)lq - Y )  exP(-2iPY/h) 

(11-1 8a) 
and 

Tr p ( t )  = s s d p  dq p@,q;t) iII-18b) 
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Vb 
\ 

b 

U 

Figure 2. The potential surface for electron transfer as a function of the 
solvation coordinate U (eq 111-10). Vis the electronic coupling matrix 
element. X k the solvent reorganization energy, and Eo is the endo- 
thermicity. AGab* is the activation energy for the forward (la) to (b))  
reaction, and AGba* is the activation energy for the reverse reaction. 

We now turn to the calculation of a rate process (isomerization, 
electron transfer,  et^.)^^ In this case, the Hamiltonian is given 
by eq 11-1 and 11-2 with 

Hmt = v(la)(bl + Ib)(al) (11-19) 

Here Vis the nonadiabatic coupling between the two reacting 
species (Figure 2). Let us denote the probability of the system 
to be in the la) and Jb)  states by Pa(t)  and Pb(t), respectively, 
where Pa(?) + Pb(t) = 1. In general, Pa and Pb satisfy the gen- 
eralized master equation 

dPa/dt  = - L r d r  k(f-7) Pa(7) + X ' d 7  R'(t-7) Pb(T) 

Here k(t-7) and k'(t-7) are the generalized rates for the forward 
and for the backward reactions, respectively. Equation 11-20 can 
be rigorously derived from the Liouville equation (11-loa). A 
formally exact expression for the generalized rates may be derived 
by using projection  operator^.^^^^^ It will prove convenient to 
introduce the Laplace transform of the generalized rate 

(11-20) 

K(s) = Jmdr exp(-st) k(t) (11-21) 
0 

and similarly cor k'(t). The characteristic time scale for the time 
variation of K ( f - 7 )  is related to intramolecular and solvation 
relaxation times. Equation 11-20 is simplified considerably, when 
a separation of time scales exists and K(f -7 )  changes on a much 
faster time scale than Pa. Under these conditions, the generalized 
rate equation reduces to an ordinary rate equation 

(11-22) dPa/dt = -KPa + KIPb 

where K K(s=O) and K ' r  K'(s=O). The rate can, in general, 
be expanded in a Taylor series in the nonadiabatic coupling V. 
Only even powers of V contribute, 

K(s) = P C ~ ( S )  - V4C4(s) + ... (11-23) 

This series can be resummed approximately by constructing a Pade 
approximant. We then have 

(11-24) 
VC2(s) 

1 + PCz(s) T ( S )  
K(s) = 

where 

Equation 11-24 reproduces the expansion (eq 11-23) to order v4 
and provides a partial resummation for the higher terms. C2(s) 
and C4(s) are given by 

C2(s) = 2 Re Jmdt exp(-st) J ( t )  (11-26a) 

(51)  Zwanzig, R. Physica (Amsterdam) 1964, 30, 1109. 
( 5 2 )  Loring, R. F.; Mukamel, S. J .  Chem. Phys.  1987, 87, 1272. 

C4(s) = 2 Re Jmdtl Jmdt2 Jmdr3 exp[-s(t,+t2+t3)] X 

C2(s) is related to the linear response function (eq 11-1 l ) ,  whereas 
C4(s) is related to the nonlinear response function (eq 11-12). The 
nature of the rate process is determined by the adiabaticity pa- 
rameter 

0 0 0 

[R(t3, t2 , t , )  - R(t3,m,t l ) l  (II-26b) 

u VCz(s) r(s) (11-27) 

For u << 1, the rate process is nonadiabatic, and the rate is given 

K N A ( J )  = PC2(s) (11-28a) 

In the other extreme u >> 1, the rate process becomes adiabatic, 
and 

by 

KAD(S) = l / r ( s )  (11-28b) 

~ ( s )  is the characteristic solvent time scale which controls the 
adiabaticity of the rate process. The precise definition of ?(s) 
(eq 11-25) is an important result of the present formulation. This 
will be more clearly demonstrated in the coming sections, where 
we shall evaluate ~(s) for some specific models of the system- 
solvent interaction. As the solvent time scale becomes longer, v 
increases, and a nonadiabatic rate will eventually turn adiabatic 
with a rate equal to the proper inverse solvent time scale. A similar 
expression can be derived for the reverse rate K'(s) by inter- 
changing all a and b indexes. An alternative form for the rate 
which has a different dependence on the nonadiabatic coupling 
was postulated in the literature.l6 That form is based on the 
Landau-Zener expression, and like eq 11-24 it interpolates between 
the nonadiabatic limit whereby the rate is proportional to and 
the adiabatic limit where it is independent of V. We have con- 
sidered that form as well (eq 7.6 in ref 46a). Our derivation shows, 
however, that eq 11-24 provides an exact summation of the per- 
turbative series for Kin the static limit discussed below and should 
be preferred over the Landau-Zener form. We have thus es- 
tablished a fundamental connection between four-wave-mixing 
spectroscopy and molecular rate processes. We have shown how 
the nonlinear optical properties and the rate processes can both 
be expressed in terms of correlation functions of the system, which 
are formally identical. In the next section, we shall develop explicit 
expressions for these correlation functions. 

111. Coupling to a Damped Harmonic Coordinate 
In the previous section, we derived formal expressions for the 

optical susceptibilities x(') and x ( ~ )  and for molecular rate processes 
in terms of the same response functions J ( t )  and R(f3 , t2 , t l ) .  We 
shall now develop a specific model for the system-solvent inter- 
action and derive explicit expressions for these response functions. 
The model assumes a single harmonic coordinate, coupled to the 
electronic system and to a bath. The Hamiltonians Ha and Hb 
are given by 

Ha = )/zhuk2 + q2) + HB (111- la)  

Here p and q are the dimensionless momentum and coordinate, 
and D is a dimensionless displacement of the equilibrium position 
between the two states. HB is a bath Hamiltonian. In spec- 
troscopy, this model represents a molecule with a single vibrational 
mode which is strongly optically active,43 and Eo huba is the 
fundamental 0-0 transition energy. In isomerization, the mode 
q is the isomerization coordinate which is treated here by using 
a nonadiabatic picture, and Eo is the standard free energy of the 
forward la) to Ib) isomerization. Solvation effects arising from 
the solvent fast electronic degrees of freedom are included in E O .  

