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I. Introduction
Solvent motions and relaxation processesplay a

crucial role in thedynamicsof reactionrates’’7andin
determining molecularlinear and nonlinear optical
properties. Electron-transferratesaredominatedby
the solventdielectric fluctuations,’” whereasisomer-
ization reactions’2~7aredirectly affectedby solvent
friction. Optical line shapesof polyatomicmolecules
in solutionprovidea direct probefor the interaction
betweenthesolventandthesolute.’~26The solvent-
inducedspectralshiftsandline broadening,andtheir
temporalevolution, reflect the intermolecularforces
resulting in electronicandvibrational relaxationpro-
cesses. Recent developmentsin nonlinear optical
spectroscopy,in particularthe successfulapplication
of femtosecondlaserpulses,22provideadirect probefor
elementaryphotophysicalandphotochemicalprocesses.
The dynamics and relaxationprocessesin semicon-
ductors,27solvateddye molecules,1~23elementaryre-
action events,24and the solvated electron2~31were
monitoredwith remarkabletemporalandspectralres-
olution. In this Accountwe presenta semiclassical
theoreticalframework3235that providesa unified de-
scription of molecularrate processesand nonlinear
optical spectroscopy.Considerableprogresswasmade
recently in understandingthe elementaryelectron-
transferprocessesin thephotosyntheticreactioncen-
ter.36 The interpretationof pump—probeandphoton
echomeasurementsconductedon this systemandtheir
relationshipwith the electrontransferis aninteresting
puzzle. Theconceptspresentedheremay contribute
toward clarifying the relationshipsamongthe optical
andthe electron-transfermeasurementsin this complex
system.

Theconnectionbetweenratetheoriesandopticalline
shapesmaybe understoodas follows: Reactionrates
may be calculated by starting with a nonadiabatic
(two-state)model andexpandingtherateperturbatively
in thenonadiabaticcoupling V. Optical line shapesare
usually calculatedby expandingthe polarization in
powersof the electric field E. Both expansionsare
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goldenrule;6’7 the optical responseto first order in E
(e.g.,the absorptionline shape)is givenby the linear
susceptibility ~ Both quantitiesare related to a
two-time correlationfunction of the solvent. In thenext
order (V4), therateis relatedto a four-pointcorrelation
function.35 Thesamecorrelationfunctionentersin the
calculationsof thethird-ordernonlinearsusceptibility
(to orderE3), ~ Numerousnonlinearoptical mea-
surementscan be interpreted in terms of x~.
Fluorescence,coherentandspontaneousRaman,hole-
burning,pump—probe,andfour-wavemixing area few
examplesof opticalmeasurementsrelatedto x~.The
expansionscanbe carriedoutto higher orders,and in
general,the rateto order V~is relatedto ~

Thisconnectionestablishesa fundamentallink be-
tweenthe dynamicsof rate processesandnonlinear
optical measurementsandprovidesa novelway of in-
terpretingbothtypesof experimentsin a unified way.
Optical measurementsconstitutethemostsensitiveand
accurateprobesfor solvationdynamics. The relations
presentedin this Accountallow the direct use of in-
formation obtained in optical measurements,in the
calculationof rateprocesses.An exampleis the phe-
nomenologicalidentificationof rotationaldiffusion rates
obtainedby fluorescencedepolarization,asthe relevant
solventtime scalein adiabaticratetheories.4’5’15’16 The
presenttheory establishessuch relations in a very
profoundway. In addition,thetheoreticalmethodology
usedin calculatingoptical line shapesis well developed
andprovidesa good understandingof solventdephas-
ing processes,whichcontrol the spectralshapesandline
widths. Thepresentrelationsallow theuseof thesame
methodsand conceptsin the intepretationof rate
processesas well.

II. Molecular Dynamics in Liouville Space
Weconsidera reactivemolecularsystemundergoing

a rateprocesssuchaselectrontransferor isomerization
in solution. Thereactionratecanbe calculatedby using
anadiabatic formulation,wherebythe electronicenergy
is calculatedfor every nuclearconfiguration. This re-
sults in a singlepotentialsurfacethatdependsparam-
etricallyon the nuclearconfiguration. Therateprocess
is then describedas a motion of the systemon this
surface.TheKramersandtheSmoluchowskiequations
arebasedon this viewpoint.’4’17 Alternatively, the rate
processcanbedescribedby usinga nonadiabaticpic-
ture, in whichweconsidera two-levelelectronicsystem,
Ia) andJb), representingreactantsandproducts,re-
spectively,thatare coupledby a nonadiabaticcoupling
V. It is the latter approachthatwe adoptin this Ac-
count,since it providesthe bestinsight on the rela-
tionshipbetweenrateprocessesandnonlinearoptical
measurements.In thestrongcoupling limit our results
agreewith thosederivedfrom adiabaticmodels.

We start our analysisby consideringa rateprocess
involving amolecularsystemwith two electroniclevels

(Ia) and Ib)) in a solvent. The total Hamiltonian is
H = H0 + H1~~ (11-1)

where

H0 = ta)Ha(al + Ib)Hb(bI (II-2a)

Hmt = V(Ia)(bI + Ib)(aI) (II-2b)

(36) The PhotosyntheticBacterialReactionCenter;Breton,J.,Ver-
meglio, A., Eds.;Plenum: NewYork, 1988.

