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Ultrafast Pump-Probe Spectroscopy: Femtosecond Dynamics in Liouville Space 
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A theory for ultrafast pump-probe spectroscopy is developed using a correlation function description of molecular nonlinear 
optical processes which is based on the density matrix and its evolution in Liouville space. The Liouville space description 
applies to isolated small molecules as well as complex systems in condensed phases. We identify a condition, called ultrafast 
dephasing, which allows the probe absorption to be written in terms of an intuitive picture of instantaneous preparation, 
field-free evolution, and instantaneous detection. The probe absorption is calculated by following a phase-space doorway 
function which is prepared by the pump, propagates for a specified delay, and is finally projected into a windowfunction 
which depends on the probe frequency. We find that the doorway and window functions have well-known classical limits: 
the delta functions in coordinate appearing in the classical Condon approximation. The deviation of the doorway and window 
functions from their classical limits is a direct and visual measure of the importance of quantum corrections in pumpprobe 
spectroscopy. The signal consists of a sequential term and a tunneling (coherent) term which are formally analogous to 
fluorescence and Raman line shapes, respectively. Application is made to the femtosecond photodissociation of ICN, where 
the importance of quantum corrections and the tunneling term is assessed. The role of dephasing processes and the relation 
to other spectroscopic techniques related to the nonlinear susceptibility x ( ~ )  are discussed. 

I. Introduction 
Recent experimental progress in laser spectroscopy, in particular 

the development of ultrafast tunable lasers, has made it possible 
to conduct nonlinear optical measurements using carefully timed 
and tuned multiple laser pulses. These techniques allow femto- 
second dynamical processes to be directly probed.'-" 

The simplest multiple-pulse laser technique is pump-probe 
spectroscopy, in which the system is excited with a pump pulse 
and the absorption of a second probe pulse is measured as a 
function of the pump frequency, the probe frequency, and their 
relative delay. Femtosecond pump-probe techniques have been 
applied successfully to the study of the photophysics of dye 
molecules, primary biological processes, the solvated electron, and 
excitons and electron-hole pairs in semiconductors. Most recently 
Rosker, Dantus, and ZewailI2 succeeded in carrying out the first 
two-color femtosecond pump-probe experiment in a supersonic 
beam. In that experiment the photodissociation of ICN was 
directly monitored, allowing for the first time the observation of 
a bond breaking. This possibility of observing elementary chemical 
events in real time constitutes a fundamental breakthrough in the 
understanding of molecular dynamics. Bersohn and &wail1& have 
offered a simple semiclassical interpretation of the ICN experiment 
using the classical Franck-Condon principle. It should be noted 
that pump-probe spectroscopy is one member of a broad class 
of nonlinear optical  technique^^^-'^ related to the third-order 
optical polarization H3) and the corresponding susceptibility x ( ~ ) .  
There are numerous such techniques which differ by the nature 
of the pulse sequence, the geometry and the choice of a spatial 
direction (phase matching), and the mode of detection. Some 
common techniques are four-wave mixing, time-resolved CARS 
(coherent anti-Stokes Raman), photon echoes and hole burning, 
transient grating, and stimulated pumping.lb2' 

In the present paper, we develop a new description of ultrafast 
pumpprobe spectroscopy based on its f i 3 )  character and apply 
it to the ICN photodissociation. Our description provides a 
connection with a host of related nonlinear spectroscopies. The 
systematic methodology for the analysis and the interpretation 
of molecular nonlinear optical measurements is based on the 
density matrix formulation of quantum mechanics (known as 
Liouville space).Is We emphasize that the more narrow goal of 
calculating the results of the ICN experiment can be readily 
accomplished without the use of the present Liouville space ma- 
chinery. Although calculations are reported here, our goal is not 
the development of efficient numerical techniques applicable to 

*To whom correspondence should be addressed. 
'NSF Postdoctoral Fellow. 
*Camille and Henry Dreyfus Teacher/Scholar. 

ICN photodissociation at  zero temperature. Rather, we present 
a novel picture of the ICN photodissociation based on a quantum 
phase-space (Wigner function) representation of the density 
matrix.** The semiclassical picture suggested by Bersohn and 
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Zewai112c appears more naturally within our framework than in 
a treatment based on wave functions. Our theory allows the 
importance of quantum corrections to pump-probe photodisso- 
ciation to be directly visualized. This is a question of some interest, 
since the potential energy inversion technique proposed by Bersohn, 
Bernstein, and Zewail'2c.21 is based on classical mechanics. We 
relate the widths in coordinate of certain Wigner functions (called 
doorway and window functions) to the importance of quantum 
corrections in pump-probe spectroscopy; a wide doorway or 
window function implies that quantum corrections are significant. 

The present treatment also corresponds closely to the way that 
pump-probe photodissociation is commonly thought of a state 
(called a doorway function) is instantaneously prepared by the 
pump laser, which then evolves in the absence of the field on the 
dissociative electronic surface. Next, the evolving state is in- 
stantaneously probed by a second laser. We introduce a quantity, 
called the "bare spectrum", which corresponds to this process with 
a definite delay time between the pump and probe steps. The 
observed spectrum is a temporal convolution of the bare spectrum 
with the combined intensity profile of the pump and probe lasers. 
Wave function based treatments of femtosecond photodissociation 
cannot be expressed in terms of this simple language of prepa- 
ration, evolution, and detection. 

Another question of physical interest is the importance of time 
ordering of the pump and probe fields in the pump-probe signal. 
Clearly, if the pulse delay is much longer than the combined 
pump-probe temporal width, processes where the pump acts first 
and the probe acts second will dominate. For time delays com- 
parable to the pump-probe temporal width, reversed time ordering 
where the probe may act before the pump can be i m p ~ r t a n t . ' ~  
In  instances where reversed processes are significant, care must 
be taken in interpreting the experimental signal. For instance, 
classical inversion procedures certainly cannot be used in this 
regime. An advantage of the density matrix formalism employed 
here is that we can separate ordinary and reversed terms in the 
signal. This is not possible with wave functions, since a wave 
function where the pump and probe pulses have a definite time 
ordering yields a signal that is not time-ordered. Also, our 
treatment allows femtosecond photodissociation experiments to 
be visualized at finite temperature and in condensed phases. The 
application to condensed phases, and in particular the development 
of a reduced description of optical processes whereby bath degrees 
of freedom are traced out, can only be made by using the density 
matrix. In particular, the concept of dephasing, which is a cor- 
nerstone in condensed-phase spectroscopy, shows up naturally in 
the present formulation. We can also make a connection to the 
dynamics of rate processes such as electron transfer.23 

In summary, the advantages that we gain in a density matrix 
formalism are ( 1 )  a close relation to the common treatments of 
other nonlinear spectroscopies, (2) direct and visual insight into 
the importance of quantum corrections in the spectroscopy, (3) 
a simple physical picture of preparation, evolution, and detection, 
(4) the ability to directly ascertain the importance of reversed time 
orderings of the pump and probe field, and (5) a theory general 
enough to be used for finite-temperature processes in condensed 
phases. A Brownian oscillator model for vibrational and solvation 
dynamics was developed by using the Liouville space response 
function.24 This model can be easily incorporated in the present 
theory. We believe that these benefits more than justify the added 
formal complexity entailed in a Liouville space description. This 
is not to say that wave function based treatments have no value 
or cannot be interpreted. There are, however, unique advantages 
entailed in a density matrix approach, and it is those advantages 
that we pursue here. 

The rest of this paper is organized as follows: In section I1 we 
present the nonlinear response function related to the nonlinear 
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polarization pC3) with its eight Liouville space pathways. In section 
111 we define the probe absorption in a pump-probe measurement. 
In section IV we show how the Liouville space description leads 
to the doorway/window picture which most closely resembles the 
semiclassical description of Bersohn and Zewail. In section V we 
present numerical calculations of the ICN spectrum. In section 
VI we give a detailed discussion and comparison of the Liouville 
space with the more common wave function description. Con- 
clusions and a summary of our results are given in section VII. 

11. Eight Pathways for the Nonlinear Response Function 
In this section we review the density matrix approach to non- 

linear spectroscopies. The third-order optical polarization fl3) 
is expressed in terms of a triple Fourier transform of a nonlinear 
response f u n c t i ~ n , ~ ~ - ' ~ * ~ ~  which contains the complete microscopic 
information necessary for the interpretation of these experiments. 
The response function is expressed in an eigenstate-free form which 
allows it to be calculated directly in Liouville space. 

Consider a nonlinear spectroscopic experiment in which the 
molecular system interacts with an external electric field E(r,t) .  
This field consists, in general, of a sequence of several incoming 
pulses. The various nonlinear optical spectroscopies mentioned 
in the Introduction differ by the timing, the detuning, and the 
direction of these pulses. The total Hamiltonian is 

where His the material Hamiltonian in the absence of the external 
field. Hint represents the material-field interaction. In the electric 
dipole approximation we have 

where V is the molecular dipole operator. In the following 
treatment we ignore the polarization of the electric field and the 
vector nature of the dipole operator V, since these properties are 
not essential in understanding pump-probe photodissociation 
spectroscopy. The optical properties of the system may be related 
to the time-dependent polarization 

P(r,t) = Tr ( V p ( t ) )  (2.3) 
Here p ( t )  is the density matrix of the system, which satisfies the 
Liouville equation 

dp/dt = -i[H,p] - i[Hi,,,p] -i(L + Lint)p (2.4) 

The Liouville operators L and Lint defined in eq 2.4 are the 
commutators with H and Hint, respectively. 

It is our aim to solve for p ( t )  and thus the polarization P(r,t) 
in a power series in Hint. The manipulations involved are most 
clearly and compactly expressed by using the Liouville space 
representation of quantum mechanics.15,26 The main idea of the 
Liouville formulation is that operators form a Hilbert space in 
precisely the same way that states form a Hilbert space in more 
conventional formulations of quantum mechanics. A Liouville 
space operator maps a vector (ordinary operator) into another 
vector. For subsequent manipulations we shall introduce Y, the 
Liouville space dipole operator, by its action on an arbitrary 
operator A ,  YA [ V , A ] .  