The same model applies also to electron transfer, whereby q is 
a macroscopic solvation ~ o o r d i n a t e . ~ ~  This will be discussed in 
the next section. The effect of the bath (HB) will be treated here 
approximately by assuming that the oscillator satisfies a gener- 
alized Langevin e q u a t i ~ n . ~ ' ? ~ ~  The effect of HB is then included 
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in the random force and the friction of the Langevin equation (see 
eq 111-5). We need to calculate the LGF p ( t )  (eq 11-15), whose 
time evolution is given by 
p(t+to) = Gjk(t) p(to) = exp(-iHjt) p(to) exp(iHkr) (111-2) 

jk being either aa, bb, ab, or ba, depending on the specific term 
being calculated and on the time interval ( t l ,  t2 ,  or t 3 ) .  We shall 
assume that in the Wigner picture p(p,q,t) is given at  all times 
by48 

Here 

ii = [exp(hw/kT) - 11-l (111-3b) 

is the thermally averaged occupation number of the oscillator. 
p(p,q,t) is characterized by three time-dependent parameters, ao(t), 
a l ( t ) ,  and a2(t),  defined as follows 

go(t) = Tr [P(t)l (111-4a) 

U l ( f )  = Tr [4P(t)l (111-4b) 

c2(0 = Tr [PP(t)l (111-4~) 

We have shown that ao(t), a l ( t ) ,  and u2( t )  satisfy the following 
equations of motion:48 

uo(t) = ifDw[al(t) + D/2]ao(t) (111-Sa) 

u l ( t )  = wa2(t )  + if(ii + 1)Dw 

u2(t) = - w [ u l ( t )  + )/2D'l - Sold' +(ET)  u ~ ( T )  

(111-5b) 

( 111-5~) 

Here +(t-7) represents a time-dependent friction kernel resulting 
from the coupling with the solvent. The parameters [ and D' 
depend on which propagation Gjk(t) we consider: for jk = aa we 
have f = 0, D' = 0; for jk = bb we have [ = 0, D' = 20;  for jk 
= ab we have f = 1, D'= D, and for jk = ba we have f = -1 and 
D' = D. We have solved eq 111-5 and obtained p ( t )  and p- 
( t l + t 2 + t 3 ) .  By taking the trace (eq 11-16 and 11-17), we then 
obtained the following expressions for J( t l )  and Ru(t3,t2,tl) (a = 
1, ..., 4): 

J ( t l )  = exp[-iE"tl] exp[-g(tl)l (111-6) 

RI(t3~t2,tl) = 
exp[-iE0(t3+t1)l exp[-g*(t3) - g(t1)l exP[-f+(t3J2J1)1 

(111-7a) 

R2(f3, t2 , t , )  = 

R3(t3,t2,tl) = 

exp [+E0 (t3-tl)I exp [-g* ( t 3 )  - g* ( t  1) 1 exp V+*(t3J2Jl) 1 
(111-7b) 

exp[-iE0(t3-t1)l exp[-g(t3) - g*(t,)l exPv-*(t3J2Jl)l 
(111-7~) 

R,(t3,t2,tI) = 
exp[-iEo(t3+td1 exp[-g(h) - g(tJ1 exp[-f-(t~,tddl (111-74 

where 

Here Eo is the endothermicity for the forward reaction from la) 
to Ib), and g(t) is the line-shape function given by 

we have defined here 

U H b  - Ha - E" = j/2hw(2Dq + D2) (111-10) 

X (Up,) = hwD2/2 (111-1 1) 

A' E (up,) - (Up,)' = h2w2D2(ii + )/2) (111-12) 

M ( t )  = L-1 1 + '(') ) (111-13) 
s2 + sy(s) + wz 

and 

y(s) = L m d t  exp(-st) +( t )  (111- 14) 

L-l in eq 111-13 represents the inverse Laplace transform. Another 
equivalent expression for M ( t )  is given by eq IV-4, in terms of 
a correlation function of U. We have M(0)  = 1 and M ( a )  = 0. 
We further have (cf. eq 111-8) 

f&(t3,m,tl) = 0 (111-1 5) 

Ru(t3,a,tl) may thus be obtained from eq 111-7 by setting the 
exp(f+) and the expv-) factors equal to 1. Equations 111-6-111- 15 
allow us to calculate C2(s) and C4(s) and the generalized rate K(s) 
(eq 11-24). We shall consider now a limiting case, in which the 
final expression for the rate is greatly simplified. To that end, 
let us examine eq 11-13 more closely. During the time intervals 
t l  and t 3 ,  the system is in an off-diagonal element of the density 
matrix (a "coherence") ab or ba. During the t2 interval, however, 
the system is in a diagonal element (a "population") aa or bb. The 
time evolution of the coherences is dominated by fast dephasing 
processes, which make their characteristic time scale much shorter 
than that of the populations. In the terminology of spectral line 
shapes, these correspond to pure dephasing processes,40 which are 
usually the major contribution to spectral line widths in condensed 
phases. We, therefore, assume that t l ,  t 3  << t2  and expand In 
Ru(t3,t2,tl) in a Taylor series in t ,  and t3, retaining only the lowest 
order contributions to the real part and to the imaginary part, 
resulting in the static limit for the response functions: 

exp[-i(Eo + X ) ( t ,  + t3)] exp{-(A2/2)[t12 + t 32  + 2M(t2)tlt3]) 
(111-16a) 

R3(t3, t , , t , )  = exp[-i(E" + X ) t ,  - i(E" - X)t3] exp(-(A2/2) X 

Rl(t3,t2,fl) = 

[ t I2  + t3' + ZM(t,)t,t3] - i2XM(t,)t3) (HI-16b) 

R2(t3,t2,tl) = Rl*(-t3?t2>tI) (111-16~) 

and 

R4(t3,tZ,tl) = R3*(-t3,t2,tI) (111-16d) 

We further make the same short-time expansion for J ( t l ) ,  ap- 
pearing in C2(s) in the denominator of eq 11-24 (but not the 
numerator). Assuming that ordinary rate equations hold (eq 
11-22), we shall calculate the rate by substituting eq 11-16 in eq 
11-24 and 11-26 and setting s = 0, resulting in46 

2a(V//)a(EO) 
K =  

1 + (2a)'I2[ V / ( A h ) ]  [ T (  y) + T( )]  ~ 

(I I I- 17 

where a(E" )  is the absorption line-shape function 

u(Eo)  = (2a)-'J_dt exp(-iE"t) exp[-g(t)] (111-1 8) 

T ( Z )  is the solvent time scale function, given by 
r ( z )  

1 
exp( - :) L - d t  { [ l  - Mz(t)]'/2 1 + M ( t )  

