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Two self-consistent Green-function theories of quantum localization [the theory of Abou-Chacra,
Anderson, and Thouless (AAT) and the effective dephasing approximation] are compared. It is
shown that, in conirast to recent claims, the self-energy of the AAT equation represents population
relaxation (T processes) rather than pure dephasing (T} processes).

The effective dephasing approximation (EDA)
developed recently! 3 provides a new way of interpreting
and calculating the localization of a quantum particle in a
disordered medium, in terins of a frequency-dependent
dephasing rate. The dephasing rate is introduced as a
self-energy in the tetradic (Liouville-space) Green func-
tion. The theory of Anderson localization developed by
Abou-Chacra, Anderson, and Thouless* (AAT) focuses,
on the other hand, on the calculation of an energy-
dependent self-energy of the dyadic (ordinary, Hilbert-
space) Green function. -In this report the EDA and AAT
equations are compared in order to clarify a recent con-
fusion® regarding the role of dephasing in quantum locali-
zation. ) : o

In order to calculate quantum transport in disordered
systems and to introduce correctly the concept of pure
dephasing, we shall consider the ensemble-averaged den-
sity matrix of a quantum particle at time 7 which is given
by . '

m,n

We are using here a tight-binding basis set, and j, k, m,
and n denote states; where the particle is localized at sites
Jj» k, m, and n, respectively. The angular brackets denote
an average over the disorder. 9(¢) is a Liouville-space
(tetradic) propagator.® Its Fourier transform $(E) is the
Liouville-space Grzen function:
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L is the Liouville operator, defined by its action on an ar-
bitrary operator 4, LA =[H, A], H being the Hamil-
tonian, and L is an effective Liouville operator, which
determines the time evolution of the ensemble-averaged
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_density matrix of the particle. A proper treatment of

transport processes requires calculating the tetradic ma-
trix element { 9y ;(E)), whose Fourier transform is the
time-dependent probability of the particle to occupy the
site k at time ¢ when it started at site j at £ =0.'7 This
probability is necessary for calculating the frequency-
dependent diffusion constant and the ac conductivity.

The EDA is based on the physical intuition that L.
can be expressed in terms of a generalized frequency-
dependent dephasing rate I'(g), where € is the Laplace
transform variable conjugate to the time, and €= —iE.
I'(€) describes the loss of phase coherence between
different sites and is determined self-consistently. The
transport properties at long times are determined by the
behavior of I'{€) for small €. The signature of the Ander-
son localization transition is the crossover from a dephas-
ing rate that is finite at small frequencies to one that
displays an infrared divergence.

The self-consistent equation of AAT provides an ap-
proximation for the distribution of diagonal elements
Gj;(E) of the ordinary dyadic Green function

G;(E)=

1
. (3)
E—H Lj

This Green function is expressed in terms of an energy-
dependent self-energy y;(E). The imaginary part of
7;{E) vanishes for localized states, and it becomes finite
when the states are delocalized.

In order to compare the two formulations we recall
that the dyadic and tetradic Green functions are formally
related by6
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The dyadic Green function G;(E) allows the calculation
of the density of states, and the onset of localization. Us-
ing Eq. (4), we see that the distribution of G;(E), ob-
tained from the AAT formulation, allows only the calcu-
lation of (ij’ lE =0)). Using a Tauberian theorem,
" this quantity gives the probability that the particle
remains at site j for a long time #-» o, when it started at
the same site at ¢ =0. Therefore the AAT equation does
not carry enough microscopic information to calculate
the conductivity or transport properties other than
(9 i (B =0)). The conductivity may, of course, be es-
timated, using the AAT analysis by introducing some ad-
ditional external assumptions (such as scaling argu-
ments). In contrast, the EDA provides an approximation
for the full tetradic Green function {9y ,,,(E)) and al-
lows the direct calculation of transport properties. In ad-
dition, the AAT equation with nearest-neighbor interac-
tions is virtually independent of the dimensionality d of
the problem. As clearly stated by AAT, it is exact on a
Cayley tree. Consequently, its predictions in one, two,
and three dimensions are basically the same (apart from a
simple dependence of the critical disorder on the number
of neighbors). In contrast the EDA predicts the absence
of transition in d =1 and d =2 dimensions and the ex-
istence of the Anderson transition in d =3 dimensions, in
agreement with scaling theories of Anderson localization.
In recent articles,” Logan and Wolynes (LW) developed
an approximate solution to the self-consistent equation of
AAT and applied it to Anderson localization in topologi-
cally disordered systems and to the dynamics of dipolar
excitons. In these articles it was stated that the self-
eneigy of AAT can be interpreted as pure dephasing.
LW introduced a damping rate, n=#(27), in the dyadic
Green function [Eq. (3)] by replacing E with E +i7, and
state that 7 might represent a time scale characterizing
pure dephasing processes. This statement is incorrect. It
is impossible to incorporate pure dephasing processes,
which do not affect the populations of the levels, just
their phase, by simply adding a damping term to the
dyadic Green function. As is well known,’ pure dephas-
ing may be introduced via the effective Liouville operator
[Eq. (2)], since pure dephasing is related to the damping
of off-diagonal elements of the density matrix. The ma-
trix element of the tetradic Green function, which de-
scribes the dephasing process, is"® . '

(ij’jk(e))i—#fdm(ij(w)ng(w—E» , 5
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where j and k represent two different sites. The evalua-
tion of the average in the right-hand side of Eq. (5) re-
quires the joint probability distribution of G;; and Gyy.
The distribution of G;; (or Gy) alone, obtained from the
AAT formulation, does not allow the calculation of pure
dephasing processes. This is to be expected since the de-
phasing is related to the loss of coherence (phase) be-
tween two sites, and is determined by the correlated dy-
namics of both sites. Any attempt to represent pure de-
phasing using single-site information is conceptually in-
correct. The parameter 7 of LW is, therefore, simply an
inelastic scattering rate corresponding to a finite lifetime
of the particle, as pointed out by Thouless and Kirkpa-
trick.® In the language of optical line shapes, 7 is related
to T, and not to pure dephasing T, processes.”’ Since 7
is an imaginary part of the self-energy of all levels, its
dynamical role is trivial. The total density matrix of the
system is multiplied by exp(—2n¢). Therefore, in con-
trast to the analysis of LW, 7 does not have any profound
effect on the dynamics of the system, and consequently, it
does not influence in any way the Anderson localization.
On the other hand, the addition of a dephasing rate I to
the tetradic Green function does affect the nature of the
dynamics. As was shown by Haken and Strobl,>!° a
coherent exciton motion will turn incoherent as the de-
phasing rate is increased.

Finally, it should be noted that dephasing processes
play a major role in condensed-matter spectroscopy.®’!!
The interpretation of quantum localization in terms of
dephasing establishes therefore an interesting and poten-
tially useful link between optical and transport properties
of disordered systems. The EDA constitutes a general
treatment of transport in disordered systems with which
coherent motion, incoherent motion, and localization are
treated in a unified fashion using the concept of pure de-
phasing. It is essential to use the Liouville-space, tetradic
Green function rather than the Hilbert-space dyadic
Green function in order to incorporate pure dephasing
processes.
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