The polarization P(r,t) can be expanded in powers of E by 
solving the Liouville equation (eq 2.4) perturbatively in Lint. We 
geti3 

HT = H + H,,t (2.1) 

Hi,, = -VE(r,t) (2.2) 

m 

P(r,t) = CpC")(r,t) (2.5) 
n= I 

Each order in this expansion represents a different class of optical 
measurements. The linear polarization is responsible for linear 
optics, p2) represents second-order nonlinear processes such as 
frequency sum generation, and is the third-order polarization 
which represents a broad variety of four-wave mixing spectros- 
copies. The corresponding susceptibilities are denoted x('), x ( ~ ) ,  
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and x ( ~ ) ,  respectively. It has been shown14 that pump-probe 
spectroscopy is obtained from f i 3 ) .  A straightforward expansion 
of the Liouville equation yields15b+c~24~27 

fi3)(r,r) = Jmdf, Jmdt2 Jmdt3 S(3)(t3,t2,tl) E(r,t-t3) X 

E(r,t-t3-t2) E(r,t-t3-t2-tl) (2.6) 

Here S(3)(t3,t2,tl) is the third-order nonlinear response function 

S(3)( t3 , t2 , t , )  = -i Tr I V9(r3) YS(t2) YS(t l )  Yp(-m)] (2.7) 

Q ( T )  is the time evolution operator (Green function) of the 
Liouville equation in the absence of the external field, defined by 
its action on an arbitrary dynamical variable A 

S(t )A exp(-iLt)A = exp(-iHt)A exp(iHt) (2.8) 

S(3) is the key quantity in the present article. It contains the 
complete microscopic information necessary for the calculation 
of any P3) measurement, such as pump-probe spectroscopy. 
Physically, SC3) gives the polarization response to three 6 function 
laser pulses. The time arguments t l ,  t2,  and t3 represent the time 
intervals between successive interactions with the electric field. 

Let us consider the calculation of S(9 in eq 2.7. We start with 
the system in thermal equilibrium with density matrix p(-m). We 
then act with the first Y, propagate freely for a period t,, act with 
the second Y, propagate freely for a period t2, act with the third 
Y, and propagate freely for a period t3. Finally, we act with V 
from the left and take a trace. In order to treat the propagations 
in t , ,  t2, and t 3  explicitly, we introduce a molecular model relevant 
to the pumpprobe experiment. We assume that the molecular 
system has three electronic states, denoted Ig) (the ground state), 
le) (an intermediate electronic state), and If) (the final excited 
electronic state). The molecular Hamiltonian is given by 

(2.9) 

= pge(Q)lg) (el + pcg(Q)le) (gl + cL,r(Q)le) (9  + pfe(Q)lf) (el 
(2.10) 

The adiabatic Hamiltonian H ,  (v = g, e, or f) in eq 2.9 describes 
the nuclear degrees of freedom Q of the molecule in its electronic 
state I u ) .  We further assume that the molecule is initially a t  
thermal equilibrium in the vibronic manifold belonging to elec- 
tronic level Ig), with the density matrix p ( - m )  = Ig)p,(gl. 

In practice, the time evolution of coupled electronic and nuclear 
degrees of freedom required in eq 2.7 is difficult to solve without 
additional simplifications. Such simplifications can be made, 
however, if we keep track of “pathways” through various electronic 
manifolds. For many experiments, only a few pathways are 
important. Consider the first interaction with ?I in eq 2.7 and 
the subsequent time evolution in t l .  Initially, the density matrix 
is in the state p ( - m )  = Ig)p,(gl. After the interaction with Y, 
the density matrix becomes a coherence: 
Y P ( - ~ )  = le) beg(Q)~gI (gl-  lg) [~gpgc(Q)I (el (2.11a) 

Since the electronic states are the eigenstates of the molecular 
Hamiltonian (eq 2.9), the time evolution of each term in this 
coherence involves only nuclear coordinates. For instance 

g(ti)lg) bg~ge(Q)I (el = 

H = Ig)Hg(gl + le)He(el + If)Hf(fl 

and the dipole operator is 

lg) exP(-iHgtl)[pgpge(Q)I exP(iHetl)(el 
Ig)gge(tl)bgc~ge(Q)l (el (2.1 1b) 

In general, we introduce the time evolution operator appropriate 
to a particular bra/ket electronic manifold as 
O,,(t)A = exp(-iH,t)A exp(iH,,t) (2.12) 

where A is an arbitrary operator. 
Since each Y represents a commutator, which can act either 

from the left or from the right, S(3) will contain 23 = 8 terms once 
these commutators are evaluated. These are the eight possible 
pathways representing the time ordering of the various interactions. 
These pathways come in complex conjugate pairs so that in 

u,  u’ = g, f, e 

Figure 1. The Liouville space coupling scheme and the four pathways 
contributing to the nonlinear response function.l5 Initially, the electronic 
density matrix is 18) (gl, which is denoted gg in the upper left corner. 
Solid lines denote the dipole interaction V. A horizontal (vertical) line 
represents an action of V from the right (left). Starting at the upper left 
corner there are 23 = 8 third-order pathways in Liouville space, which 
lead to the dashed line and contribute to the third-order density matrix 
P ( ~ ) .  Y stands for either g or f (see eq 2.14). fi’) is calculated by acting 
on with V once more and taking a trace (eq 2.3). We note that the 
last V can act either from the left or from the right. The ‘right” choice 
in this figure is arbitrary. Out of the eight pathways, (i), (ii), (iii), and 
(iv) are shown in the figure, and they correspond respectively to R I ,  R2, 
R3, and R4 of eq 2.14. The other four pathways are the complex con- 
jugates of these pathways. 

practice we need to consider only four. In the following discussion, 
we invoke the Condon approximation and assume that the elec- 
tronic transition dipole is independent of molecular nuclear degrees 
of freedom, Le., pcg(Q) = pLcs and pfc(Q) = pfc This approximation 
is not essential to the treatment that follows and can easily be 
relaxed (given that the transition dipole pfe(Q) is known). We 
thus get 

4 

a=l 
S(3)(t3,t2,t~) = i C  [Ra(t3,t2,tl) - Ra*(t3,t2,tdl (2.13) 

The four independent pathways in the Condon approximation can 
be written in the form15 

Rl( t3 , t2 , t l )  = ‘c Ipue121peg12 Tr (gv~(~3) gee(t2) gge(tl)Pg) 
v=f,g 

R 3 ( t 3 , t 2 , t l )  = IpvSI2begI2 Tr (gv~(~3) g ~ g ( ~ 2 )  geg(t l )Pg)  
u=f,g 

R4(t3rt2,tl)  = Ipue121&g12 (9ge(t3) g g ~ ( ~ 2 )  g g c ( t l ) P g )  
u=f,g 

(2.14) 

Here R,* is the complex conjugate of R,. A pictorial repre- 
sentation of the four Liouville space pathways R ,  ... R4 is given 
in Figure 1. 

111. The Probe Difference Absorption 
The formal expressions presented in section I1 allow the cal- 

culation of a large variety of nonlinear spectroscopic observable. 
We now make a specific application to a model representing a 
pump-probe experiment3J2 applied to a molecular system with 
three electronic levels. In a pumpprobe experiment the system 
is subject to two light pulses. One is the pump pulse whose 
frequency is centered around wl. The other is the probe pulse 
whose frequency is centered around w2. The time delay of the 
probe pulse with respect to the pump pulse can be arbitrarily 
controlled. The probe absorption is then detected as a function 
of its frequency w2 and the time delay. To simplify the notation, 
we shall assume that the absorber is located at r = 0 and denote 
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E(r)  = E(r,r) and P(t) 
experiment consists of two components: 
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P(r,r). The external electric field in this 

(3.la) E ( t )  = B ( w , , t )  + k (wz , t )  
where 
k(wl , t )  = E ( o , , t )  exp(-iw,t) + E*(wl,t) exp(iwlt) (3.lb) 

k(w2,t) = E(wZ,f) exp(-iw2t) + E*(w,,t) exp(iwzt) ( 3 . 1 ~ )  

are the pump field and probe field with E(w,,t) and E(wz,t) being 
their temporal profiles, respectively. In a pumpprobe experiment, 
provided both fields are sufficiently weak, we are interested in 
the third-order nonlinear polarization fi3) (eq 2.6), which may 
be expanded in the form 

f13)(t) = Cf i3 ) (w , , t )  exp(-just) (3.2) 
S 

The sum in eq 3.2 runs over all possible combinations of three 
frequencies: w, = wj + wk + W I  where wj, wk, wl = Awl or fwZ.  
The probe absorption can be obtained by considering the total 
energy loss of the probe field and is related to the polarization 
of the medium by (Appendix A) 

Yan et al. 

(3.3) 

where the probe field &(wz,t) is given by eq 3 . 1 ~ .  The difference 
absorption Au(oz;wl) is defined as the total probe absorption in 
the presence of pump pulse minus the probe absorption in the 
absence of the pump pulse. When eq 3.3 is evaluated, we obtain 
the difference absorption line shape (Appendix A) 

Au(w2;wl) = 2w2 Im X:dt E*(wz,t) f13) (wz , t )  (3.4) 

where 

~ ( ~ ) ( t , , t , , t , )  exp[i(wj + wk + wl)t3 + i(wj + wk)t2 + 
i ~ ~ t ~ ] E ( ~ ~ , r - t , )  E(~k, t - t , - tZ)  E(wj,t-t3-tz-tl) (3.5) 

It is sometimes more convenient to disperse the probe pulse in 
frequency after its interaction with the system, rather than tune 
the probe. This detection is commonly used3 and was considered 
by us earlier.27 It is not identical with eq 3.4. f i3) (w2,r )  is the 
0, = wz Fourier component of the third-order nonlinear polari- 
zation f13) ( t )  (eq 3.2). The combination wz = wz + w z  - w2 does 
not contribute to the difference absorption signal, since it represents 
the saturated absorption of the probe in the absence of the pump 
field. The summation in eq 3.5 is over the 3! = 6 permutations 
of wj, wk, wI with w,, -wl, and oz. For the molecular system with 
three electronic states (eq 2.9), S(3)  has 16 terms (8 time orderings 
in eq 2.1 3 containing summations over two possible electronic 
states Y = g and f i n  eq 2.14. Therefore, there are altogether 6 
X 16 = 96 terms when f13)(w2,t) (eq 3.5) is evaluated. Fortunately, 
only three of them survive (eq 3.8) if we make the following two 
approximations: 

( I )  The Rotating Wave Approximation (RWA). Some terms 
contain processes where a photon is absorbed and the system is 
excited (from g to e or from e to f) or conversely a photon is 
emitted and the system is deexcited. These processes are resonant 
and make a significant contribution to the signal. When at least 
one interaction violates this rule (e.g., a photon is absorbed and 
the system gets deexcited), this will result in a highly oscillatory 
off-resonant term which will make a negligible contribution. 
Within the rotating wave approximation we retain only resonant 
terms. This reduces the number of terms from 96 to 16. 