(111- 1 9) 

If we further invoke the short-time approximation for g(t) in eq 
111-18, we have 
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This is the static limit of the theory of spectral line  shape^.^^,^^ 
In the high-temperature limit ( k T  >> ha), eq 111-12 assumes the 
form 

A2 = hwD2kT = 2XkT (I I1 - 20 b) 

Upon the substitution of eq 111-20 in eq 111-17, the rate assumes 
the activated form 

K = A exp(-AGab* / kT) (111-21a) 

where the activation free energy is 

(EO + 
4X 

(111-21 b) AG,b* = 

and the preexponential factor is 

. . . .  . 
A =  

1 + (2iT)l"(P/Ah)[ T( $) Eo - + T( Eo T)] + X 

(111-2lc) 

In this case, the reverse rate K' is related to K by the simple 
detailed balance condition 

K ' / K  = exp(-EO/kT) (111-22) 

Using eq 111-17 or eq 111-21c, we note that the adiabaticity pa- 
rameter is now given by 

V = (2T)1/2(v2/Ah)[ T( +) Eo - -k T( Eo T)] + A (111-23) 

When v << 1, the rate process is nonadiabatic 

KNA = 2a(v2/h)a(E)  v << 1 (111-24a) 

whereas when v >> 1, it is adiabatic 

KAD = 

( ~ T ) ' / ~ A c ( E " ) / [  T (  7) Eo - A 
T( Eo T)] + X V >> 1 

(111-24b) 

Equations 111-17-111-21 constitute a closed expression for the rate 
of molecular processes. The precise conditions which M ( t )  should 
satisfy for this expression to hold are given in ref 46. EO, V, A, 
and X are static quantities. Eo is the endothermicity and Vis 
the nonadiabatic coupling whereas A and X are related to the 
coupling strength between the molecule and the solvent. M ( t )  
on the other hand is a dynamical quantity which depends on the 
solvent dynamics and friction. The precise definition of the solvent 
time scale function T ( Z )  (eq 111-19) is one of the major results 
of the present formulation. T[(EO - X)/A] results from R1 and 
Rz (eq 111-16) and represents a characteristic solvent relaxation 
time scale when the system is in the state Ib). T[(EO + X)/A] 
results from R, and R, and represents a solvent relaxation time 
.scale when the system is in the state la).46 A further discussion 
of the microscopic dynamics underlying T ( Z )  will be given in section 
VII. For the sake of clarity in the presentation, we have con- 
sidered, in this section, a single coordinate q. One of the ad- 
vantages of the present approach is that the incorporation of 
additional coordinates (e.g., more intramolecular vibrations) is 
straightforward. Equation 111-3a should then be replaced by a 
multivariate Gaussian distribution, which can be calculated by 
equations similar to eq 111-5. Furthermore, in the present model, 
we assumed that the harmonic coordinate has the same frequency 
in Ha and Hb When allowing for different frequencies, we need 
to generalize the Gaussian equation (111-3a) by allowing the second 

(53) Bloembergen, N. ;  Purcell, E. M.; Pound, R. V. Phys. Rev. 1948, 73, 
619. Anderson, P. W.; Weiss, P. R. Rev. Mod. Phys. 1953, 25, 269. Kubo, 
R. Ado. Chem. Phys. 1969, 15, 101. 

moments of p and q to vary with time as well. These extensions 
are presented elsewhere.48 

IV. Electron-Transfer Rates in Polar Solvents 
The model considered in the previous section and the expressions 

for the rate apply to electron transfer (ET) in a polar solvent as 
well. The basic model for ET consists of the charge-transfer 
system which has two states corresponding to the electron on the 
donor or the acceptor site and denoted la) and (b) ,  respectively. 
The system is interacting electrostatically with a polar solvent. 
The electric field a t  position r, created by the system in states la) 
and Ib), is denoted D,(r) and Db(r), respectively. The endo- 
thermicity of the reaction is denoted by E O .  It includes the 
interaction energy with the solvent electronic degrees of freedom, 
which are assumed to respond instantaneously to the charge re- 
arrangements in the system. The states la) and Jb)  are coupled 
by a nonadiabatic electronic matrix element V (eq 11-19). The 
Hamiltonian of the system is given by eq 11-1 and 11-2 with 

m = a, b (IV-1) 

Here HB is the pure solvent Hamiltonian. P(r) is the solvent 
polarization, and its interaction with the molecule is given by the 
second term in eq IV- 1. 

H, = HB - s d r  P(r) D,(r) 

We now introduce the solvation coordinate 

UI Hb - Ha = - s d '  [Db(r) - Da(r)lP(r) (Iv-2) 

The statistical properties of U may be related to the frequency- 
dependent dielectric function of the s ~ l v e n t ~ ~ , ~ ~  

t (w) = t, + (€0 - tm)F(w) (IV-3) 

Here to is the static (w = 0) and ern is the high-frequency (optical) 
value of t(w), and the frequency dependence of F(w)  reflects the 
dynamical dielectric relaxation of the solvent. We have shown46 
that the rate in the static limit is given by eq 111-17-111-19 or eq 
111-21 with 

where 
U(t) = exp(iH,t)U exp(-iHat) (IV-5) 

Expanding the rate perturbatively around HB, we get in the 
high-temperature limit46 

I (up,) = - dr [Da(r) - Db(r)l2[1/t, - l / to]  (IV-6) 8 a  ' s  
A2 5 ( @ p a )  - (Up,)2 = 2XkT (IV-7) 

and 
MU) = Q(t)/Q(o) (IV-8a) 

with 

Q(t) = Ll," 2ai  _, w exp(iwt)[ 4 w )  - t ]  (IV-8b) 

and Q(0) is equal to the Pekar factor: 

Equations 111- 17-111-1 9, or eq 111-21, together with eq IV-6-IV-8 
provide a closed expression for the ET rate and relate it to 
properties of the ET system and to the solvent dielectric function. 
Let us briefly comment on the significance of these quantities. 
The solvent dynamics are contained in M ( t ) ,  which is the nor- 
malized correlation function of the solvation coordinate. M(t) 
enters eq 111-17 via the line-shape function a(Eo)  and through 
the function T ( Z )  (eq 111-19), which is a characteristic relaxation 

(54 )  (a) Debye, P. Polar Molecules; Dover: New York, 1929. (b) 

(55)  Bottcher, C. J.  F.; Bordewijk, P. Theory of Electric Polarization; 
Frohlich, H. Theory of Dielectrics; Oxford: London, 1949. 