= —i[H0J4 — i[HmtJiI

exp(—H~/kT)/[Trexp(—H~/kT)]

Figure 1. Solvation dynamicsduring a rate process. U is the
solvation coordinate. V

5
and Vb denotetheadiabaticpotential

surfaceswhile X
8

= (Up
5

) and Xb = (Upb) are thesolvent re-
organizationenergiesfor reactantand product,respectively. E°
is theendothermicity;1~Gab*is theactivationfree energyfor the
forward (Ia) to pb)) reaction. The solventtime scalesr

5
and Tb

characterizetherelaxationofa solventfluctuationatthetransition
state(curvecrossingU = —E°)in thereactantandtheproduct
adiabaticsurfaces,respectively. Harmonicfree energysurfaces
are usedin thisfigure. We havechosentheorigin of thesolvation
coordinateto be atthecrossingpoint so that X

8
> 0 andAb <0.

In the perturbativelimit, the rate dependsonly on thesingle
Marcusreorganizationenergyparameter2X IA5 — XbI.

HereH5 andHb are the adiabaticHamiltoniansrep-
resentingnucleardegreesof freedom(both intramo-
lecularandsolvent)andV is the nonadiabaticcoupling
betweenthe two reactingspecies(Figure1). Thedy-
namicsof thesystemmaybecalculatedby startingwith
the Liouville equationfor its densitymatrix ~,

(II-3a)

and assumingthat initially the systemis in thermal
equilibrium within the Ia) state;i.e.,~(0) = Ja)p5(aJ,with

j = a, b
(II-3b)

Forbrevity we seth = 1 in this Account,exceptin the
final expressionsfor the rates. The probability of the
systemto be in the state ja) may be obtainedby cal-
culatingthe diagonaldensitymatrix element~ and
tracingit overall nuclear(intramolecularandsolvent)
degreesof freedom. This may be done by using
standardprojection operatortechniquesin Liouville
space.MWethenobtainanexactformalexpressionfor
thereactionrateconstantK. We haveexpandedthe
rateperturbativelyto fourth orderin thenonadiabatic
coupling(K = C2V2

— C4V4+ ...) andconstructedaPade
approximantwhichprovidesapartialsummationof the
seriesto infinite order,resultingin35

(11-4)

Rateexpressionswith thesamerationaldependenceon
thenonadiabaticcoupling Vwereobtainedpreviously
by severalauthors.~”C2 is given by

C2 = 2 Re J’dt1 J(t,) (11-5)

whereRe denotesthe realpart and

J(t,) = ([exp(—iHbt,)paexp(iH5t,)]) (Gba(tl)Pa)
(11-6)

J(t,) is calculatedby starting with the equilibrium
densitymatrix p

5
, propagatingit from the left andthe

right with theHamiltoniansHb andH5, respectively,

K
— 1 + V2(C4/C2)

Va

~—IE’*Xbl-+E*kal 4 U
-E~
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C4 =

R(t3,t2,t,) = ~R1(t3,t2,t,)

R,(t3,t2,t,)= (Gba(tl) Gbb(t2) G~(t,)p8)

R2(t3,t2,t,) = (Gba(t
3

) Gbb(t2) Gab(tl)Pa)

R3(t3,t2,t,) = (Gba(t
3

) Gaa(t
2

) Gab(tl)Pa)

R4(t3,t2,t1) = (Gba(tg) Gaa(t2) Gbs(tl)Pa)

Expressions similar to eq 11-5 and 11-8 can be derived
for the higher order terms in the expansion (C6, C8, etc.)
without a major difficulty. In general,C2,, will contain
a product of 2n — 1 Liouville-space Green functions
Gmn(t). For the subsequent analysis presented in this
Account, we need not write thesehigher orderexpres-
sionsexplicitly. Thephysicalsignificanceof J(t,) and
R(t3,t2,t,) will further be clarified in the next section,
following the introduction of a semiclassicalprocedure
for their evaluation.

Weshall consider now the analogous model system
for linear andnonlinear optical spectroscopy. Consider
a molecule with a ground electronic state Ia) and a
single excited electronic state Ib), interacting with the
electromagnetic field. The Hamiltonian is given by eq
TI-i, but Hlat represents the interaction with a classical
electromagnetic field E(r,t):

H1~~= —~sE(r,t)(Ia)(bI + Ib)(aI)

tion, —2I,uI2 Im J(t,), whereJ(t,) is given by eq 11-6,

P~’)(r,t)= —2IpI2 Im J’dt, J(t1) E(r,t—t,) (11-12)

HereTm denotesthe imaginarypart. Similarly~ is
givenby a triple convolutionof theelectromagneticfield
andthethird-ordernonlinearresponsefunction, 21ii14

Im R(t3,t2,t,),whereR(t3,t2,t,) is given by eq11-9:

P~3~(r,t) = 2j~I~Im J~dt1 5dt2 5dt
3

R(t3,t2,t1)

E(r,t—t,—t2—t3) E(r,t—t2—t3) E(r,t—t3) (11-13)

Equation 11-12 implies that the system interacts once

(11-8) with the electromagnetic field at time t — t,. Its sub-
sequentevolution for a period t

1
is then given by the

linear responsefunction. p(l) at time t is obtainedby
performingan integrationoverall possiblevaluesof t,.
Similarly, in eq11-13,thesysteminteractsthreetimes
with theelectromagneticfield at times t — t1 — t2 —

t — t
2

— t
3

, and t — t
3

. The nonlinear responsefunction
R(t3,t2,t,) describesthe time evolutionbetweenthese

(II-9a) interactions and from time t — t
3

to t. t1, t
2

, and t3 are
thetime intervalsbetweensuccessive interactions. The

(II-9b) integrationsover all possiblevaluesof t1, t2, and t3 result
~II 9 ~ in the third-order nonlinear polarizationat time t.