( 2 )  Optical Selectivity. In an ideal pumpprobe experiment 
the frequency wcg of the lg) to le) electronic transition is very 
different from the frequency wfe of the le) to If) electronic tran- 
sition. The pump frequency wI is tuned near resonance with weK 

If> <fl If> <fl If> <fl 

lg> <gl 

(ii) 

Ig> <gl 

(iii) 

Figure 2. The three double-sided Feynman diagrams representing the 
probe difference absorption (eq 3.8) in the RWA and the optical selec- 
tivity approximation (eq 3.6). The Feynman diagrams may be obtained 
from the basic four pathways and their complex conjugates (Figure I ) ,  
using the rules given in Appendix B. Within the RWA an incoming 
arrow is accompanied by an increase in the system electronic quantum 
number (g to e, or e to f), whereas an outgoing arrow is accompanied by 
a decrease in the quantum number (f to e, or e to g). Optical selectivity 
implies that the pump o1 induces only a lg) to le) transition while the 
probe w2 induces only an le) to If) transition. Time runs from the bottom 
to the top. The first, second, third, and fourth interactions take place 
at times t - t ,  - t2 - t,, t - t z  - t,, t - t ,  and t ,  respectively. t , ,  t2, and 
t ,  in eq 2.13 are therefore the intervals between successive interactions, 
as indicated in the figure. Diagrams i and ii result from pathways i and 
ii of Figure I ,  respectively, and contribute to u, (eq 3.8b). Diagram iii 
comes from pathway iii of Figure 1 and contributes to 611 (eq 3.8~). 

while the probe frequency wz is tuned near resonance with wfc. 
Consequently, we neglect all terms in which wl induces an le) to 
If) transition or o2 induces an lg) to le) transition. Approximations 
1 and 2 amount to using the following simplified interaction with 
the electromagnetic field (cf. eq 2.2, 2.10, and 3.1): 

where h.c. denotes the Hermitian conjugate. When both ap- 
proximations are made, we are left with only three terms (rather 
than 96) which contribute to P3)(wZ, t )  (eq 3.5). Double-sided 
Feynman  diagram^'^,^^ provide a useful bookkeeping device for 
the various terms and interactions in the calculation of the mo- 
lecular polarization. The representation of Figure l shows only 
the time ordering associated with each term. The Feynman 
diagrams show the complete terms (time ordering, choice of 
frequencies, and their sign). Appendix B gives the formal rules 
for using these diagrams. It suffices to say that each "side" of 
the diagram shows either the bra or the ket of the density matrix 
and that each arrow represents an interaction with the electro- 
magnetic field. The three terms satisfying both the rotating wave 
approximation and optical selectivity are shown in Figure 2. 
Double-sided Feynman diagrams are a powerful tool for the 
analysis of nonlinear spectroscopies and, indeed, any process 
described by time-dependent perturbation theory of the Liouville 
equation. For instance, we see in Figure 2 that terms i and ii are 
in a population le) (el during the tz  time period. Moreover, in 
these terms the pump always acts first and the probe acts second. 
This contrasts with term iii in Figure 2. Here, a population is 
neuer established on the excited-state surface le). Also, this term 
has a mixed order of interaction between the pump and the probe. 
The separation of the observed signal into time-ordered (terms 
i and ii) and reverse-time-ordered (term iii) components is only 
possible in Liouville space. This separation is of direct physical 
significance. At short time delays between the pump and probe, 
term iii can dominate, leading to a spectrum that cannot be 
interpreted in terms of a "pump first, probe second" ~iewpoint . '~  
If term iii is small, however, the effects of reverse time ordering 
can be neglected. 

The generality of the double-sided Feynman diagrams also 
allows us to make analogies between apparently unrelated pro- 
cesses. For instance, terms i and ii are the exact analogues of 
fluorescence, with the proviso that the wz photon must be emitted 

(27) Loring, R. F.; Yan, Y. J.; Mukamel, S. J .  Chem. Phys. 1987, 87, 
5840; J .  Phys. Chem. 1987, 91, 1302; Chem. Phys. Lett. 1987, 135, 2 3 .  

(28) Yee, T. K.; Gustafson, T. K. Phys. Reu. A. 1978, 18, 1597. Druet, 
S. A. J.; Taran, J.  P. E. Prog. Quantum Electron. 1981, 7, 1. 
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rather than absorbed. Term iii, on the other hand, is directly 
analogous to Raman spectroscopy, where a population on the 
intermediate electronic surface is never established. Many other 
analogies can also be derived. For instance, term iii may represent 
the superexchange mechanism in electron transfer,23b where an 
electron proceeds from a state lg) through a high-energy inter- 
mediate state le) to a final state If). Since term iii never establishes 
a population on the intermediate-state surface, it can persist even 
when the intermediate state le) is energetically forbidden. This 
property of term iii leads us to refer to it as a tunneling term. 

Hereafter, we shall focus on ideal pump-probe experiments and 
consider only the three terms in Figure 2. We assume that the 
pump field is centered at  t = 0 while the probe field is applied 
after the delay time t = T .  To simplify the notation we define 

E l ( t )  = E ( w )  (3.7a) 
E2(t-7) = E(w2,t) (3.7b) 

as the temporal envelopes of the pump and probe fields, respec- 
tively. We further denote 

Au(o~,T;o~) 0 A u ( w ~ ; w ~ )  (3.7c) 

to specify explicitly the dependence of the absorption signal on 
the time delay, T ,  between pump and probe pulses. By use of this 
notation (eq 3.7), the absorption signal (eq 3.4) can be written 
as 

A~(w2,~;wl)  = ~ z I ~ ~ e l 2 1 ~ c g l 2 [ ~ I  + ~ 1 1 1  (3.8a) 
where 

u1 = 2 Re 1 - d t  -- S m d t 3  0 S - d r ,  0 S - d r ,  0 

lexp( iwZt3 - iw t l )E2*(  t+t3-7) &(t-7) El ( t-t2) El * (t- t2-tl)  x 

exp(iwzt3 + iwltl)E2*(t+t3-~) E2(t-7) E1*(t-tz)  El(t-t2-tl) x 
Tr [ Q d t 3 )  Q d t 2 )  Qeg(ti)~gIJ (3.8b) 

and 

Tr  [Qre(t3) Qcc(t2) Q , ( t l ) ~ , I  + 

uI1 = 2 Re L,dl x m d t 3  S m d t 2  S m d r l  exp[iw2t3 + 

Equations 3.8a-3.8~ are compact final formal expressions for the 
probe difference absorption signal. uI, which contains two terms, 
represented by (i) and (ii) of Figure 2, describes the processes 
in which the system interacts first with the pump and then with 
the probe fields. uII, which contains term iii of Figure 2, describes 
the processes in which one of the interactions with the probe field 
E2 takes place between two interactions with the pump. In 
steady-state pump-probe experiments where the pump and the 
probe act simultaneously, all time orderings of the fields are equally 
important; this may give rise to interesting extra r e s o n a n ~ e s . l ~ * ~ ~  

IV. Femtosecond Pump-Probe Spectroscopy: Entering 
through the Door and Observing through the Window 

A pumpprobe experiment is commonly viewed as consisting 
of three sequential steps: preparation, propagation, and detection. 
In subsection 1 we present a precise condition, called ultrafast 
dephasing, which allows pump-probe spectroscopy to be described 
in these terms. In the ultrafast dephasing limit, the probe ab- 
sorption spectrum is given by the temporal convolution of the 
combined pumpprobe intensity with a quantity that we call the 
bare spectrum. The bare spectrum represents a process consisting 
of instantaneous preparation, propagation for a definite time, and 
instantaneous detection. In subsection 2 we discuss a second 
limiting case of ultrashort pulses. If both the ultrafast dephasing 
limit and the ultrashort pulse limit hold, the bare spectrum is equal 
to the observed spectrum. Finally, in subsection 3 we consider 
the classical limit of our exprassions. The classical Condon ap- 
proximation is readily obtained as the classical limit of our theory. 

(29) Eichler, H. J.; Langhans, D.; Massmann, F. Opt. Commun. 1984,50, 
117. Balk, M. W.; Fleming, G. R.  J .  Chem. Phys. 1985, 83, 4300. 
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1.  Ultrafast Electronic Dephasing. The analysis is greatly 
simplified if we assume that the time scales tl and r3 relevant in 
eq 3.8b are very short compared with the duration of the pulses 
E l  and El.  This assumption is easily justified in experiments 
involving very broad line shapes such as in condensed phases or 
in the ICN photodissociation. During the time periods t l  and t 3  
the system is in a coherence, and it is subject to fast dephasing 
processes which determine the line width of the corresponding 
spectral line. (Qcg(tl) represents the Ig) to le) absorption process 
whereas Qlc(t3) represents the le) to If) absorption process.) These 
dephasing processes also determine the relevant values o f t ,  and 
t 3  which contribute to eq 3.8b. If dephasing processes are suf- 
ficiently rapid, we can neglect the variation of the external pulses 
on the t l  and t3 time scale, resulting in 

El(t-t2) E1*( t - t2- t l )  z IEl(t-t2)12 = Il(t-t2) (4.la) 

E2*(t+t3-7) E2(t-7) z I E ~ ( ~ - T ) ~ ~  = Z2(t-7) (4.lb) 

We have defined here the temporal profiles of the pump and the 
probe pulses by Z1(7) and 12(T), respectively. When eq 4.1 are 
substituted in eq 3.8b, we get 

(TI = Jmdt2 Z(T-t2) Tr bW(w2) gee(t2) pD(wl)) (4.2) 

where I(7-82) is the convolution of intensities of the applied fields, 
i.e. 

Z(7-t2) = S m d t  -m Z2(t-7) Zl(t-t2) (4.3) 

In eq 4.2 we have defined the doorway function 

p0(wl) = Jmdt, exp(ioltl)[exp(-iH,tI)pg exp(iHgrl)] + h.c. 

QD(wl) + h.c. (4.4) 

and the window function 

PW(WZ) [exp(iHet3) exp(-iHft3)l exp(iw2t3) + h.c. 

9 w ( ~ J  + h.c. (4.5) 
The associated doorway function amplitude aD(w1) and the 
window function amplitude aW(w2) are defined by eq 4.4 and 4.5, 
respectively. They will be used below in the definition of ulI. h.c. 
denotes the Hermitian conjugate. 

The significance of eq 4.2 is best illustrated if we use the Wigner 
representation. The Wigner function associated with an operator 
A is defined as 

ds exp(-ips)(q + s/21AJq - s / 2 )  
1 

4 P d  = - 

(4.6) 
The correlation function in eq 4.2 can then be written as 

where pD(wl;p,q,tz) is the doorway function propagated for a time 
t2 on the excited electronic surface le). 

Equation 4.7 thus offers the following simple physical picture: 
The doorway function PD(q;p,q) is the Wigner function repre- 
senting the state of the system prepared by the pump pulse with 
frequency w, .  The doorway function then evolves in time for a 
period t2, and its evolution is determined by the Hamiltonian He. 
At the end of that period we calculate the overlap of the resulting 
state with the window function pw(w2;p,q). pw represents the 
region in phase space being observed when the probe frequency 
is wz. In short, the system enters the excited state through the 
door, propagates, and is then probed through the window. 