Elsevier: Amsterdam, 1978; Vol. 11. 
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time for solvent fluctuations, when the reaction coordinate is 
perturbed around the value Eo f X. ~ ( z )  thus represents the 
solvent time scale relevant for the ET rate. In the static limit, 
which often holds in ET reactions, a(Eo)  becomes independent 
of the solvent time scale (see eq 111-20), and the only dependence 
on solvent dynamics is then contained in ~ ( z ) .  The other quantities 
appearing in eq 111-17 (A and X) depend on the Pekar factor which 
is related to the solvent polarity but not to its dynamics. X is the 
reorganization energy of the solventS and measures the coupling 
strength of the charge-transfer system to the nuclear degrees of 
freedom of the solvent. One of the important conclusions from 
eq 111-21 b, together with eq IV-6, is that the activation free energy 
depends on the solvent only through the Pekar factor.. The solvent 
dynamics do not affect AGab*. Marcus5 has derived this relation 
for Debye solvents (eq V-6). The present theory shows that this 
result is valid for arbitrary non-Debye solvents as well. It should 
further be noted that, in general, a polar solvent is characterized 
by a frequency- and wavevector-dependent dielectric function 
t(k,w). In the present analysis, we used only the long-wavelength 
(k = 0) limit of e(k,w). It is possible, however, without a major 
difficulty to incorporate spatial dispersion and the full t(k,w) into 
the present t h e ~ r y . ~ ~ , ~ ~  

V. The Debye-Smoluchowski-Kubo Model 
In the previous section, we developed a closed expression for 

rate processes in the static limit, which is valid for a solvation 
correlation function M(t )  with an arbitrary time dependence. In 
this section, we consider the special case, where M ( t )  assumes an 
exponential form: 

The Journal of Physical Chemistry, Vol. 92, No. 17, 1988 

M ( t )  = exp(-At) (V- 1) 
This form is a limiting case of various models of solvation. When 
eq V-1 holds, it is possible to derive exact expressions for C2(s) 
and C4(s) (eq 11-26), resulting in an expression for the rate (eq 
11-24), which is not restricted to the static limit. We shall first 
discuss several physical models for which eq V-l holds and then 
derive the corresponding expressions for C2(s) and C4(s). We shall 
start with the damped oscillator model introduced in section I11 
and for simplicity assume that the friction is independent of 
frequency, i.e. 

.i.(t) = 276(t) (V-2a) 

y(s) = y(s=O) = y (V-2b) 

In this case, eq 111-13 results in 

M ( t )  = 1/z[cy+ exp(-ic&t) + a- exp(ia+Qt)] (V-3a) 

with 

n = [w2 - (y/2)2]'/2 (V-3b) 

and 
cy* = 1 f iy/ (2n)  (V-3c) 

and eq 111-8 reduces to 

f-(t3,t2rtl) = g(t2) - g(t2+t3) - g(t,+t2) + g(tl+t2+t3) (V-3d) 

f+(t3,t2,tl) = g*(f2) - g*(t2+t3) - g(tl+t2) + g(fl+t2+t3) 
(V-3e) 

where g(r) is given by eq 111-9. We shall consider now two limiting 
cases of eq V-3. In the absence of friction (y = 0), we have 

M ( t )  = cos wt (V-4a) 

and 
g(t) = -(D2/2){(ii + l)[exp(-iwt) - 11 + ii[exp(iwt) - I ] )  

(V-4b) 

When y >> w, the oscillator is overdamped, and we get 
M ( t )  = exp(-At) (V-Sa) 

with 
A = w2/y  (V-5b) 

Yan et al. 

and 

g(t) = 
i 
2 A  
-DZw [ 1 - exp(-At)] + [At - 1 + exp(-At)] 

(V-5c) 
A2 
-[At - 1 + exp(-At)] 
A2 

In the second equality of eq V-5c, we have made use of eq 111-12 
and neglected the imaginary part, since it is an order of w/y 
smaller than the real part. It can easily be shown that the oscillator 
motion in this limit is diffusive. This high-friction limit is also 
known as "the Smulochowski limit".44~4S We have thus established 
that in the overdamped Smulochowski limit our oscillator model 
of section I11 results in the exponential correlation function (eq 
V-1). A stochastic model, commonly used in the theory of 
magnetic resonance and optical line shapes, is based on the same 

That model has been used to describe a variety of 
gases (collisional) as well as liquids and solids. Another case, 
where eq V-l applies, is electron transfer in a Debye solvent. The 
Debye mode154,5s for the dielectric function assumes a single 
dielectric relaxation time rD 

t ( W )  = t, + (to - 

Upon the substitution of eq V-6 in eq IV-8 we get eq V-1 with 

7~ = ~ D ( L . / ~ o )  (V-7) A-1 E 

Here rL is the longitudinal dielectric relaxation time of the solvent. 
We have thus established three physical models which result in 
eq V-1: the overdamped oscillator, the stochastic model of line 
broadening, and the Debye model of dielectric relaxation. For 
this model it is possible to solve C2(s) and C4(s) analytically 
without invoking the static limit.43,47 We shall denote the con- 
tribution of R ,  and R2 to C4(s) by C4(a)(~) and the contribution 
of R3 and R4 to C4(s) by CJb)(s). We finally have 

C2(s)  = 2 Re Jo(s + iEo)  

and 

C4(S) = cJa)(s) + C4'b'(s) 

where 

C4(a)(~) = 2 Re 
- c" 
- - Jn(s  + iEO)[(-l)"J,,(s + 

J,,*(s + iEo)] 

C4(b)(s) = 2 Re E- '" - J,(s + iEO)[(-I)"J,,* X 

(s - iEo) + J,(s - iEO)] 

,,=ln! s + nA 

,,=ln! s + nA 

with 

J,,(s) Jmdt exp(-st) exp[-g(t)][l - exp(-At)]" 

(V-8) 

(V-9) 

iEo) + 
(V-1 Oa) 

(V-lob) 

(V-l l a )  

f , , (s)  = I - d f  exp(-st) exp[-g(t)][c*/c - exp(-At)]" 
0 

= J,(s) + e( ' ) ( C * / C -  l)kJn..k(s) ( V - l l b )  
k = l  k 

and 

g(t) = i(X/A)[l - exp(-At)] + (A/A)2[At - 1 + 

Alternatively, we can write 

exp(-At)] (V-12) 
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where M(n+ l,b+n+l ,c) is the confluent hypergeometric func- 
tion,4jJ6 and where 

(a)o = 1, (a)l = a, ...) (a), = a(a + 1) ...( a + n - 1) 
(V- 13b) 

(V- 13c) 

(V- 1 3d) 

b = ( A / A ) ~  + S / A  

and 
c = ( A / L ~ ) ~  - iX/h 

Alternative expressions for J, (and Jn) may be derived via con- 
tinued fractions or recursive relations.43 When eq V-8-V-13 are 
substituted in eq 11-24, we obtain an expression for the rate that 
is not limited to the static limit and holds when M ( t )  is given by 
eq V-1. 