- c, Equations 11-12 and 11-13 allow for an arbitrary tem-
(II-9d) poral profile of E(r,t) and are valid for pulsed as well
~ assteady-stateexperiments.In asteady-stateexperi-

- e, ment we take E(r,t) to be the sumof afew monochro-
matic fields. P~’~and.P~are then related to the optical
susceptibilities~ and ~ respectively.32

The formal expressionspresentedhereestablisha
fundamentalconnection between the calculation of rate
constant (eq 11-4 together with 11-5 and 11-8) and the
optical polarization (eq 11-12 and 11-13). The reaction
ratesare expressedin terms of the real part of the
dynamicalquantitiesJ(t,) and R(t3,t2,t,), whereas the
optical polarizationis relatedto theimaginarypartof
thesedynamicalquantities. It shouldbe emphasized,
however,that thetwo statesIa) and Ib) involved in an
opticalmeasurementareusuallydifferent from those
participatingin a rate process(electrontransferor
isomerization)in thesamechromophore.Their elec-
tronic chargedistribution andcouplingto thesolvent
couldthereforebevery different. Consequently,the
correlationfunctionsJ(t,) andR(t3,t2,t,)may bevery
different in both cases. Nevertheless,the way the
solventcoupleswith optical andrateprocessesis for-
mally identical,andthe powerful theoreticalmethods
andconcepts,suchasdephasingprocessesdeveloped
for the interpretationof optical spectroscopy,canbe
readily usedin the descriptionof rateprocessesusing
thepresentformulation. In the remainderof thisAc-
count, we shall applythepresentformal expressions to
analyzethe role of solvation dynamics in electron
transferandin the opticalmeasurements(absorption,
fluorescence, and pump—probe) of a chromophore in a
polarsolventenvironment.Forclaritywe consideronly
the contributionof solventmodesto J(t,) and R(t3,t2,t1)
anddo not include intramolecularnucleardegreesof
freedom(vibrationsandrotations).

III. SemiclassicalApproximation for Solvation
Dynamics

In this section, we develop a general yet very simple
semiclassical approximation scheme for the calculation

for a timeperiod t,, and then taking a trace. The an-
gularbrackets (...) introduced in eq 11-6 denote a trace
over all nuclear (solvent and molecular) degrees of
freedom. Gmn(t) is a Liouville-space Green function,
defined by its action on an arbitrary operator A:

Gmn(t)A exp(—iHmt)A exp(iH,,t) m, n = a, b
(11-7)

The fourth-ordercontributionto therateconstant(eq
11-4) is given by

2 Re 5dt1 5dt2 5dt3 [R(t3,t2,t,) — R(t
3

,co,t,)]

R(t3,t2,t,) is calculatedin an analogouswayto J(t,) by
startingwith Pa, propagatingit for threeconsecutive
timeperiodst

1
, t2, and t

3
with variouschoicesof prop-

agationwith H5andHb from theleft andthe right, and
then taking a trace,i.e.,

(11-10)

Here H5 and Hb represent the Hamiltonians for the
intramolecular(vibration,rotation)andfor thesolvent
degreesof freedom,whenthesystemis in the electronic
statesIa) and Ib), respectively,and~uis theelectronic
transitiondipolematrix element. Theopticalproperties
of the systemmay be relatedto the time-dependent
polarization P(r,t). The polarization is usually ex-
pandedin a Taylor seriesin E:32

P(r,t) = P~’~(r,t)+ P~2~(r,t)+ P~3)(r,t)+ ... (IT-il)

p(l) is relatedto the linearoptical properties,whereas
p2), P°~,etc.,constitutenonlinearcontributions. In an

isotropic medium,j~(2)= 0; we shallthereforefocuson
P~’~andP~.The polarizationis calculatedby taking
theexpectationvalueof thedipoleoperator~ ~z(Ja)(bI
+ Ib) (al), afterthe densitymatrix ~ is calculatedto the
desiredorder. P~’~is given by a convolutionof the
electromagneticfield E andthe linear responseJune-
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of the solvent correlation functions J(t,) and R(t3,t2,t,).
The present approach provides useful expressions for
these correlation functions and offers a tremendous
insight regardingthe importantfactorsthataffect the
dynamicsof reaction ratesand optical line shapes.
ConsiderthevariousLiouville-spaceGreenfunctions
Gmn(t) that enter in eq 11-6 and 11-9. The Green
functionswith m = n, G~(t2)and Gbb(t2), represent the
evolutionof the diagonalelementsof thedensitymatrix
(levelpopulations)whosetime evolutionfrom the left
andfrom theright is with the sameHamiltonian. On
the other hand, Gb5(t) and G5b(t), with t = t1 or t3,
representthetime evolutionof molecularcoherences
(off-diagonalelementsof the densitymatrix); their time
evolution from the left andfrom theright is with dif-
ferentHamiltonians. The semiclassicalapproximation
is obtainedby approximatingthe Liouville-spaceGreen
function correspondingto coherencesas

Gba(t) = Gabt(t) exp[—i(U+ E°)t} (Ill-i)

whereU — H8 — E°is thesolvationcoordinate.E°
= ho~is the energydifferencebetweenthe potential
minima of H5 and Hb. In a rate process this is the
reactionfreeenergy(denotedE°),whereasin anoptical
processthis is the fundamental0—0 transitionenergy
(denotedhob5). This approximationmay be derived
by assuming that H8 and Hb commute, resulting in the
cancellation of the solvent nuclear kinetic energy. The
semiclassical approximation is expected to hold athigh
temperaturesandis knownin thetheoryof spectralline
shapesas the static or the statistical limit.37 The
motionsandfluctuationpropertiesof solventdegrees
of freedom as collectively appear in U playamajorrole
in controlling the spectral broadening as well as the
dynamicsof electron transfer. Our semiclassicalap-
proximationfor theresponsefunctionsis obtainedby
substitutingeq Ill-i for Gb5(t) and its Hermitiancon-
jugate Gab(t) in eq 11-6 and11-9.