The second term uII (eq 3 . 8 ~ )  does not offer a simple classical 
picture. During the r 2  period, it represents a coherent evolution 
of 18) and If), very much analogous to Raman scattering or a 
two-photon absorption.lsb The time ordering of the interactions 
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is pump, probe, pump, and we cannot interpret it as a probe of 
the state prepared by the pump. Furthermore, in uII all time 
arguments t , ,  t 2 ,  and r3 represent the evolution of coherences and 
are all subject to fast electronic dephasing, which allows us to 
invoke a short time approximation: 

(4.8) 

E2*(t+t3-r)  &(t-t2-7) z IE2(t-T)12 5 12( t -T )  (4.9) 

When eq 4.8, 4.9, and 4.3 are substituted in eq 3.8c, we get 

uII = 2I(r) Re dt, exp(i(w, + w 2 ) t 2 ]  x 

E,*(t)  El(t-t2-tl) r IE,(t)i2 = I , ( t )  

~r {@w(02) gfg(t2)  mi)^ (4.10) 

We emphasize the fundamental difference between the doorway 
and the window amplifudes (aD, @w) which appear in uII and 
the doorway and the window functions (pD, pw) which appear in 
ul. The doorway amplitude prepares the system in an electronic 
coherence If) (gl and lg) ( fl, and its evolution during the t2 period 
is dominated by electronic dephasing arising from the difference 
in the Hamiltonians Hg and Hf. This evolution does not have a 
simple classical analogue. The doorway function prepares the 
system in the electronic state le) (el, and its evolution during the 
t 2  period is the ordinary dynamics given by He, which has a 
well-defined classical analogue. 

The correlation function in eq 4.10 can be written in the Wigner 
picture as 

A- 

Tr {@W(w2) gfg(t2) @D(wl)l  = 
S d P  dq @W(UZ;Pd @D(Ol;P,q,tZ) (4.1 1) 

where the time evolution of the Wigner function is given by the 
coherent propagator from point p’q’ to point pq in phase space 
gfg(p,q,p’,q’;t2). Since the operators @w and GD are not Hermitian, 
the corresponding Wigner functions @w(p,q) and @!(p,q) are 
complex. The I ( T )  factor in eq 4.10 implies that uIl is nonzero 
only when the two pulses overlap. In  an ideal pump-probe ex- 
periment, where the pulses are short and well-separated, oII 
vanishes. The time ordering associated with uI1 is responsible for 
extra holes in steady-state hole-burning experiments (where of 
course, we cannot control the relative time ordering of the two 
fields)14 and for the “coherent artifact” in transient ~pectroscopy.~~ 

2. Ultrashort Pulses. We consider here a second limiting case 
where the durations of the pulses are short compared to the time 
scale of molecular nuclear dynamics and to the delay time T 

between them. In this case the contribution of uII (eq 3 . 8 ~ )  is 
negligible, and we need only consider uI (eq 3.8b). In the ul- 
trashort pulse limit we can neglect the nuclear motion in the le) 
state within the duration of the pulses. The absorption signal (eq 
3.8a) may in this case be expressed in terms of a convolution with 
the power spectra of both pulses: 

uI = J-dw’2 -m $ I d d l  ~ , ( u , - w ’ , )  i 2 ( w 2 - d 2 )  X 

Tr  {PW(W’Z) Q e e ( T )  PD(~’,)I (4.12) 
UI I  = 0 (4.13) 

Here pD and pw are the doorway a n i  wind?w functions defined 
by eq 4.4 and 4.5, respectively, while I ,  and Z2 represent the power 
spectra of the pump and the probe fields, defined by 

(4.14) 

The two limiting cases [of ultrafast dephasing and ultrashort 
pulses] discussed above simplify the way the external fields enter 
into the probe absorption. In both cases the fields enter into the 
final signal a t  their intensity level, and their phases are not im- 
portant. These two limiting cases are not mutually exclusive. The 
ultrafast electronic dephasing limit holds when the pulses are long 
compared with the inverse line width of the corresponding optical 
transition. The ultrashort pulse limit holds when the pulses are 
short compared with their delay and the nuclear dynamics in the 

i j ( w )  = (2~)-’I$-dr exp(-iwt)Ej(t)l 2 ; j = 1, 2 
m 

excited state le). If nuclear motion is much slower than the 
corresponding inverse line width, it is possible to adjust the duration 
of the pump and the probe pulses to be long compared to the 
electronic dephasing time but short compared to the time scale 
of nuclear motion so that both requirements are simultaneously 
met. In that case both limiting cases (eq 4.2 and 4.13) assume 
the common form 

UI a Tr k~w(02) gee(7) PD(WI)]  ~ B ( ~ ~ , T w J  (4.15) 

where we have denoted the spectrum in this case the “bare” 
spectrum uB. For pump-probe experiments in solution with ex- 
tremely broad lines which are almost inhomogeneous, except for 
slow spectral diffusion processes, eq 4.15 provides an excellent 
description of the spectraS2’ 

3. Classical Franck-Condon Approximation. We consider 
now the limiting case of classical nuclear dynamics. Recall that 
the relevant time scale of t ,  is the inverse line width of the 18) 
to le) absorption profile. If this line width is broader than the 
vibronic frequency resolution, we can neglect the changes in the 
molecular momentum during the 1s) to le) transition. This is the 
classical Condon approximation. We also assume that the classical 
Condon approximation is valid for the le) to If) transition. In 
this case, H and He and He and H f  commute, and we can ap- 
proximate t i e  transition Green functions by 

ge,(tl) - exp[-i(He - H,)t,] exp(-iUegt,) (4.16a) 

Qfe(t3) - exp[-i(Hf - He)t3] = exp(-iUfet3) (4.16b) 

where 
U eg t He - Hg = Ve - Vg (4.17a) 

Ufe Hf - He = Vf - Ve (4.17b) 

Using eq 4.16, the doorway function (eq 4.4) and the window 
function (eq 4.5) assume the form 

P D ( ~ I )  = 2*6(w1 - ueg)pg (4.18a) 

~ ~ ( 0 2 )  = 2*6(~2 - ufe) (4.1 8 b) 
In this case eq 4.7 or 4.15 reduces to 

Tr bW(w2) gee(l2) pD(w1)) = 
4*’ Tr I 6 ( ~ 2  - ufe) gee(t2) ~ ( W I  - UeJpgI (4.19) 

Equation 4.19 corresponds to the classical Franck-Condon pic- 
t ~ r e , ~ O  where the absorptions of w ,  and w2 take place only at 
nuclear configurations where U, = w ,  and Ufe = w2, respectively. 

V. Femtosecond Photodissociation 
The femtosecond photodissociation experiments of Rosker, 

Dantus, and ZewailI2 are outstanding examples of the ability of 
nonlinear spectroscopies to measure chemically relevant dynamical 
information-in this case the breaking of a chemical bond. 
Bersohn and Zewail’2c have presented a classical theory of these 
experiments. In the classical picture, the probe difference ab- 
sorption is given by eq 4.15 and 4.18 together, Le. 
W w 2 , ~ ; w i )  cc Tr  16(w2 - ufe) Qee(7) ~ ( W I  - ueg)PgI (5.1) 

This is the extreme case in which we use all the three limiting 
cases in section IV simultaneously. In this picture the molecule 
interacts instantaneously with the pump field and moves into the 
excited electronic state le). The evolution for the delay time T 

on the excited-state le) is further approximated by classical motion. 
Finally, the molecule again interacts instantaneously with the probe 
field, which raises the classical trajectory to the second excited 
state If). During the delay time T the molecule does not feel either 
the pump or the probe beam, so that the spectroscopy can be 
viewed as probing the free dynamics in the absence of the field. 
Our formal expression for the probe difference absorption is given 
by eq 3.8. The following approximations need to be made to 
recover eq 5.1: (i) The light pulses must be long compared to 
electronic dephasing processes (ultrafast electronic dephasing). 

(30) Lax, M .  J .  Chem. Phys. 1952, 20, 1752. 
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.I 
Figure 3. The three potential energy surfaces of eq 5.2, and frequency 
definitions. are shown. 

TABLE I: Parameters for the Hamiltonian of Eq 5.2 
l.l 21.59 amu qo 0.8 8, 
wo 470 cm-' we6 26100 cm-' 
V 14000 cm-I Wfc 24600 cm-I 

(ii) The coherent pathway uII is neglected. This is justified in 
general if the light pulses are short compared to 7 .  (iii) The 
doorway function of eq 4.4, which represents the state prepared 
by the pump field, is replaced by its classical limit (eq 4.18a). 
Likewise, the window function of eq 4.5 is replaced by its classical 
limit (eq 4.18b). (iv) The quantum propagation during the delay 
time 7 ,  given by Qec(7) ,  is replaced by a classical trajectory. 

In this section we apply the doorway/window formalism to a 
simple model system, parametrized to roughly match the pump- 
probe photodissociation experiments on ICN carried out by 
Rosker, Dantus, and Zewail. We do not emphasize quantitative 
reproduction of the observed spectra. Rather, we focus on 
qualitative features and questions of interpretation. The model 
we pick has three electronic surfaces. The ground-state surface 
Ig) is a harmonic oscillator, with parameters chosen to model the 
I-CN stretch in ICN. The first excited-state surface is a simple 
exponential repulsive wall, and the second excited-state surface 
is taken to be flat. Thus 

Y 
He = - + V exp(-q/qo) + h w ,  

2cL 

hue, and hwf, are the electronic energy differences between 
successive levels (see Figure 3). The parameters used in eq 5.1 
are given in Table I. The parameters for H were obtained from 
the I-CN reduced mass (N) and the I-& stretch vibrational 
frequency given by Bersohn and Zewail.12c V is equal to the 
experimental maximum of the lg) to le) absorption spectrum. qo 
was set to a value consistent with the time scale of femtosecond 
photodissociation observed by Rosker, Dantus, and Zewail.lzb 

The calculations in this section are made by using the door- 
way/window formalism in the limit of ultrafast electronic de- 
phasing. This is valid, since the spectral line widths of the ab- 
sorptions for Ig) to le) and le) to If) are on the order of 1000 cm-I, 
which amounts to relevant time scales for t l  and t3 on the order 
of 5 fs: much shorter than the pulse durations (==lo0 fs) in this 
experiment. Furthermore, the observed time scale for molecular 
nuclear dynamics (Le., bond breaking) is comparable to the du- 
ration of the pulses in use. This means that the ultrashort pulse 
limit is not valid in this experiment. We present detailed calcu- 
lations of the doorway and the window functions as well as the 
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Figure 4. The doorway Wigner function pD(wl;p,q) is shown for the 
Hamiltonian of eq 5.2 at zero temperature. The detuning from asymp- 
totic resonance wI - we6 = 5000 cm-'. 

probe absorption spectroscopy and explore the applicability of 
approximations i-iv implied in the classical picture of this spec- 
troscopy. We start by considering the uI term and present fully 
quantum calculations of the doorway and the window functions. 
The extent to which the exact window and doorway functions differ 
from their delta function classical limit (eq 4.18) is a measure 
of the importance of quantum corrections in this experiment. 