VI. Numerical Calculations of Rate Processes, Fluorescence, 
and Hole-Burning Line Shapes 

In this section, we present some numerical calculations for the 
rate and analyze its dependence on the solvation dynamics. We 
start with the nonadiabatic limit, where the rate is given by eq 
111-24a. u(Eo) is an ordinary line-shape function. We have plotted 
u(E0) vs E O ,  which illustrates the dependence of the nonadiabatic 
rate on endothermicity. M(t) was calculated for polar solvents 
via eq IV-8. The following models were used for ~ ( w ) ? ~ , ~ ~  The 
Debye model contains a single relaxation time (eq V-6). t(u) for 
linear alcohols (propanol to decanol) contains three relaxation 
times and is given bys7 
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3 cj 
c(w)  = €- + (€0 - €-)E- 

j = l l  + iwsj 
(VI-la) 

This corresponds to 
3 

j -  1 
M(t) = Ecj' exp(-t/Tj') (VI-lb) 

where cj' and ~ j '  are related to cj, T ~ ,  6, and 6, via eq IV-8. Finally, 
the Cole-Davidson model has a continuous distribution of Debye 
times 

(VI-2) 

For all three models, we first calculated M(t) ,  using eq IV-8; we 
thus obtained g(t) (eq 111-9) and finally the line shape (eq 111-18). 

Let us analyze first u(Eo)  for the Debye model. cr(Eo) has 
a maximum at  Eo + X = 0. Near the line center for lEo + XI 
<< ~ / T L  the line shape assumes a Lorentzian form: 

r /T 
(VI-3) 

-,  
u(Eo)  = 

( E O  + + r2 
with r = A ' T ~ / ~ .  In the wings IEo + XI >> ~ / T L  the line shape 
is Gaussian 

1 ( E O  + A)' 
u(Eo)  = - exp[ - ] (VI-4) (2r)'/ 'A 2 A' 

The full width at  half-maximum of the line shape is given by43 

A 2.355 + 1.76 K 

1 + 0 . 8 5 ~  + 0.88~' 
ro = 

The line shape u(Eo)  is dominated by the parameter 
h h - K = - -  

ATL (2Xk7')'/27L 

(VI-5) 

(VI-6) 

The following conclusions may be obtained by a close examination 
of eq VI-3-VI-6. For K >> 1 the line shape is Lorentzian over 
many widths since ro << ~ / T L .  For K << 1 the line is Gaussian 
since ro >> h / q ,  and the onset of Gaussian behavior occurs near 

( 5 6 )  Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Func- 

( 5 7 )  Garg, S. K.; Smyth, C .  P. J .  Phys. Chem. 1965, 69, 1294. 
tions; Dover: New York, 1970. 
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Figure 3. The line-shape function a(Eo) for the Debye model is displayed 
for different values of the longitudinal dielectric relaxation time 7L.46 
Each curve is labeled by the corresponding relaxation time T ~ ,  given in 
units of h/A. As T~ increases, a(Eo)  changes from a Lorentzian to a 
Gaussian. 
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Figure 4. (a) The line shape u(Eo)  (in (cm-I)-') is plotted for propanol 
(3) and pentanol (3, at 20 OC with A = 0.53 cm-I. The dashed line gives 
a ( E o )  for a Debye model with T~ equal to T~ of propanol and the to and 
e, of propanol.46 (b) Same as (a), plotted on a logarithmic scale (base 
10). 

the line center. In Figure 3 we show u(Eo) for various values of 
TL (as indicated). The transition from Lorentzian to Gaussian 
as TL increases is clearly demonstrated. In Figure 4, we display 
u ( E o )  for linear alcohols (eq VI-1), and in Figure 5 for  the 
Cole-Davidson model (eq VI-2). In all cases, the line shape is 
Lorentzian in the center and Gaussian in the wings, as is the case 
for the Debye model. The actual line shapes are, however, dis- 
tinctly different and reflect the multiple time scales of M ( t ) .  In 
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Figure 5. The function c ( E o ) / A  is plotted for the Cole-Davidson model 
with @ = 0.5 and T~ = h/A. Curves A, B, C, and D correspond re- 
spectively to €,/to = 0.82, 0.17, 0.096, and 0.067. 
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Figure 6. The solvent time scale function T ( z ) / T ( ~ )  is plotted for a Debye 
solvent (dashed curve), for propanol (solid curve), and for hexanol (dotted 
curve) at 20 0C.46 For linear n-alcohols with n = 1-10, the T ( z ) / T ( ~ )  

curve is very similar. 

order to study the transition to the adiabatic regime, we shall 
consider now the solvent time scale function ~ ( z ) ,  which controls 
the adiabaticity parameter. In Figures 6 and 7, we display r (z )  
vs z for the linear alcohols and for the Cole-Davidson model. In 
each figure we display also T ( Z )  for the Debye model. For the 
Debye model r(0) = (In 2)rL and r(z)/r(O) is a single curve, 
independent of co or e,, whereas for the other cases r(z)/r(O) does 
depend on to and c, as well. The curves look qualitatively similar. 
They all have a maximum and vanish for large z. We have shown 
that the asymptotic behavior of r ( z )  for z >> 1 is -z-' for the 
Debye model and for the linear alcohols and is for the 
Cole-Davidson Our analysis of u(Eo) and r (z )  allows 
us to predict the variation of the rate (eq 111-17) with the solvent 
time scale and the transition to the adiabatic regime. We shall 
perform the analysis for the Debye model. The other models are 
qualitatively similar.46 We shall start with the nonadiabatic rate 
with very short T ~ .  In this case, the line shape u(Eo)  will be a 
narrow Lorentzian (eq VI-3) (motional narrowing), and its width 
is F = A * T ~ / A  - 0. We then expect that lEo + XI >> l', so that 
u(Eo) - r. As rL is increased, the Lorentzian width grows, and 
we get IEo + XI < r, which implies that u(Eo) - F1, We thus 