At this point we should makea few commentsto
clarify why weareusingthe semiclassicalapproximation
for the coherences (Gba and Gab) and not for the pop-
ulations (G~and Gbb). Coherences incondensedphases
areusuallysubjectto fastdephasingprocessesresulting
from the solventmotionsthatdestroythephaseof the
density matrix elements ~ and ~ab~ Consequently, the
coherenceGreenfunctionsareexpectedto decayrap-
idly, andthe relevanttime scalest, and t

3
that enter

into eq 11-6 and 11-9 are of the order of the dephasing
time scale. The latter is typically in the femtosecond
range, as can be seen from the line widths of optical
transitionsin solution. Wethusneedto evaluateG~(t)
and Gab(t) for very short times, over which the solvent
nuclei are practically stationary,and a semiclassical
approximationis justified. Puredephasingprocesses
do not affect the diagonal elements of the density ma-
trix (populations),sothetypical time scalesfor t2 in eq
11-9 are of the order of the lifetime of the electronic
states, which may be much longer (typically in the na-
nosecond to subpicosecondrange). It is thereforerea-
sonable to ignore the solvent nuclear kinetic energy
whenthesystemis in a coherence (the t, and t3inter-
vals) butnot whenit is in a population(t

2
). In order

to expressour resultsin acompactform,we introduce

(37) Breene,R. G. Theoriesof SpectralLineshapes;Wiley: New
York, 1981.

two auxiliary quantities. The first is the probability
distribution of the solvationcoordinateU when the
systemis in the statej:

c13(x) (~(x—U)p~) j = a, b (111-2)

The second quantity is the conditionalprobability for
the solvationcoordinateto havethevaluex at time t,
given that it had the value y at t = 0 and that the
systemis in the statej, i.e.,

W’3(x,t;y) [o~(y)]~ (~[x—U~(t)]~(y(])p5) (111-3)

where

U3(t) = exp(iH3t)U exp(—iH1t) j = a, b (111-4)

Note that, by definition, W3(x,0;y) = ~5(x—y)and
W1(x,m;y) = a3(x).

Weshall now apply the semiclassical approximation
to optical line shapes. Within the semiclassical ap-
proximation,we view the solvationcoordinatesimply
as a classicalfunctionof thesolventdegreesof freedom
(rather thananoperator). A photon o may be absorbed
or emittedonly whenthesolvationcoordinatehasthe
value U = — Wba. This is the classical Franck—Condon
principle.38 The absorption spectrum at frequency
is thenproportionalto theprobability of thesolvation
coordinate to have the value ~ — W},a when the system
is in theIa) state. This probability is 0

8
(w—ob

8
). Sim-

ilarly, 7b(w—wte) is the emission(fluorescence)spectrum
in a steady-stateexperimentwhentheradiativelifetime
is long compared with the solvent relaxation, so that
the emission is from an excited state where the solvent
is fully relaxed. Wenext consider two time-resolved
spectroscopic techniques thatare commonlyusedin the
studiesof solvation: fluorescenceand hole-burning
(pump—probe) spectroscopies.2125’34 Both measure-
ments are related to P~and startwith the application
of a shortpumppulsecenteredat t = 0 with frequency
w1. In a time-resolved fluorescence measurement, the
solvation dynamics when the solute is in the excited
electronicstateIb) are probed by collecting a sponta-
neouslyemittedphotonwith frequencyw

2
at time t.

The fluorescencesignalmay beexpressedin termsof
theresponsefunctionsR1 and R2 introduced in section
II and is given by33’34

S~~(o,,w2,t)= W1W2
3

Wb(W20)te,t;O)fWba)aa(w1~oba)
(111-5)

Equation 111-5 can be interpreted as follows. 0
9

(wi—wte)

is the rate of absorbinga photon w, by the system.
Wb(w2—w~,t;w,—wte)is the conditionalprobabilityof the
solvationcoordinateto havethevalueU = — ~ at
time t given that it had the value U = — wba at t =

0. The rate of emitting an w
2

photon at time t following
the absorptionof an w~photon at t = 0 is thuspro-
portional to the product of r~and Wb.