A .  The Doorway Function. Let us first consider the doorway 
function for this problem which represents the state prepared by 
the pump laser (eq 4.4). In the molecular beam experiments we 
are considering, the system is thermally "cold" before interacting 
with the laser. Thus, we take the ground-state density matrix pg 
to represent the ground state of Hg. A schematic of the energy 
levels and our frequency definitions is given in Figure 3. If one 
uses our parameters, the absorption line shape from 18) to le) is 
a broad spectrum centered at w1 - weg = 14000 cm-I with fwhm 
of - 1000 cm-I. 

We now turn to the practical calculation of the doorway 
function. Since we are dealing with a process at zero temperature, 
it is numerically advantageous to employ wave functions in the 
calculation of the doorway function. This does not in any way 
reduce the usefulness of the present Liouville space description. 
Our motivation for introducing a Liouville space treatment is 
primarily conceptual, as discussed in section I. For processes at 
finite temperatures, however, numerical procedures based directly 
on the density matrix are advantageous. For instance, one might 
imagine introducing a grid in phase space and then directly 
propagating the Wigner function on that grid, perhaps by a Fourier 
transform technique. Since the density matrix is assumed to be 
in the ground state of Hg, we find that 

(xlpD(wl)lx') = 

(XI[ J-dr, exp(iwltl) exp(-iHcrl)lO,~](O,(x') + C.C. (5.3) 

We employed the Fourier transform method developed by Feit 
and Fleck3' to propagate the ground state of Hg(lOg)) with the 
excited-state Hamiltonian He. The integral over t l  was approx- 
imated by a Riemann sum, and the upper limit of the integral 
was replaced by a finite value t,,,. To enhance the numerical 
convergence of the integral with respect to t l ,  an exponential 
damping with time scale t,,,/5 was used. 

Although the (x,x') representation of the doorway function 
provides complete information, the Wigner representation is much 
more interpretable. We have calculated the Wigner function 
corresponding to pD by means of the relation (cf. eq 4.6) 

1 -  
pD(wI;P,q) = ds exp(-ips)(q + s/21pD(wl)k - s/2) 

-m 

(5.4) 
The integral in eq 5.4 was evaluated with a standard fast Fourier 
transform routine. A plot of the doorway Wigner function when 
w ,  - wcg = 5000 cm-I is shown in Figure 4. (Recall that w1 - 

(31) Feit, M. D.; Fleck, Jr. J. A. J .  Chem. Phys. 1983, 78, 301. Feit, M. 
D.; Fleck, Jr., J. A.; Steiger, A. J .  Compu?. Phys. 1982, 47, 412. 
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Figure 5. The Wigner function of the ground state of Hg. 

-IC 00 10 20 

9 ('%I 
Figure 6. The trace over p of the doorway Wigner function of Figure 4 
is shown. The trace shows localization in q similar to that of the 
round-state Wigner function. Note that its maximum is shifted by -0.3 w from the classical Franck-Condon transition point qc. 

we, is the detuning from the resonance between the bottom of the 
harmonic well and the asymptote of the le) surface. The resonant 
value of the ig) - le) transition corresponds to wl - weg = 14000 
cm-I.) The doorway Wigner function is localized in both mo- 
mentum and position and is centered approximately around the 
origin. For the purpose of comparison, the Wigner function of 
the ground state IO,) is plotted in Figure 5 .  The ground-state 
Wigner function and the doorway Wigner function are very sim- 
ilar. For all practical purposes, we can think of the doorway 
function as being the ground state of the 18) manifold lifted onto 
the le) electronic manifold. This can be understood by the 
time-energy uncertainty principle. An absorption far off resonance 
occurs very quickly. Although it is electronically in le) state, the 
doorway function does not have any time to distort from the initial 
nuclear configuration of the ground electronic state. 

This picture, while not surprising, is in contradiction with the 
classical prediction. In the classical limit the doorway function 
becomes eq 4.18a-it is localized entirely a t  the point qc at which 
the energy difference between the le) and 18) potential energy 
surfaces is resonant with the pump energy. In Figure 6 the trace 
over p of the doorway shown in Figure 4 is given. Also shown 
in Figure 6 is qc. The peak of the trace is noticeably shifted away 
by 0.3 8, from the classical prediction. The explanation for this 
behavior lies in the localization of p, .  We may view the off-re- 
sonant doorway function as resulting from a competition between 
a classical process occurring at  the wings of the ground-state 
Wigner function and tunneling occurring at  the maximum of the 
ground-state Wigner function. In this particular case tunneling 
appears to be the dominant contribution to the doorway function. 

We next consider the doorway function when the pump field 
is resonant with the 1s) to le) absorption maximum. Figure 7 
shows the doorway function obtained with a resonant pump laser 
U ,  - we$ = 14000 cm-I. The resonant function is delocalized over 

Figure 7. The doorway Wigner function is shown for wI - wer = 14000 
cm-l. The resonance doorway is spread over a much larger range of q 
values than the off-resonant doorway of Figure 4. 

3 ,  I 
N 

I '  I 
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Figure 8. The trace over p of the doorway Wigner function of Figure 7 
is shown. The trace is peaked near the classical value qc, with oscillations 
occurring around the peak. 

a much wider range of coordinate values than the off-resonant 
doorway of Figure 4. This is because the doorway state evolves 
in time for a much longer t l  period (see eq 4.4) in the resonant 
case compared with the off-resonant case. The sharp peak in the 
doorway near q = 0 may be explained by a constructive inter- 
ference near values of q = 0, that is, near the origin in coordinate. 
Figure 8 gives the trace over p of the resonant doorway. The trace 
is much more intense than the nonresonant trace shown in Figure 
6, as might be expected. Also, the peak of the trace coincides 
almost exactly with the classical prediction. We can think of the 
resonant doorway as peaked about the classical value, but with 
very substantial width. This contrasts with the off-resonant 
doorway, which was not peaked about the classical value but had 
less width in coordinate. In both cases, the classical prediction 
does not give a complete qualitative picture of the quantum 
mechanical doorway function. 

B. The Window Function. We next consider the window 
function (eq 4.5) and the associated Wigner representation of the 
window, defined in analogous way to eq 5.4. There is a close 
relation between the window function for a given pair of electronic 
states and the doorway for the same pair of electronic states. By 
inspection of eq 4.4 and 4.5, we see that a window function is 
proportional to a high-temperature doorway function for the same 
pair of states, i.e. 

By the high-temperature argument it is reasonable to assume that 
a window function behaves more classically than a doorway, and 
that is precisely the result found below. 

Before discussing the window functions further, however, we 
turn to the problem of their calculation. As a practical matter, 
window functions are harder to calculate than doorway functions. 
This is explained by the high-temperature analogy. The lack of 
any operator in the definition of the window function that is 
localized in phase space (such as pg in the definition of the doorway 

9 (A%) 

PW(U) - pD(-w) (high T )  ( 5 . 5 )  
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Figure 9. The window Wigner function with w2 - wfc = -5000 cm-’ is 
displayed. The window shows a ridge in q, surrounded by highly oscil- 
latory regions. 

function) means that the window function develops its localization 
through the cancellation of delocalized operators. In the dassical 
limit (eq 4.18b), we expect a delta function in coordinate, a 
function that is localized in coordinate but uniform in momentum. 
The lack of localization of the operators in the definition of the 
window function makes grid methods based on direct Liouville 
space propagation of the density matrix difficult to implement. 
We have used an eigenstate-based method to calculate the window 
function. Namely, we introduce the expansions 

exp(-iHlt3)] exp(iw2t3) + h.c. (5.6) 

where 1s) are the vibrational eigenstates of the le) electronic 
manifold and Iy) are the vibrational eigenstates of the If) electronic 
manifold. The coordinate representation of the window function 
is then 

Here cB and cy are the eigenvalues corresponding to the vibrational 
eigenstates 10) and 17) and r is the damping parameter that allows 
the integral in eq 5.6 to converge. In the calculations that follow, 
we take h/I’ = 60 fs. Also, a slow exponential damping of the 
sums over B and y was added to reduce finite basis set effects. 

Equation 5.7 requires that a complete set of eigenfunctions and 
eigenvalues on both electronic manifolds, as well as the overlap 
between these eigenfunctions, be found. In practice, we calculate 
a finite but large number of eigenstates. We do this by enclosing 
the system in a box with infinite potential walls. At any given 
energy, the calculation of the wave function reduces to trajectory 
integration, with the position x playing the role of the time variable 
and the wave function +(x )  playing the role of one of the coor- 
dinates of the trajectory. To find the eigenstates, we do a New- 
ton-Raphson search for energies such that the wave function 
vanishes a t  both ends of the box. The values of the wave functions 
are stored into an array, which reduces the evaluation of (5.7) 
to a sequence of matrix multiplications. Once the (x,x’) matrix 
elements of pw are found, we use fast Fourier transforms to find 
the Wigner function of pw. The Wigner function thus obtained 
converges, for a fixed range of desired momentum values, as the 
number of eigenstates and the density of the (x,x’) grid is in- 
creased. 

Figure 9 gives a window function when w2 - wfe = -5000 cm-l 
(shifted to the red 5000 cm-I from the le) - If) asymptotic 
resonance), and Figure 10 gives a window function when w2 - wfe 
= -2500 cm-l. Henceforth, we shall refer to the window in Figure 
9 as window A, while the window in Figure 10 will be called 
window B. The window functions were produced by calculating 
256 eigenfunctions on a grid of 2048 points. The results shown 
were checked for convergence by undertaking a smaller calculation 
involving 128 eigenstates on a 1024-point grid. The window 
functions obtained from the smaller calculation were in close 
agreement with those given here. The window functions show 
a localized “ridge” of positive values, surrounded by oscillatory 

Figure 10. The window Wigner function with w2 - wfc = -2500 cm-I is 
given. The ridge in the window is shifted to larger q values than that of 
Figure 9. 

0 
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Figure 11. The trace over p of the window Wigner functions with o2 - 
wfc = -5000 cm-’ (left) and w2 - wfc = -2500 cm-’ (right) is displayed. 
The trace shows a clear shift as the frequency is changed. The peak of 
the window function corresponds closely to the classical prediction qc. 

regions. The “ridge” is located very close to the point predicted 
by the classical result (4.18b), which is 0.82 and 1.37 A for window 
A and B, respectively. This is seen most clearly by considering 
the trace over p of the window function, which is displayed in 
Figure 1 1. The peak of the trace is seen to coincide almost exactly 
with the classical prediction for both values of the detuning. The 
peak in the trace for window B is higher and broader (in q) than 
that of window A. 

The area under the peak has a simple classical interpretation. 
The classical window function is 

J ( q  - 4 c )  
Nu2 - UfJ = - Iu &=qC 

(5.8) 

Thus, the classical theory predicts that the area under the window 
function is proportional to the inverse of the slope of the potential 
difference, evaluated at  the classical absorption point. The more 
parallel the potential surfaces involved, the greater the area. This 
prediction is in qualitative agreement with Figure 11, where the 
trace over p of window B is seen to have greater area than that 
of window A. 