p = 0.5 

2 4 6 8 

Z 
I 

Figure 7. The solvent time scale function T ( z ) / T ( O )  is plotted for the 
Cole-Davidson model with @ = 0.5. Curves A, B, C, and D correspond 
respectively to t,/tO = 0.82,0.17, 0.096, and 0.067. The dashed curve 
is for the Debye 
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Log TL 
Figure 8. The ET rate versus the longitudinal relaxation time for small 
barriers.46 The solid lines represent our result (eq 111-17) for A = 1, V 
= 1, and X = 0.5. Each curve is labeled by the value of the endother- 
micity Eo. The dashed curves are the nonadiabatic rates (eq II1-24a), 
shown for comparison. For small T~ the nonadiabatic limit holds, and 
the rate is proportional to 71. As T~ increases, the nonadiabatic rate 
assumes a constant value independent of T ~ ,  whereas the complete ex- 
pression (eq 111-17) decreases as 1 / q .  The solid lines clearly show the 
Kramers turnover regime. ' T ~  is given in units of h/A.  

predict that the nonadiabatic rate will grow with rL when T L  is 
sufficiently short, u(Eo)  - r - rL, and will then reach a max- 
imum and decrease with rL, u(Eo) - I+1 - TL-', for larger values 
of rL. When rL is increased even further, the line shape will 
eventually turn into the Gaussian (eq VI-4), and the rate will 
become independent of rL. We thus have a crossover between 
three regimes: the wings of a Lorentzian for very short rL, the 
center of a Lorentzian for intermediate T ~ ,  and the Gaussian for 
large rL. The rate when plotted vs rL will show a maximum and 
then reach a plateau. This behavior is illustrated by the dashed 
curves in Figure 8. 

We shall now consider the transition to the adiabatic regime 
whereby the rate (eq 111-17) gradually attains the limiting form 
(eq 111-24b) with the solvent time scale r(z)  defined in eq 111-19, 
together with eq V-1. The function T ( Z )  is proportional to T~ 

(Figure 6). Since ~ ( z )  and the adiabaticity parameter v (eq 111-23) 
are proportional to 71, we predict that, for large rL, the adiabatic 
rate will decrease as rL-'. Using eq 111-21c, we have for u >> 1 
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1 
TL 

N - (VI-7) 
1 

A =  

T(  y) + T(  E O  7) + x 
The plateau regime of the nonadiabatic rate (dashed curves in 
Figure 8) will thus turn into a l / rL behavior. The solid curves 
in Figure 8 show the TL dependence of the rate (eq 111-17). The 
variation of the rate with the solvent time scale T~ for the Cole- 
Davidson model was calculated and found to show a similar 
turnover behavior.46 

The classical work of K r a m e r ~ ~ ~  provides a convenient 
framework for discussing solvation effects in chemical dynamics. 
Kramers proposed a model in which the chemical reaction dy- 
namics is treated in terms of escape over a barrier of a particle 
moving in a one-dimensional potential well and subject to a sto- 
chastic Langevin force. Kramers obtained approximate solutions 
for the equation of motion of the particle in phase space (the 
Kramers e q ~ a t i o n ) . ~ * ~ ~  His expression for the rate is the activated 
form (eq 111-21), where the preexponential factor A is given by 

( ~ A G , ~ *  / k T  small friction 
intermediate friction 
large friction 

(VI-8) 

Kramers further derived an expression for A,  which interpolates 
between the intermediate and the large friction regimes 

A = (w/2m,~’)([7~/4 + ( ~ P W ’ ) ~ ] ’ ’ ~  - 7/21 (VI-9) 

Here w is the curvature of the potential a t  the minimum of the 
reactant side, and w’ is the curvature a t  the point of maximum 
barrier height. A further depends on the solvent through the 
parameter 

7 = r / m  (VI-10) 

where y is the friction coefficient of the Langevin force and m 
is the mass of the particle. For low friction, the solvent helps the 
reaction by providing energy to the molecule. The rate then grows 
linearly with the friction. This is the falloff regime of unimolecular 
kinetics.21 At high friction, however, the energy is no longer a 
limiting factor, because there are strong interactions between the 
solvent and the molecule, and the main effect of the solvent is to 
slow the rate process. This arises since the motion of the particle 
is diffusive in this limit, and the Stokes-Einstein relation implies 
that the diffusion (and the reaction) rate should vary as -7-l. 
This high friction limit is called “the Smoluchowski limit”.45 The 
nonmonotonic dependence of the rate on friction, which has a 
maximum at intermediate frictions, is known as the “Kramers 
turnover”. Since TL is proportional to the friction y (see eq V-5b 
and V-7), our rate expression (eq 111-17) and Figure 8 reproduce 
the three regimes of Kramers and the turnover curve. 

The present formulation establishes a general fundamental 
connection between the solvent correlation functions which affect 
nonlinear optical processes and the dynamics of rate processes in 
the same solvent. The transition to the adiabatic limit is strikingly 
analogous to the saturation of spectral line shapes in a strong 
radiation field (the Karplus-Schwinger line ~ h a p e ) . ~ ~ , ~ ~  The 
nonlinear response function R(t3,t2,tl) is the fundamental quantity 
controlling all four-wave-mixing spectroscopies (e.g., coherent 
Raman, transient grating, photon echo, hole burning) as well as 
spontaneous two-photon processes (fluorescence and Raman line 
shapes). Any such spectroscopic measurement, whether time 
domain (femtosecond) or frequency domain, provides a piece of 
information regarding R(t3,t2,tl). We have recently used the 
expressions for R,, R2, R3, and R4 (eq 111-16) for the Debye model 
to calculate x ( ~ )  and the time- and frequency-resolved fluorescence 
and hole-burning line shapes of a polar solute in polar solvents.42 
We predict a significant narrowing of both line shapes at short 
times, followed by a broadening, and a time-dependent Stokes 
shift. The theory shows how to extract solvation parameters from 
such measurements. The fluorescence of a model solute is shown 
in Figure 9, and the hole-burning line shape is shown in Figure 

-3000 0 3000 

Figure 9. The top frame shows the steady-state absorption and 
fluorescence spectra of a model solute with one vibrational mode in 
ethanol at 247 K. The following frames show the fluorescence spectrum, 
measured at successively later times, after the application of a 1-ps 
excitation pulse.42 Each spectrum is labeled with the observation time. 
The steady-state fluorescence spectrum is repeated with the dashed curve 
in the final frame. The absorption spectrum is plotted vs ab - ulr and 
the fluorescence spectra are plotted vs w2 - wb. For the fluorescence 
spectra, wI = cob. In the electronic ground state, the solute vibrational 
frequency is 400 cm-I, and in the excited state, the frequency is 380 cm-’. 
The dimensionless displacement is 1.4. The permanent dipole moment 
changes by 10 D upon electronic excitation. The Onsager radius is 3 A. 
The longitudinal dielectric relaxation time, T ~ ,  is 150 ps. 