In an ultrafast pump—probe (hole-burning) mea-
surement, the absorption spectrum is measured with
a probe pulse that is delayed relative to the pump pulse
by time t. The hole-burning line shape S~(wi,w2,t)is
defined as the difference between the absorption
coefficient at w

2
in the absenceof apumppulseand the

absorption coefficient at ~ measured with a probe pulse
that follows apumppulse. Sincethe hole-burningline
shapeis proportionalto thepopulationdifferencebe-
tweenthetwo electronicstates,the solvationdynamics

(38) Lax, M. J. Chem.Phys.1952, 20, 1752.
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in both the excited state (with R, and R2) and the
ground state (with R3 andR4) enter in Sus(w,,w2,t).We
then get33’34

SHB(w,,w2,t)= w,w2[Wb(w2—wb5,t;w,—ob8)+
Wa(w2wba,t;w,wb

8
)] ~a(~rwba) (111-6)

Equation 111-5 and 111-6 were derived by assuming that
boththepumpandtheprobepulsesare shortcompared
to the timescalesof theorientationalrelaxationof the
solvent. Let usconsider now the origin and the physical
interpretation of the two contributions to the hole-
burning spectrum. In this experiment the excitation
pulseselectsagroupof moleculesin the groundstate
whosesolvationcoordinateis aroundU = w, — wba and
transfersthem to the excited state,thus creatinga
“particle” in the excited state and a “hole” in the ground
state. Wbresults from the R, and R2 terms and their
complex conjugates. In these pathways, the system is
in the electronically excited state Ib) during the time
interval t2, where the solvation dynamics takes place.
The solvationcoordinatewill attain the limiting dis-
tribution determinedby Pb as t2 —~ m~Wb represents,
therefore,the excited“particle” dynamicsas discussed
previously for the fluorescencespectra. Wa, on the
otherhand,resultsfrom pathwaysR3andR4 and their
complex conjugates, in which the system is back in the
groundstateIa) during the t2 timeinterval. Wa rep-
resents“holes” in the ground-statedistribution. The
solvation dynamics underlying Wa corresponds to the
relaxation of the solvation coordinate to attain the
equilibrium distribution determined by p5. Since the
probeabsorptionspectrumis sensitiveto the population
difference between the ground and the excited states,
it depends on both Wband Wa.

It should be noted that a more general theory of
pump—probe spectroscopy may be required in order to
accountfor themostrecentfemtosecondexperiments
in which coherent nuclear motions (quantum beats) are
producedin real time.’9’20’2224 The necessarygeneral-
izations of eq 111-5 and111-6 include the useof more
microscopicmodelsfor the solvation dynamics, avoiding
the static approximation (eq 111-1) and including the
quantum dynamics instead, and the incorporation of
molecular vibrations using their phase space distribu-
tions. In addition, since in many of the current fem-
tosecond experiments the pump and the probe may
overlap in time, it is necessary to allow for all possible
time orderings of the pump with respect to the probe.
(In the present theory, we assume that the pump acts
first and the probe second.) All these generalizations
canbeincorporatedby startingwith eq II~l3.26,32

Wenext turn to the rate constant (eq 11-4). When
thesemiclassicalapproximationeqIll-i is substituted
in eq 11-6 and 11-9, and the integrations over t, andt

3
in eq 11-5 and 11-8 are performed, the reaction rate
assumesthe form

When p << 1, thereactionis nonadiabaticandwehave
KNA = 2~(V~/h)tya(E0). In the opposite limit, v>> 1,
the reactionis adiabaticandthe rateis given by ~
= (Ta + ThY’.

The present expression for the rate constant as well
as the adiabaticity parameters has been derived and
discussed previously by many authors.~11”7 The no-
nadiabatic rate expression, which may be simply ob-
tained from the Fermi golden rule, was developed by
Levich andco-workersfor Debyesolvents39andthen
generalized to an arbitrary solvent by Ovchinnikov and
Ovchinnikova4° and by Zusman and Helman.’° The
earlyworks of Hopfield,6Jortner,7andco-workersalso
focused on the nonadiabatic limit. Zusman has used
a MarkovianstochasticLiouville equationto derivea
rate expression that interpolates between the adiabatic
and the nonadiabatic limits. When the Debye model
for the solvent is used, eq 111-7 reduces to these earlier
results. The adiabatic rate given here was also derived
by Hynes,’7Sumi andMarcus,8andRipsandJortner9

for the Debye model. The derivation of Hynes is based
on formulating the rate constant in terms of a flux
correlation function, starting with an adiabatic (single
potential surface) picture. The present derivation,
which starts with the opposite (nonadiabatic) repre-
sentation and is based on the evaluation of the non-
linear responsefunction, providesan unconventional
viewpoint for interpretingthe expressionand,most
importantly, establishes the connection with nonlinear
optical spectroscopy. In the semiclassical (static) ap-
proximation, the nonadiabatic rate depends on the
value of a5(x) at one point x = —E°. That point is the
curve crossing(the transitionstate) (Figure 1). KNA
could be derived by making a static approximation
starting with the Fermi golden rule. When the adia-
baticity parameter is sufficiently large, the reaction
becomes adiabatic, and the rate constant is equal to (i-~

+ Tb)’. Ta and r8 are the characteristicsolvent time
scaleswhich control the adiabaticityof the rate pro-
cess. Let ushavea closerexaminationof thephysical
significance of these time scales. Tb results from a
combinationof R, andR2 that passesthrough an in-
termediatestatePbb as shown by Gbb(t2) in eq 11-9.
During the t

2
intervalthereactanthaschangedinto the

product, but the solvation coordinate U is not in
thermalequilibrium with the product lb). It thenun-
dergoesrelaxationto equilibrium during the t2 period
as given by Gbb(t2) in eq II-9b and II-9c. When it
reachesequilibrium(t

2
—~ a~),theintegrandin eq11-8

vanishes, and it does not contribute to the rate any
more. Thetime scalefor this equilibrationprocessis
Tb. T

8
resultsfrom the combinationof R3 and R4 that

passesthroughan intermediatestate~ as shownby
Gaa(t

2
) in eq 11-9. This representsthe backreaction

processesin which thesystemhaspassedthroughthe
transitionstateandhasreturnedbackto the reactant
Ia>. Again, the solvation coordinate undergoing this

~III-7~ processis not in thermalequilibriumwith thereactant,and it relaxesto equilibrium during the t2 period, as
given by Gaa(t

2
). The time scalefor this relaxation

processis T
8

. Whenthis relaxationis completed,the

(39) Levich,V. In PhysicalChemistry,an AdvancedTreatise;Eyring,
H., Henderson,D., Jost,W., Ed.;AcademicPress: NewYork, 1970; Vol.
9B.