The width of the peak must be interpreted with caution. Al- 
though the peak of window B is more delocalized in coordinate 
than the peak of window A, that does not mean that the probe 
absorption spectrum is broader a t  the frequency associated with 
window B (a2 - wfe = -2500 cm-I) than at the frequency associated 
with window A (a2 - wfc = -5000 cm-I). To see this, we define 
the width in energy of the window function to be equal to 

(5.9) 

(5.10) 

The energy width is a translation of the fwhm of the peak in the 
p trace of the window function into energy. Although the width 
in coordinate of window B is greater than that of window A, the 
width in energy is less. For instance, the AI3 of window A is 1700 
cm-’, whereas the Ah? of the peak of window B is 1100 cm-’. 

AE E Iufe(q1) - ufc(q2)I 
where 

Trp bw(P,q1)1 = Trp [Pw(P,42)1 = Trp [Pw(P?qc)l/2 
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Figure 12. The bare spectrum aB(w2,t2;wl) (eq 4.15) is given with wI - 
wcs = 7100 cm-I, which is in the red wings of the pump absorption. The 
bare spectrum shows a clear increase in intensity as the delay time t2 is 
increased. Furthermore, the spectrum shifts to the blue as t2  increases, 
which is in agreement with the classical prediction. 

C. Sequential Component of the Probe Absorption Spectrum. 
We now combine the doorway and the window functions to 
calculate the sequential part of the absorption uI (eq 4.2). Since 
the t ,  and t3  time scales implied by the 18) -, le) and le) -, If) 
absorptions are short compared to the El and E, pulse duration, 
we are in the ultrafast electronic dephasing limit. This means 
that u1 can be obtained by a temporal convolution of the bare 
spectrum (eq 4.15) and the pump-probe intensity profile. If the 
nuclear dynamics on the le) surface were slow compared to the 
pulse delay, we would also be able to apply the ultrashort pulse 
limit, in which case uI would be given by the bare spectrum uB 
of eq 4.15. This is not the case in the present system; the temporal 
convolution is essential. 

We have chosen to calculate the entire w2 spectrum at  a fixed 
value of t 2 .  This is advantageous from a purely computational 
viewpoint, because it involves the propagation of operators that 
are localized in phase space and avoids the somewhat difficult 
calculation of the window function. To do this, we find the 
doorway function at fixed w1 and propagate it for a time t2.  We 
then do a propagation in t 3  instead of calculating a window 
function: 

(5.1 1) 

By storing the traces at incremental t3  values, we can calculate 
the bare spectrum for all w2 at  once. This must be repeated for 
each value of f2 desired. In Figure 12 we give the resulting bare 
spectrum. The pump laser is a t  a frequency w1 - wq. = 7100 cm-l 
(about 7000 cm-I to the red of the absorption maximum). This 
reflects roughly the pump frequency used in the experiments of 
Rosker, Dantus, and Zewail.I2 The doorway function is localized 
at  this frequency and is similar to the ground state. At t ,  = 0, 
the bare spectrum is very broad (about 8000 cm-I) and shifted 
to the red. This reflects a rapid double vertical absorption from 
the ground state 1s) through the first and second excited states 
le) and If). As t2 is increased, the absorption narrows and gains 
intensity, until it reaches a stable asymptotic Lorentzian peak of 
width r. The bare spectrum never gains appreciable intensity 
to the blue of the asymptotic absorption maximum; any absorption 
to the blue occurs purely through tunneling. The shifting peak 

x256 T = -100.0 fs 
A 

--A ‘d, -~ _ -  
I 

x8 T = 25.0 fs 1 

! T = 275.0 fs 

! T = 400.0 fs 

p p p p - - J I p p .  
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I 
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Figure 13. The observed spectrum for a Gaussian pump/probe intensity 
profile with a width of 200 fs and pump frequency wI - wql = 7100 cm-I 
is shown. Note that the dynamics of Figure 12 is buried in the red wings 
of the observed spectrum. 

of the bare spectrum is a clear indication of the underlying dis- 
sociative t 2  dynamics. 

We next calculate the sequential spectrum nI associated with 
Figure 12. This is done by convoluting the bare spectrum (eq 5.1 1) 
with the pulse profile I ( t -7 )  as given by eq 4.2. We assume a 
Gaussian pump-probe intensity profile with a width of 100 fs. 
This is typical of the experiments of Zewail and co-workers (i.e., 
50-150 fs). The 100-fs width, however, is long compared with 
the time it takes the bare spectrum to reach its asymptotic shape. 
This means that the observed spectrum, even at  delay times of 
zero, is dominated by the intense asymptotic absorption maximum. 
The dissociation dynamics borne out so clearly in the bare 
spectrum of Figure 12 appears as activity in the wings of the 
observed spectrum. Figure 13 gives the observed spectrum. The 
peak of the spectrum starts out with a very small intensity for 
negative delay times and then increases until it reaches a constant 
asymptotic value. The activity in the red wings of the observed 
spectrum is largest compared with the peak for short or negaive 
delay times. The intensity in these areas starts a t  a small value, 
increases as the dynamics for times between 0 and 100 fs become 
more important, and then decreases. The behavior shown in Figure 
13 was described by Zewail and co-workers but plotted as a 
function of delay time for fixed wI and w2. In Figure 14 we give 
the spectrum plotted for varying T ,  at  fixed w2 and w,. For w2 
= wfe, the spectrum rises and reaches an asymptotic value, while 
when w2 is tuned to the red of wfe the spectrum rises and then falls. 
It is important to remember that the rise and fall of the observed 
spectrum is not a direct observation of dynamics with t2 = r ,  but 
rather of dynamics with different values of t2 around T convoluted 
with the pump-probe intensity profile (eq 4.2). 

D. The Coherent (Tunneling) Term. In the preceding analysis, 
we considered only the uI term of the pump-probe spectrum, in 
which the pump acts first and then the probe acts second. When 
the laser fields have a substantial overlap in time, it is also possible 
for the coherent term ulI to be important. In this term, the 
doorway amplitude is prepared by the pump and the probe co- 
herently; so as for its window amplitude. A population on the 
le) surface is never established in uII. We therefore refer to uII 
as a tunneling term. In the ultrafast dephasing limit the coherent 
term depends on the pump-probe delay time only through a 
constant of proportionality (eq 4.10). Thus, the coherent term 
contains no direct dynamical information; its dependence on the 
delay time T simply reflects the profile of the incoming pulses. 

We calculate the coherent term using the grid propagation 
technique of Feit and Fleck.30 First, the doorway amplitude 
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Figure 14. The observed spectrum is plotted versus delay time 7 for two 
values of the probe frequency w2. The top plot gives the observed spec- 
trum for w2 - wfc = -16 700 cm-I, while the bottom plot gives the observed 
spectrum for w2 - wfc = 0. The pump frequency wI - wcg = 7100 cm-’. 

9 D ( ~ l )  (not to be confused with the doorway function p D ( w l ) )  
is calculated at zero temperature by a wave function propagation 
and numerical integration: 

-100.0 25.0 

An exponential damping I” has been added to allow the integral 
in eq 4.13 to converge. The t2 and t3 evolutions can be similarly 
expressed entirely in terms of wave functions. Thus, direct 
Liouville space propagation is not required to find the coherent 
term at  zero temperature. 

Figure 15 gives the coherent term as a function of w2 for the 
pump frequency w1 = 0 + 7100 cm-l. The function is oscillatory 
and shifted to the red o$the asymptotic resonance. The red shift 
is a reflection of the short times involved throughout t l ,  t2, and 
t3; the absorption takes place largely vertically. As the delay time 
T increases, the shape of the coherent term does not change, while 
its intensity decreases due to the factor Z ( T ) .  In order to assess 
the significance of the coherent term, we need to check the relative 
intensity of uI and uI1. If the intensity of the uII term is comparable 
to that of ul, the spectrum cannot be interpreted classically, since 
classical treatments (such as Bersohn and Zewail’s) are based 
solely on the uI term. We have found that for our model system 
the peak of the coherent uII intensity is only about times as 
intense as the peak of the uI spectrum at  T = 0; reverse ordering 
of the pump and probe is therefore not significant in the particular 
experiment considered here, and uII can be neglected. It should 
be emphasized however that this conclusion is not universally true 
and uII does contribute significantly in other situations.14 The 
role of uII in pump-probe spectroscopy should therefore always 
be carefully checked. 

VI. Why Liouville Space? 
At this point we address more fully the relationship between 

the Liouville space and wave function formulations of femtosecond 
pump-probe spectroscopy and point out a t  some length the ad- 
vantages gained by a Liouville space picture. We first summarize 
the computationally simpler (at least for isolated molecules at zero 
temperature) way of calculating the pump-probe spectrum using 
the wave function and use this as a basis for analysis and com- 
parison with the present picture. In this Hilbert space formalism 
the system is characterized by a wave function $(t) which satisfies 
the time-dependent Schriidinger equation 

d$/dt = -iHT(t)$ (6.1) 

V 
-zo.a -10.0 0.0 10.0 2o.a 

w2- wfe (io3 c m l )  

Figure 15. The coherent (tunneling) term is plotted versus w2 for a pump 
frequency wI - wFs = 7100 cm-I. The coherent term is much less intense 

than the incoherent term uI, even for zero pump/probe delay. 

where HT is given by eq 2.1. Let us assume that we are initially 
( t  = 0) in an eigenstate of Hg. Le., I$(O)) = la). The amplitude 
of being in the vibronic state 17) of the If) manifold at time t is 

c,,(t) (rl$(t)) = (ylexp+[-iJ’dT Hd~)] la)  (6.2) 

where exp, is the time-ordered exponential. By use of eq 2.1 and 
3.6, it is clear that the lowest order in Hi,, which contributes to 
Cy, is second order. Up to a trivial phase factor we thus have 

Cy,(?) = f d r l  JTldT2 & ( T ~ )  E I ( T 2 )  exp(-iw2rI - iwITZ) X 
0 0 

( ylexp(iHrT1) V exp[-iHe(.rl - TZ)] V exp(-iHgTz)la) 

exp[-i(w2 + to - t y ) ~ l  - i(wl -k t, - q ) ~ ~ ]  (6.3) 

Here e,, t5, and ty are the eigenvalues associated to la), Ip), and 
IT), the vibronic states of Ig), le), and If) manifold, respectively. 
The probability of being in state 17) at time t is ICy,(t)12. Its time 
derivative is proportional to the cycle-averaged rate of absorption 
from the w2 field. If we integrate it over t, we get the total probe 
absorption. Finally, we need to average the result over the thermal 
distribution P(a)  of initial states and sum over all the final states 
17). The probe absorption is then given by 

Equation 6.4 together with eq 6.3 is identical with eq 3.8. In order 
to discuss the difference in appearance of these equations, let us 
first rearrange eq 6.4 by substituting eq 6.3 for Cy,(t) and Cy,(?). 
We can then carry out formally the sums over a and 7, resulting 
in22a 

Here T~ and T~ come from the expansion of the bra C,,(t) whereas 
and 7’2 represent the ket C*,,(t). Williams and Imre32 have 

carried out a quantum mechanical calculation of the ICN 
pump-probe spectrum which was based on wave functions and 
Rayleigh-Schrodinger perturbation theory. Their calculation is 
equivalent to eq 6.5.  Brown and Heller33 have carried out a 
semiclassical calculation of the linear absorption spectrum of ICN, 
using the Wigner function. Their work is not in the spirit of the 
present treatment, however, since they use only diagonal le) (el 
propagation of the density matrix. This is only possible for a pure 

(32) Williams, S.  0.; Imre, D. G .  J .  Phys. Chem. 1988, 92, 6648. 
(33) Brown, R. C.; Heller, E. J. J .  Chem. Phys. 1981, 75, 186. 
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state in the absence of dephasing. Thus, that work is best regarded 
as the casting of pure state theory into a density matrix form, 
rather than a direct application of Liouville space ideas applicable 
to mixed states and condensed phases. 