10. It should further be noted that the present treatment of 
solvation can be applied to the mobility of a charged particle 
(electron, ion) in a polar solvent (the polaron problem) .36958-61 

Recent ultrafast spectra of solvated electrons in various solvents 
provide an excellent probe for the dynamics of solvation in this 
system. The present derivation allows the direct use of optical 
measurements in predicting reaction rates. An example of such 
a connection is provided by the use of rotational relaxation times 
(obtained, e.g., from fluorescence depolarization) as a measure 
of the solvent friction in the Kramers equation. This relation was 
p o ~ t u l a t e d ~ ~ ~ ~ ~ ~ ~  and proved useful in several systems, such as the 
isomerization of diphenylbutadiene and stilbene in alkanes.22 The 
present formulation may allow a more direct derivation of such 
relationships. 

VII. Discussion 
The main theme of this article is the development of a basic 

relation between the calculation of linear and nonlinear optical 
line shapes and molecular rate processes. Both dynamical ob- 
servables were expressed in terms of the same response functions 

(58) Feynman, R. Statistical Mechanics, a Set of Lectures; Benjamin: 
Reading, MA, 1972. 

(59) Kenney-Wallace, G. A.; Jonah, C. D. J .  Phys. Chem. 1982,86,2572. 
(60) Polarons in Ionic Crystals and Polar Semiconductors; DeVreese, J. 

T., Ed.; North-Holland: Amsterdam, 1972. 
(61) ‘Proceedings of the Sixth International Conference on Excess Elec- 

trons and Metal-Ammonia Solutions, Colloque Weyl VI”, J .  Phys. Chem. 
1984, 88, 3699. 

(62) Karplus, R.; Schwinger, J. Phys. Reu. 1948, 73, 1020. 
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Figure 10. Hole-burning line shapes of a solute with one vibrational 
mode in ethanol at 247 K, following a 1-ps pump pulse.42 Each frame 
is labeled with the delay time between pump and probe. The dashed 
curve in the final frame represents the hole-burning line shape when the 
delay time is much longer than T ~ .  wI = wba. All parameters are the 
same as Figure 9. 

J ( t l )  and R(t3,tz,tl). These functions may be calculated by 
propagating a Liouville-space generating function (LGF).48 The 
LGF starts with the equilibrium density matrix of the system pa. 
It then undergoes a propagation or a sequence of propagations, 
in which the Hamiltonians acting from the left and from the right 
are not necessarily the same, i.e. 
p(t+to) = G,k(t) p(to) = exp(-iHjr) p ( t o )  exp(iHkt) (VII-1) 

which satisfies the equation 

fi  = -i(H,p - pHk) (VII-2) 

The choice of j and k depends on the particular diagram and time 
interval (see Figure 1). We reiterate that the LGF is not a density 
matrix, and its normalization (ao) is not conserved. It should be 
viewed as a generating function for calculating correlation 
 function^.^*^^^ We found it natural to formulate the problem in 
Liouville space. It is formally possible to rewrite the expressions 
for R,, Rz, R,, and R4 by using an ordinary (not Liouville space) 
correlation f ~ n c t i o n . ~ ~ ~ ~ ~  We then have 

I ~ 1 ~ R ~ ( t ~ , t ~ , t ~ )  = F(tl,tl+t2,t,+tz+t3,0) 

IP14Rz(t3,tz,t~) = ~(O,f~+t~,t~+t~+t~,t,) 

l ~ ~ ~ R ~ ( t ~ , t ~ , t , )  = F(0,t,,tl+tz+t3,t,+tz) 

I ~ l ~ R ~ ( t ~ , t ~ , t , )  = ~ ( t , + t ~ + t ~ , t , + t ~ , t , , o )  (VII-3) 

with the fotmpoint correlation functions of the dipole operators 
F(TI,TZ,T3rT4) Tr [@Ti )  ~ ( T Z )  p(73) p(T4)Pal (VII-4a) 

where 
P(T) = exp(iH7)P exp(-iHT) (VII-4b) 

with p being the molecular electronic dipole operator given by 
cL[la)(bl + Ib)(all (VII -4~)  

and the Hamiltonian H i s  given by eq 11-2. We also have 

Ipl2J(t) = Tr [v(t) p(O)~a] (VII-5) 

It is hard to develop physical intuition and useful approximations 

for eq VII-3. In the Liouville space, we follow naturally the actual 
sequence of events (a certain propagation for the interval t l ,  
followed by the interval t 2  and by t3). In eq VII-3, all the time 
arguments are mixed. Equations 11-13, on the other hand, which 
are based on calculating the generating function in Liouville space 
rather than the wave function in Hilbert space, provide a natural 
framework for developing a semiclassical picture of solvation. 

Let us discuss the response functions in more detail. J ( t l )  
represents the transition from Jaa (denoted aa) to Fbb (denoted 
bb) in second order. As seen in Figure 1 (pathway labeled A), 
we start with baa and apply one interaction from the left going 
to &, and then a second interaction from the right leads to bb. 
Another pathway which leads from $, to $bb in second-order runs 
through (first interaction from the right and second from the 
left). This pathway gives P(t,). The total linear response function 
is [ J ( t l )  - J * ( t l ) ] .  In spectroscopy Jab or $ba denotes an optical 
coherence and the linear response function is related to the ab- 
sorption line shape. In rate processes, $ab is the transition state 
for the rate process. iV(Jba - Jab) is the flux for the a to b 
transition.12 

In Figure lB, we display four pathways leading from aa to bb 
in fourth order. These pathways constitute R(t3,tZ,tl). There are 
four additional pathways whose contribution is the complex 
conjugate of the former. The third-order nonlinear response 
function is [R(t3,tzrt1) - R*(t3,t2,t,)]. 