(40) Ovchinnikov, A. A.; Ovchinnikova, M. Y. Soy.Phys.—JETP
(EngI. Transl.) 1969, 29, 688.

21r(V2/h)r8(_E0)
K=

1 + 2ir(V
2

/h)aa(_E0)(Ta + Tb)

= [cra(_E0)]_15 dt [W1(—E°,t;—E°)—

W~(—E°,m;—E°)Jj = a, b (111-8)

The nature of the rate processis determinedby the
adiabaticityparameterv 21r(V

2
/h)o.

8
(_E0)(Ta+ Tb).
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1 I~ (x—X)2
= (4~Xk~~/

2exP[— 4Xk8T]

X = r
3

Iiza — I~bI2Ei/c,,,— i/co]

1 I’~dw 1/c(w) — 1/co
M(t) = 2—:J — exp(iwt) 1/c,. — i/co

integrand in eq 11-8 vanishes anddoesnot contribute
to the rate. Tb is thus the average time it takesfor a
solventfluctuation at thetransitionstate(U = —E°)to
relaxto thermalequilibrium in the productwell Ib>,
whereasT

8
is the averagetime it takesfor the same

fluctuation to relax to thermal equilibrium in the
reactantwell Ia). This is representedschematicallyin
Figure 1. Tb is determinedby the same solvation dy-
namicsthat controls Wb, whereasT

8
is relatedto the

solvation dynamicsthat controls W8. If these time
scales are fast, the adiabaticity parameter ii vanishes
and the rate is nonadiabatic. As thesolventtimescales
become longer, v increases, and a nonadiabatic rate will
eventually turn adiabatic, with a rate equal to the
properinversesolventtime scale. The transitionfrom
the nonadiabatic to the adiabaticlimit is thereforea
result of the finite relaxationtimeof thesolvent,which
results in a change of the distribution of the solvation
coordinateU at the transitionstateU = —E°during the
courseof the rate process. Theseresults are in full
agreementwith the establishedpredictionsof reaction
ratetheories)-’°”7It shouldbestressedthatin eq111-7
and111-8,we did nothaveto assumeapriori that the
reaction takesplace at the transition-state configuration
U = —E°.This is rathera direct consequenceof the
semiclassicalapproximation.

Our resultsprovidea uniqueinsighton thedynamics
of opticalandrateprocesses.Thefluorescencespec-
trum dependson solvationdynamicswhenthesystem
is electronically excited, whereasthe pump—probe
spectrumcontainsboth excited-stateandground-state
dynamics.34 The nonlinear optical spectra probe the
conditional probabilities W~(x,t;y) (j = a, b) directly.
By varying t, w~,and w2, we directlymeasureW3 asa
function of x, t, and y. In contrast, the timescales Ta

and Tb thatenterin the rate expression are averages of
the appropriate W~functions for a single value of x and
y,x = y = —E°,and integrated over time. The infor-
mationregardingsolvationdynamicsnecessaryto cal-
culatereactionratesis thereforemuchmoreaveraged
than the information that could be obtainedfrom
fluorescenceandhole-burningmeasurements.We re-
iteratethat the solventquantitieso~and W~entering
into the calculationsof the rateconstant(eq 111-7 and
111-8) are in generaldifferentfrom thoseappearingin
the hole-burning and the fluorescence measurements
(eq111-5—111-8),sincedifferentelectronicstatesarein-
volved. In thenextsectionwe showthatwhencertain
approximationsare made,the solvationdynamicsis
identical in both cases.

The validity of the semiclassical approximation is
intimatelyconnected to theinfluenceofpuredephasing
processesthat destroyoptical coherences during the
time intervals t, and t3 and allow us to use a short time
approximation.Dephasingprocessesplay animportant
role in spectroscopyand in dynamical line shape
analysis.32’37 The presentformulation introducesthis
conceptto the analysisof rateprocessesas well and
providesa new wayof interpretingrateprocesses.It
is interestingto notethat theform of therateconstant
andthe transitionfrom the nonadiabaticto the adia-
batic regimeis strikingly analogousto the saturation
of spectralline shapesin a strongradiationfield (the
Karplus—Schwingerline shape),4’where V is replaced

by the Rabi frequency k~EI. This is another beautiful
manifestation of the intimate relationship between
nonlinearopticsandthe dynamicsof rateprocesses.