Let us now compare eq 3.8 with eq 6.5. Both equations are 
fourth order in the fields. Equation 3.8 has four time integrations; 
eq 6.5 has five integrations and one time derivative, which when 
performed reduces the number of integrations to four as well. The 
integration over t is common to both equations. We shall therefore 
consider only the other integrations. In the Liouville space form 
we integrate over t , ,  t2, and t3 which are the time intervals between 
successive interactions. In the other form, 71 and 7 2  are the times 
of the interactions with the bra C,,(t) and d ,  and 7’, are the times 
of the two interactions with the ket C*,,(t). 71 and 7 2  have a 
specific time ordering (71 > T ~ )  and so is T’, and T ‘ ~  (T’, > T’,). 

However, the relative time ordering of 71 and T~ with respect to 
7’1 and 7’2 can be arbitrary, and we do not maintain the book- 
keeping of their relative order in time. If we separate eq 6.5 into 
the various cases (e.g., whether T, is before or after T’,, etc.), eq 
6.5 will be separated into six terms corresponding respectively to 
the six terms of eq 3.8. In eq 6.5 the various time orderings of 
the ket and the bra interactions are lumped together, whereas in 
Liouville space each time ordering is calculated separately as a 
distinct Liouville space pathway (and Feynman diagram). It is 
straightforward to perform the change of variables in eq 6.5 and 
show its equivalence to eq 3.8. 

In the following subsections, the advantages of a Liouville space 
description of condensed-phase spectroscopy are reviewed along 
with the advantages of a Liouville space description of ICN 
photodissociation. The orientation and overview below are par- 
ticularly aimed at workers who specialize in gas-phase phenomena. 

1. Thermal Averaging: Pure versus Mixed States. In Liouville 
space we calculate directly the signal using third-order perturbation 
theory. With the wave function we calculate a transition amplitude 
using second-order perturbation theory, and the signal is then 
related to the absolute square of that amplitude. The amplitude 
is calculated for a given pair of states, an initial state la) and a 
final state 17). The result is then averaged over la) and summed 
over 17). For small systems with a few degrees of freedom and 
at low temperatures, the summations over la) and 17) do not cause 
a severe problem, and it may be easier to calculate an amplitude. 
The advantages of the Liouville space form are apparent for large 
systems at  finite temperatures. In the Liouville space form we 
calculate directly the thermally averaged signal by propagating 
a density matrix representing a mixed state (rather than a pure 
state). No further averaging over thermal distributions is nec- 
essary.I5 

2. Physical Insight: Semiclassical Picture. Even in the case 
of a single degree of freedom at  zero temperature, such as the 
molecular beam photodissociation of ICN, the Liouville space 
formulation provides better insight into the classical description 
of chemical dynamics. An equation analogous to eq 5.1 was 
proposed by Bersohn and ZewailIzc to interpret the ICN exper- 
iment. Using the Liouville space formulation, we have shown how 
this expression may be obtained as a limit of uI. However, in 
addition we need to consider also the second term uI1, which is 
important when the pump and the probe pulses are not well 
separated in time. This contribution does not have a simple 
classical analogue. In eq 6.5, obtained by using the wave function, 
both contributions uI + uII are combined together, and the de- 
rivation of the classical result is much less transparent. There 
is a growing experimental and theoretical interest in studies of 
atomic and molecular clusters which interpolate between isolated 
molecules and condensed-phase systems.34 One of the key 
questions is when is a system large enough to acquire bulk 
properties. By formulating the problem in Liouville space, we 
can treat small and large systems in a unified fashion and address 
these issues in a clear way. 

3. Reduced Description: Role of Dephasing Processes. If we 
consider a molecular system in condensed phases (e.g., solution, 
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(34) Hahn, M. Y.; Whetten, R. L. Phys. Reo. Lett. 1988, 61, 1190. 

9 Yan et al. 

polymer, or glass matrix, etc.), we must develop a reduced de- 
scriptionI5 in which we follow explicitly only the dynamics of a 
few selected and relevant degrees of freedom. The remaining 
degrees of freedom are treated as a thermal bath by using sta- 
tistical methods. The only practical way to obtain such a reduced 
description is by using the density matrix. This allows us to 
perform all the necessary averagings directly. When this is done, 
we find that the effects of the bath on the various terms uI and 
uII are profoundly different, which further demonstrates why we 
need to formulate the problem in Liouville space where these terms 
are naturally separated. 

Consider an off-diagonal element of the density matrix such 
as pgc or pep When it evolves in time, it acquires a phase since 
its evolution from the left and the right is different. This phase 
depends on the state of the bath. When we consider an ensemble 
average of these elements over the distribution of the bath degrees 
of freedom, this phase results in a damping of these elements. This 
damping of off-diagonal elements of the density matrix resulting 
from phase (not amplitude) fluctuations is called dephasing. 
Dephasing processes can only be described in Liouville space, since 
in principle we can only distinguish between diagonal and off- 
diagonal elements of the density matrix in Liouville space. If we 
adopt a complete description with all degrees of freedom included, 
we do not need to introduce d e p h a ~ i n g . ~ ~  However, this is im- 
practical for realistic condensed-phase systems. A beautiful 
analogy is the concept of entropy in thermodynamics. In a 
complete dynamical description of a system we do not need to 
invoke this concept; however, on the greatly reduced thermody- 
namic level, entropy is essential for a proper description of the 
system. 

4 .  Interference among Liouville Space Pathways: Dephas- 
ing-Induced Phenomena. Since the various Liouville space 
pathways are complex quantities, thay may interfere when added. 
This interference has in many cases a dramatic effect on exper- 
imental observables. Dephasing processes in linear optics simply 
cause line broadening.I3J5 In nonlinear optics dephasing processes 
can affect the interference among Liouville space pathways and 
induce new spectral features. To be specific, let us consider first 
the result of a stationary pump-probe experiment. To that end 
we assume that the field amplitudes E , ( t )  and E,(t)  are time 
independent and set E , ( t )  = E,(t)  = 1. The stationary signal 
Aus(wz,wl) is then defined by eq 6.4 or 3.8 by simply eliminating 
the integration over t since in a steady-state experiment we 
measure the rate of photon absorption rather than the integrated 
absorption. Then eq 6.4 reduces to the familiar Kramers- 
Heisenberg form:I5 

(6.6) 

In our Liouville space description of the steady-state experiment 
uII is separated into two terms. One term is exactly equal to -uI 
and cancels it. This is a dramatic example of destructive inter- 
ference. The remaining portion of ulI results in eq 6.6. A dis- 
cussion of this interference was made recently for the analogous 
problem of Raman and fluorescence spectra.lSb When we calculate 
the spectrum of light emitted from a system excited by a stationary 
pump a t  wl, we find the same pathways considered here. uI and 
part of uI1 contribute to a fluorescence spectrum which is broad, 
and the other part of uII gives rise to the Raman spectrum which 
is written in the Kramers-Heisenberg form (eq 6.6). In the 
absence of a thermal bath and dephasing processes, the fluores- 
cence exactly cancels due to the interference between uI and.aII 
and the entire spectrum is of the Raman type. When dephasing 
processes are introduced, the exact cancellation which occurs in 
the absence of dephasing no longer holds, and the spectrum is 
separated in a sharp (Raman) and a broad bath induced 
fluorescence. 

( 3 5 )  Mukamel, S .  Chem. Phys. 1978, 31, 327. Shan, K.; Yan, Y. J.;  
Mukamel, S. J .  Chem. Phys. 1987, 87, 2021. 
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Another dramatic example of the role of dephasing occurs in 
four-wave mixing.15bqc*36 Four-wave mixing is a x ( ~ )  process 
described by the same response function S(3) (eq 2.7) introduced 
here. Consider a four-wave mixing experiment in which two 
stationary light beams with frequencies wI and w2 and wavevectors 
kl and k2 interact and produce a signal with k, = 2k, - k2 and 
w, = 2w, - w2.  As w ,  is scanned versus w2, it is found that a 
resonance can occur whenever w ,  - w2 is equal to an energy 
difference between two ground-state vibrational levels. This 
resonance is called CARS (coherent anti-Stokes Raman) and is 
the coherent analogue of spontaneous R a m a r ~ . ~ ~  In addition, it 
was found that as the pressure of a foreign gas is increased3' or 
as the temperature is raised in a molecular crystal,38 new sharp 
resonances appear when wI - w2 is equal to a difference of energy 
between excited-state levels. The surprising aspect of these res- 
onances is that we usually expect the dephasing rate to increase 
at high pressures or high temperatures. This should broaden the 
spectral lines and destroy sharp features of the spectrum (e.g., 
the transition from Raman to fluorescence). In this case the 
opposite happens; dephasing destroys the exact cancellation of 
Liouville space pathways, which results in the appearance of new 
sharp lines. These examples show how crucial the role of de- 
phasing (which can only be described in Liouville space) is in 
nonlinear spectroscopy. 

VII. Conclusion 
In this paper, we present a theory of femtosecond pump-probe 

photodissociation that is based on the density matrix and tech- 
niques of nonlinear optics. Although a theoretical treatment based 
on wave functions would have been simpler to derive and im- 
plement numerically, we are convinced that the present treatment 
has yielded dividends that are more than adequate. Using Liouville 
space, we have been able to cast the exact expression for the probe 
absorption spectrum in the limit of ultrafast dephasing into a form 
(eq 4.2) that is closely related to the classical Condon approxi- 
mation. This form involves the temporal convolution of a new 
quantity, which we call the bare spectrum, with the combined 
pumpprobe intensity profile. The bare spectrum has a physically 
appealing form: it corresponds to a process where the pump 
instantaneously prepares a state, which then propagates in the 
absence of the field for a definite time, and is finally probed 
instantaneously by the probe laser. We call the state prepared 
by the pump laser a doorway function. The probing action of 
the second laser is represented by a window function. We also 
identify a second simplifying case, called the ultrashort pulse limit, 
where the observed signal is given by a spectral convolution of 
the bare spectrum with the spectral intensity profile of the laser 
pulses. 