Let us have a closer examination of the physical significance 
of these pathways in rate process. Pathways i and ii (R,  and R2)  
pass through an intermediate state $bb after two interactions. At 
that point the reactant changed into the product but the solvation 
coordinate U is not in thermal equilibrium with respect to the 
Hamiltonian Hb. It then undergoes relaxation to equilibrium. 
When it reaches equilibrium Rol(t3,t2,tl) = Ra( t3 ,m, t l ) ,  and this 
pathway does not contribute to the reaction rate any more (see 
eq 11-26b). It will be shown below that the time scale for this 
equilibrium process is T[(E"  - X)/A]. Pathways iii and iv (R ,  
and R4) pass through an intermediate state pa, after two inter- 
actions. This represents processes in which the system passed 
through the transition state and returned back to a. Again, the 
solvation coordinate for the molecules undergoing this process is 
not in thermal equilibrium with respect to Ha, and it relaxes to 
equilibrium in a time scale T[(EO + X)/A], as will be. shown below. 
When this relaxation is completed, these pathways do not con- 
tribute to the rate since Ro(t3,t2,t1) = Ra(t3,m,t1) (see eq 11-26b). 

We are now in a position to discuss the physical significance 
of the solvent time scale function T(z). To that end we need to 
introduce a few definitions. We denote by S,(x) the probability 
density of the solvation coordinate U (eq 111-10) to have the value 
x, when the system is in the state m 

S,(x) = ( 6 ( x  - V p , )  m = a, b (VII-6) 

We further define the conditional probability for the solvation 
coordinate U to have the value x at  time t ,  given that it had the 
value y at  t = 0 and that the system is in the state m 

Wm(x,t;y) I SL~CV)(~[X - um(t)laCV - V p a )  (VII-7a) 

with 
Um(t) 2 exp(iH,t)U exp(-iH,t) m = a,b (VII-7 b) 

As t - a, we have 
Wm(xit+m;y) = Sm(x) (VII -7~)  

We have shown that s[(E" - X)/A] came from pathways i and 
ii and T[(EO + X)/A] came from pathways iii and iv. They are 
given by46 

T( 7) E" + X = (27r)'lzALmdt [Wa(-Eo,t;-Eo) - Sa(-EO)] 

(VII-8b) 
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Figure 11. The dynamics underlying the solvent time scale function +(z) 
(eq 111-19 and VII-8). We start with a fluctuation of the solvation 
coordinate at the transition state (curve crossing) U = -Eo. If the system 
is in the la) state (R, and R4), this fluctuation will relax to S,(U) with 
a characteristic time scale s [ ( E o  + A)/A]. If the system is in the Ib) 
state (R, and Rz), it will relax to S,(U) and the characteristic time scale 
is + [ ( E o  - X)/A]. 

7 [ ( E 0  - X)/A] is thus the average time it takes for a solvent 
fluctuation at the transition state (U = -Eo)  to relax to thermal 
equilibrium in the state Ib), whereas 7[ (E0  + X)/A] is the average 
time it takes for the same fluctuation to relax to thermal equi- 
librium in the state la). This is represented schematically in Figure 
11. If these times are fast, the fourth-order contribution to the 
rate vanishes and the rate is adiabatic. The transition from the 
nonadiabatic to the adiabatic limit is therefore a result of the finite 
relaxation time of the solvent which results in a change of the 
distribution of the solvation coordinate Uduring the course of the 
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rate process. It should be stressed that eq VII-8 were obtained 
by a careful evaluation of the nonlinear response functions. We 
did not have to assume a priori that the reaction takes place at 
the transition-state configuration U = -Eo.  

It should further be noted that, in fluorescence measurements, 
the Stokes shift depends on solvent relaxation in the excited state 
(R, and R2). In hole burning, we probe a difference between the 
ground and the excited states and therefore all pathways R,, R2, 
R3, and R4 contribute. Hole-burning spectroscopy is thus a probe 
for ground-state as well as excited-state r e l a ~ a t i o n . ~ ~  

The present formulation is based on a generalized master 
equation, and we have derived a frequency-dependent rate K(s ) .  
The s scale over which K(s)  varies is determined by the solvation 
time scales. The values of s, relevant in the generalized master 
equation, are approximately equal to the inverse reaction time 
scale (the rate). Reactions with large activation barriers are slow, 
and a separation of time scales is expected to hold, resulting in 
ordinary rate equations (eq 11-22), For barrierless reactions this 
separation of time scales may not hold. Several optically induced 
electron-transfer and isomerization reactions show a time evolution 
which does not follow a simple rate Our generalized 
rate equation provides an adequate method for treating these 
reactions by keeping the s dependence of K(s )  and allowing for 
an initial nonequilibrium distribution of the solvation coordinate. 
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The interaction of copper and silver monoions with acetylene has been studied including the effect of electron correlation. 
Geometries of the minima and binding energies have been determined by using properly localized molecular orbitals in the 
configuration interaction. Although the main interaction is due to the presence of a positive charge, inclusion of electron 
correlation is needed if accurate results are desired. In the light of the present results, and considering previous works on 
metal-ligand bonding, the validity of the two-way donor-acceptor model is analyzed. 

Introduction 
The model proposed by Dewar’ in 1951 to explain the bonding 

in a-coordinated metal-olefin complexes has been considered as 
a useful scheme to rationalize this type of bonding.2 The in- 
teraction between an olefin and a metal located above the ligand 
molecular plane and equidistant from the two carbon atoms is 
attributed by Dewar’s model to the two-way donor-acceptor in- 
teraction. On the one hand, u-bonding charge donation takes place 
from ligand to metal and, on the other hand, a-bonding back- 
donation of metal electrons to the ligand (a and a referring to 
rotational symmetry of the orbitals implied). In 1953 the “a- 
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Tarragona, P1. Imperial Tarraco No. 1, 43005 Tarragona, Spain. 
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complex theory of metal-olefin c~mplexes”~ was first applied by 
Chatt and Duncanson4 to explain the nature of the chemical bond 
in platinum-olefin complexes. After that, great efforts have been 
devoted to analyze the metal-ligand bond in terms of u- and 
a-bonding. It is worthwhile to recall that the metal-ligand in- 
teractions are involved in many fields of current chemical research. 
The study of such complexes may produce some insight into 
relevant aspects of homogeneous and heterogeneous catalysis, 

(1) Dewar, M. J. S.  Bull. SOC. Chim. Fr. 1951, 18, C71. 
(2) Cotton, F. k.; Wilkinson, G. Aduanced Inorganic Chemistry, 3rd. 4.; 

(3) See comments in: Dewar, M. J. S.; Ford, G. P. J .  Am. Chem. SOC. 

(4) Chatt, J.; Duncanson, L. A. J .  Chem. SOC. 1953, 2939. 
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