IV. Ultrafast Spectroscopyand Electron
Transfer in Polar Solvents

Dielectricfluctuationsin polarsolventsplayacrucial
role in electrontransferand optical spectroscopy.s~a~
Assumingelectrostaticinteractionbetweenthe solute
andthesolventpolarization,wehavefor thesolvation
coordinate

U = _5dr [Db(r) — Da(r)]P(r) j = a, b (IV-1)

wherethe electric fields at position r createdby the
system in reactant andproductaredenotedDa(r) and
Db(r), respectively,andP(r) is thesolventpolarization.
Wehaveevaluatedthe solventquantities(eq 111-2and
111-3) to second order in the solvent—solute interaction,
assumingGaussianstatisticsof solventfluctuations,
resultingin35

(IV-2)

W8(x,t;y) =

[x— A—M(t)(y—X)}2
~47rXk5T[1— M2(t)]~/2exp— ____________________

4Xk~T[1— M2(t)]

(IV-3)

ab(x) and Wb(x,t;y)are given by the sameexpressions
by replacing x — A and y — A with x + A and y + A,
respectively. The solvation information entering eq
IV-2 and IV-3 is containedin a singlestaticparameter
A anda singledynamicalquantityM(t). 2A (Up8> —

(Upb> is the solvent reorganization energy8’~ due to the
change in the molecular configuration from reactant to
product. M(t) [(U(t)U) — (U)2]/[(U2) — (U>2] is a
normalizedsolventcorrelationfunction,with M(0) =
1 and M(m) = 0.

The semiclassical formulation developed in section
II showed how molecular rateprocessesandnonlinear
optical line shapesmay be expressedin termsof the
solventquantitiesi1(x) andW3(x,t;y), which dependon
A and M(t). In optical measurements, 2A represent the
static Stokes shift while M(t) is the normalized dy-
namicalStokesshift function.21’33’34 Usingeq TV—i, A
and M(t) canbe expressed in terms of the solvent po-
larization correlation function, C ~(r—r’,t), and the
differencebetweenthe electricfiek~s,Da and Db. Cpp
(r—r’,t) can further be related, by usingthe fluctua-
tion—dissipationtheorem,to thewavevector-andfre-
quency-dependentsolventdielectricfunctionc(k,w) ~42
The dielectric function is usually known from macro-
scopic(long wavelength)measurementsthat yield only
thek = 0 componentof c(k,w). If thewavevectorde-
pendenceof c is ignoredandwe substitutedc(w) c(k
= 0,w) for c(k,w), we obtain the commonlyuseddi-
electriccontinuum(long wavelength)approximation~

(IV-4a)

(IV-4b)

(41) Karplus, R.;Schwinger,M. J. Phys.Rev.1948, 73, 1020. (42) Loring,R. F.; Mukamel, S.J. Chem.Phys.1987, 87, 1272.
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W2~5)ba (_1)

where c0 is the static (t~= 0) and c,., is the high-fre-
quency (optical) value of the solvent dielectric function.
In eq IV-4a, wehave evaluatedthe fields Da and Db by
assumingthatthe systemhaspermanentdipoles~ and
1~bin the a and b states, respectively. r is the effective
molecularsize(hard-sphereradius).M Notethat in this
case A dependsstronglyon thenatureof the electronic

us considera typical form for the dielectric functionsystemwhereas M(t) depends only on the solvent. Let
that holds for a largenumber of solvents, i.e., the
Cole—Davidsonform:43

(c0 —

(1 + iWT
0

)~c(w) = c,. + (IV-5)

Equation IV-5 represents a solvent with a distribution

Z
~~

~~
Ui

I~

-

1

150 p

8000 -4000

of dielectricrelaxationtimescales,and i3 and~r0are two
parameterscharacterizingthis distribution. (T

0
is a

Figure2. Time-resolvedhole-burningspectraof a polyatomic
solutein aDebyesolventat 247K following a1-psexcitationpulse.

typical solventtime scale,and~3controlsthewidth of The longitudinal dielectric relaxationtime, TL, is 150 pa. The

the distribution.) The Debye model for the dielectric
function is given by eqTV-S with ~3= 1. Forthis model
in thecontinuum(k = 0) approximation,the systemhas
a single dielectric relaxation time r0. WethengetM(t)

modelsolutehasthe29 Raman-activevibrational modesof the
retinal chromophorein bacteriorhodopsinandundergoesrapid
vibrationalrelaxation. The pumpfrequencyis given w

1
=

+ ~ + 1528 cm
1

.

= exp(—t/’rL) with TL being the longitudinal solvent
relaxationtime TL = To(c,,/co). It is interesting to note
that,for theDebyemodel,thetime scalesof the Stokes
shift andthe line broadeningin hole-burningand in
fluorescence,andthesolventtimescalesrelevantto the
rate (T

5
and Tb) for small barriers,are all equal to TL.

35

This is a specialcharacteristicof theDebyecontinuum
I

‘~‘~
,._,

model. In general, the solvent has several time scales;
M(t) as displayedin fluorescenceand hole-burning

!
measurementswill show directly thesevarioustime
scales,whereasTa and Tb, which appearin the rate
constant(eq 111-7), will be someweightedaverageof
thesetimescales.It shouldfurtherbe notedthateven
in a Debye solvent we expect to have a multitude of
time scales related to the dynamics of the various sol-
vation shells. The incorporation of solvation shell
structuremay bemadein the presentformulation by
considering the complete frequency- and wavevector-
dependent dielectric function.42’~ This is essential in
order to calculate the multiple relevantsolvent time
scalesthat areexperimentallyobservedin, e.g.,time-
resolved fluorescence measurements.21’44

Figure3. Thelogarithm (base10) of therateK (eq 111-7) in units
of i~/h is plottedasafunctionof log (r~/h),where~ (2XkT)’

12
.

V= z~..WeassumeIE°+ XIIi~>1 andneglectthebackreaction
by setting r

5
= 0. The dashedcurvesshow the logarithm of the

nonadiabaticrateKNA (setting r
5

= Tb = 0). A Cole—Davidson
solventis usedwith f3 = 0.5, c

0
64, andc,, = 4.1. Thedifferent

curvescorrespondto variousvaluesof (E°+ X)/~asindicated.