We apply these new interpretive concepts to the photodisso- 
ciation of ICN. We find that the femtosecond pumpprobe 
experiments of Rosker, Dantus, and Zewail on ICN is in the 
ultrafast dephasing limit, because of the large spectral widths of 
the pump and probe absorptions, but is not in the ultrashort pulse 
limit. This means that the bare spectrum is substantially different 
from the observed spectrum. This does not mean, however, that 
the concept of the bare spectrum is without validity in the pho- 
todissociation of ICN. We find that the bare spectrum shows the 
ICN dissociative dynamics much more clearly than the observed 
spectrum. The shift of the probe absorption to the blue as the 
time delay is increased is seen as activity in the wings of the 
observed spectrum but is seen as shifting of the peak of the bare 
spectrum. The bare spectrum may be obtained by deconvoluting 
the observed spectrum with the pump-probe intensity profile. 
Also, the bare spectrum corresponds to a process with a definite 
time of propagation. We believe that the bare spectrum may 
become a useful concept in understanding femtosecond pump- 

(36) Bloembergen, N.; Lotem, H.; Lynch, R. T. Indian J .  Pure Appl. Phys. 

(37) Rothberg, L. J.; Bloembergen, N .  Phys. Rev. A 1984, 30, 820. 
(38) Andrews. J. R.; Hoschstrasser, R. M. Chem. Phys. Lett. 1981, 82, 

381. Andrews, J. R.; Hochstrasser, R. M.; Tromsdorff, H. P. Chem. Phys. 
1981, 62, 87. 

1978, 16, 151. 
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probe experiments, especially those in which the underlying dy- 
namics is more complicated than the simple dissociation of the 
ICN model presented here. 

We also examine the doorway and window functions for model 
ICN in some detail. This represents a pictorial analysis of the 
importance of quantum corrections in ICN pump-probe photo- 
dissociation. We find that the peak (as a function of dissociation 
coordinate) of the window function closely follows the prediction 
of the classical Condon approximation but that these functions 
have substantial width and complicated oscillations. This points 
to the importance of quantum corrections in developing a quan- 
titative theory of the ICN experiments but validates the qualitative 
conclusions of classical models. Doorway functions, on the other 
hand, are found to have peaks that differ from the classical 
prediction. We interpret this in terms of an interesting competition 
betwen tunneling at  the maximum of the ground-state wave 
function and a classically allowed process at the wings of the 
ground-state wave function. 

We have put Liouville space formalism to work in understanding 
zero-temperature, gas-phase femtosecond photodissociation. One 
of the advantages our approach, however, is that we are necessarily 
limited to such systems. Benjamin and Wilson39 have recently 
published a quasiclassical computer simulation of ICN femtose- 
cond pump-probe dissociation in the liquid phase. Femtosecond 
photodissociation experiments in the condensed phase will surely 
appear in a short period of time. The ideas presented here are 
applicable to such problems. In our opinion, much more work 
is needed on the development of ideas, methodologies, and al- 
gorithms that can make the transition between the seemingly 
disparate worlds of gas-phase and condensed-phase phenomena. 
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Appendix A. The Probe Absorption Spectrum: Derivation of 
Eq 3.3 and 3.4 

We start our derivation by considering the mean energy loss 
of the probe when it passes through the optical medium. The mean 
energy loss a t  time t is given by 

Here p ( t )  is the density matrix of the system defined by eq 2.4 
and Hint(w2,t) represents the- interaction between the optical 
medium and the probe field E(w,,t) (eq 3 . 1 ~ ) .  We have 

Hint(wz,t) = - ~ i ( ~ 2 , t )  ('4.2) 
When eq A.2 is substituted in eq A.1 and followed by using eq 
2.3, we obtain 

The absorption signal a t  w2 is obtained by taking the average of 
eq A.3 over an optical cycle and following the integration over 
t .  This results in eq 3.3. 

We expand the total external field as  follows (cf. eq 3.1): 

(A.4) E ( t )  = CE(wj,t)  exp(-iwjt) + C.C. 

P(t) = CP(o,,t) exp(-iw,t) + C.C. 

i 

In this case, the molecular polarization has the form 

( ' 4 . 5 )  
S 

The frequency w, L 0 in eq A S  can be any combination of the 
field frequencies {Adj) .  In the slowly varying amplitude ap- 
proximation where we assume that the temporal envelope of the 

~~~~ ~ 

(39) Benjamin, I.; Wilson, K. R.  J .  Chem. Phys. 1989, 90, 4176. 
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probe field (eq 3. IC) varies slowly in time compared to its optical 
frequency, i.e. 

('4.6) 
a 
--E(w,,t) << W Z E ( W 2 J )  
at 

In this case 
a -  
at 
-E(w,,t) = -iw2[E(w2,r) exp(-iw,t) - E*(w2, t )  exp(iw2t)] 

('4.7) 
Substituting eq A.5 and A.7 into eq A.3, we obtain 

z(Hint(W2")) = w2 CW*(u2, t )  P(w,,t) exp[i(w2 - 

w , ) t ]  - iE(w2,t) P ( w , r )  exp[-i(w2 + w, ) t ] )  + C.C. (A.8) 
The only contribution from eq A.8 after the averaging over an 
optical cycle is the term with w, = w2. We finally obtain 

u(wJ = 2w2 Im X I d r  E*(u2,t) P ( w 2 , t )  (A.9) 

a 
5 

which proves eq 3.4. 

Appendix B. Rules for Double-Sided Feynman Diagrams 
Double-sided Feynman diagrams can be introduced by the 

following set of rules,28 which relate the diagrams to terms in the 

perturbation expansion of the Liouville operator. 
(i) The density matrix is represented by two vertical lines. The 

line on the left represents the ket, and the line on the right rep- 
resents the bra. 

(ii) The time runs vertically from bottom to top. 
(iii) An interaction with the radiation field is represented by 

a wavy line. 
(iv) Each diagram has an overall sign of (-1)" where n is the 

number of interactions from the right (bra). This is because each 
time a Vacts from the right in a commutator it has a minus sign. 

(v) Each interaction is assigned to an arrow and labeled by the 
corresponding field wj  (>O). Incoming arrows represent photon 
absorption while outgoing arrows represent photon emission. 

(vi) An incoming arrow on the left or an outgoing arrow on 
the right represents a photon annihilation (wj )  and will contribute 
a factor E(w,,t) exp(-iw,t) to the diagram. Conversely, an outgoing 
arrow on the left or an incoming arrow on the right represents 
a photon creation (-wj) and contributes a factor E*(wj,t) exp(iwjt) 
to the diagram. The overall frequency of the term is the sum of 
the three interactions wj, ok, and w /  with their appropriate signs. 

In the Feynman diagrams of Figure 2 we include also the fourth 
interaction at time t with E*(02, t )  by an incoming arrow on the 
right. This represents probing the final absorption signal (eq 3.4). 
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The temperature dependence of the quenching rate constants of NF(b) by 18 different reagents has been measured in a flow 
reactor over the 530-200 K range. The rate constants for 02, H2, D2, HCI, C02, and CO were fitted to an Arrhenius dependence 
on temperature, but the rate constants for the other molecules generally have a weaker dependence on temperature. The 
temperature dependence of the rate constant and the hydrogen-deuterium isotope effect for several pairs of molecules are 
discussed in terms of the expected exit channels for quenching by electronic-to-vibrational energy transfer. 

I .  Introduction to these practical considerations, the NF(a) and NF(b) states offer 
There has been continued interest in the chemistry of NF- 

(aiA;l 1435 cm-I) and NF(b1Z+;18 905 cm-') because of their 
potential for utilization as chemical energy storage  source^.^-^ In 
particular, the NF(b) state has been considered as a candidate 
for excitation-transfer laser  system^.^^^ The NF(a) state can be 
efficiently produced by two reactions, H + NF2 and F + N3.396 
Subsequent formation of NF(b) can be achieved by energy-pooling 
reactions from I(2P,,2), HF(v=2), or 0,(aiA).4v7-9 In addition 

( I )  (a) Clyne, M. A. A.; White, I. F. Chem. Phys. Lett. 1970,26,465. (b) 

(2) Herbelin, J. M.; Cohen, N. Chem. Phys. Lett. 1973, 20, 605. 
(3) Malins, R .  J.; Setser, D. W. J .  Phys. Chem. 1981, 85, 1342. 
(4) (a) Pritt, A. T., Jr.; Patel, D.; Benard, D. J. Chem. Phys. Lett. 1983, 

97,471. (b) Pritt, A. T., Jr.; Benard, D. J. J .  Chem. Phys. 1986,85, 7159. 
( 5 )  Cha, H.; Setser, D. W. J .  Phys. Chem. 1987, 91, 3758. 
(6) (a) Coombe, R. D.; Pritt, A. T., Jr. Chem. Phys. Lett. 1978, 58, 606. 

(b) Habdas, J.; Wategaonkar, S.; Setser, D. W. J .  Phys. Chem. 1987, 91,451. 
(7) Herbelin, J. M.; Kwok, M. A.; Spencer, D. J. J .  Appl. Phys. 1978,19, 

3750. The observations given here must be adjusted for the currently accepted 
NF(a) lifetime. 

(8) Habdas, J.; Setser, D. W. J .  Phys. Chem. 1989, 93, 229. 
(9) (a) Hack, A.; Horie, 0. Chem. Phys. Lett. 1981, 82, 327. (b) Patel, 

D.; Pritt, A. T.; Benard, D. J. Chem. Phys. Lett. 1984, 107, 105. 
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the opportunity to study reactions of electronically excited singlet 
molecules. A general understanding of electronic-to-vibrational 
(E-V) energy transfer is particularly lacking, and the NF(a and 
b) states can be systematically studied and compared with the 
isoelectronic O2 states (a1A,;7918 cm-' and b1Z,+;13 195 cm-I) 
to generate a data base. 

Our laboratory has utilized a NF(b) source based upon the 
metastable Ar flowing afterglow t e c h n i q ~ e . ~ * ' ~  Quenching rate 
constants for halogens and inter-halogens5 and a comprehensive 
study of quenching by diatomic and small polyatomic molecules 
at 300 K have been reported.I0 Except for the halogens, there 
was no evidence for quenching by chemical reaction and the 
quenching mechanism was assigned as E-V transfer with for- 
mation of NF(a). In this paper, we have extended the quenching 
measurements to both higher (1530 K) and lower (200 K) tem- 
perature for diatomic, triatomic, and small polyatomic molecules. 
The deuterium isotope effect on the quenching rate constants also 
was studied for the following pairs of molecules: H2 vs D2, H 2 0  
vs D20,  C H 3 0 H  vs CH30D,  (CH3)2C0 vs (CD&CO, and 
CH2C12 vs CD2C12. The temperature dependence of the rate 

(10) Cha, H.; Setser, D. W. J .  Phys. Chem. 1988, 93, 235 
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