We havecalculatedfluorescence and pump—probe
(hole-burning)line shapesof apolar solutein a Debye
modelsolventat 247 K with tO = 33.5,c,. = 4.8, andTL

= 150ps.~In thesecalculationswehavealso included
intramolecularvibrationsby writing J(t,) andR(t3,t2,t,)
asproductsof asolvationterm andan intramolecular
term, which may be evaluated analytically for harmonic
molecules.3234In Figure 2 we displaythe calculated
time-resolvedhole-burningspectrumof the retinal
chromophore in bacteriorhodopsin, which has 29 opti-
cally active vibrational modes.34 The frames show
hole-burningspectrameasuredby probepulseas sue-
cessivelylongerdelaytimeswith respectto pumppulse.
The hole-burning spectrum at 1 ps resembles a Raman
spectrum, with distinct resonances when ~ — w2 equals
the frequency difference of two vibronic states of the
electronicgroundstateandthe electronicexcitedstate.
The hole-burningspectrumfor timesshortcompared

to TL showssubstantialline narrowing relative to the
steady-statespectrum,becausethe pumppulseis not
sufficiently short to excitethe entire inhomogeneous
distribution of solutemolecules. The pumppulsese-
lects a subsetof solute moleculesand surrounding
solventenvironmentswhosetransitionfrequenciesare
close to the excitation frequency, leaving particles in
the excitedelectronicstateandholes in the ground
electronicstate. For observationtimesmuchlessthan
TL, the solventis effectivelystatic,andthehole-burning

line shapeis narrow. Forobservationtimescomparable
to TL, the solventaroundeachparticle and hole has
begun to relax, and the spectrum broadens, and
meanwhilethe contributionof particles(Wb) displays
a red shift. In the final frame, the steady-statehole-
burning spectrum is reproduced (dashed line) for corn-
parisonwith the spectrumat t = TL.

We shall turn now to the calculationof electron-

(43) Botteher,C.J. F.;Bordewijk,P. TheoryofElectric Polarization;
Elsevier: Amsterdam,1978.

(44) Chandra,A.; Bagchi,B. J. Chem.Phys.1989,90, 1832.

transferratesin polar solventswith a Cole—Davidson
dielectric function. In Figure 3, we presentthe rate
constant(eq111-7) asa function of thesolventcharac-

Log (—~--)
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teristic time scale T
0

(eq IV-S). Large values of T
0

correspondto high friction. In this casethe reaction
is adiabatic,andtheratedecreaseswith increasingT

0
.

When T
0

is sufficiently small,the reactionis nonadia-
batic and the rate is proportionalto the line-shape
function cr

5
(—E°),which is motionally narrowedand

assumesa Lorentzian form. EquationIV-2 doesnot
hold in this case, and the rate is then proportionalto
the line width, which increases linearly with T

0
. The

rate,whenplottedvs T
0

, thus exhibits a maximum. This
is analogousto the Kramersturnovercurve.’4”5 The
dashedcurves show the nonadiabaticrates(the nu-
meratorof eq 111-7), assumingtheadiabaticityparam-
eterv = 0. For smallenoughT

0
, therateis nonadiabatic.

As T
0

increases,the nonadiabaticrate becomesinde-
pendentof T

0
, since r(—E°)assumesthe Gaussianform.

However,when T
0

is sufficiently large,the rateeven-
tually becomesadiabatic and decreaseswith T

0
, as

shownby thesolid curves.
This Accountpresentsa generaltheoreticalframe-

work, basedon theevolutionof thedensitymatrix,that
allows the calculationof solvationdynamicsandes-
tablishesa generalfundamentalconnectionbetween
reactionratesandnonlinearoptical processesin solu-
tion. Our theory of electron transfer in condensed
phasesinterpolatesbetweenthe nonadiabaticandthe
adiabaticlimits. A new insight is provided for the
transitionfrom nonadiabaticto adiabaticrates,andthe
relevantsolventtimescalethatcontrolstheadiabaticity
is preciselydefined. Wehavedemonstratedhow solvent
correlationfunctions and dephasingratesextracted
from linear andnonlinearoptical measurements(ab-

sorption,fluorescence,hole-burning,andx~3~)may be
usedto predictelectron-transferrates. A majorgoal
of spectroscopicstudiesin condensedphasesis to pro-
vide informationthatallows the predictionof reaction
rates in the samesolvent. When the solvent—solute
interactionis treatedperturbatively,andthedielectric
continuummodel is adoptedfor thesolvent,then the
solvationeffectdependson a singlestatic quantiy(the
reorganizationenergyA) anda singlecorrelationfunc-
tion M(t) (eq IV-4). A is very sensitiveto the nature
of the electronicstatesinvolved in theprocessand is
expectedto be very differentfor electrontransferand
optical measurements,even when using the same
chromophorein thesamesolvent. M(t), on the other
hand,dependsonly on thesolventdielectric fluctua-
tions. M(t) obtainedfrom,e.g.,time-dependentStokes
shift measurementscanthenbe usedto predictelec-
tron-transferratesin the samesolvent. This simple
predictionis a result of severalsimplifying approxi-
mations,particularly the dielectric continuummodel
for thesolvent,which is of coursea greatoversimpli-
ficationof the problem. Thepresenttheorypointsout
how theseapproximationscanbe systematicallyim-
provedandwhatstaticanddynamicalquantitiesneed
to be calculatedin order to developa moremicroscopic
descriptionof solvation.
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