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of r's dependence on uF and the strong dependence of the N indices 
on r (through n = r / 2 )  imply that ultimately all of the N indices 
(except possibly h and g )  are related to the size of the polymer 
chain at the critical point. This is also an interpretation that says 
that the deviation of r from its ideal value of is not necessarily 
related to critical fluctuations. 
On the other hand, there are indications that the nonclassical 

value of r is caused by critical fluctuations. One is the result that 
when the classical value of n, no = 1/4, is rescaled by the intuitive 
scale factor vo/u, where vo is the classical value of u, then the 
rescaled n = no(uo/u) = 1/8u = 0.198, which is identical with the 
value of n obtained from A4 data. Another similar indication 
is the observation that the experimental n/u = 0.313 f 0.004 
equals u/2, which implies that n = v2/2 and again equals 0.198. 
Explicit knowledge of r is not required to determine n in these 

cases. The de Gennes approximations also suggest that the N 
indices are completely determined by the E indices. Maybe the 
most convincing argument is the sum rule d + g = (6  - 1)b. It 
implies that 6, which is a function of 7 only, is completely de- 
termined by the N indices d,  g, and b. This result strongly infers 
that the N a n d  c indices are interrelated. The corollary is that 
critical fluctuations shift r to its nonclassical value. Hopefully, 
future theoretical studies will shed more light on this question. 
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A unified dynamical theory of rate processes such as electron transfer in solution, which interpolates between the nonadiabatic 
and the adiabatic limits, is presented. The theory is based on expanding the rate perturbatively to fourth order in the nonadiabatic 
coupling V using the density matrix in Liouville space and performing a partial resummation. The present theory establishes 
a profound connection between rate theories and nonlinear optical spectroscopies. The rate to order is related to linear 
optics and the linear susceptibility x ( ' ) .  The rate to order is related to the third-order susceptibility x ( ~ ) .  This connection 
arises since the same dephasing mechanisms which affect the optical line shapes also control the dynamics of rate processes. 
The frequency-dependent reaction rate is calculated and the dielectric continuum model for polar solvation is extended to 
incorporate the microscopic solvation structure via the wave vector and frequency dependent dielectric function c(k,w). 

I. Introduction 
In this article we discuss some recent theoretical developmentsI4 

which establish a general and fundamental connection between 
rate p r o c e ~ s e s ~ ' ~  and quantities being probed by nonlinear optical 
techniques.'s-21 This connection arises since the same solvation 
dynamics underlying reaction rates such as electron transfer is 
also responsible for dephasing processes which affect spectral line 
shapes (e.g., absorption, fluorescence, pump probe, and four-wave 
mixing). Information obtained in optical measurements such as 
femtosecond spectroscopy may therefore be used to predict reaction 
rates. The present theory is based on the use of projection operator 
techniques in Liouville space.'Z-% Bob Zwanzig was instrumental 
in developing these techniques and in pioneering the use of 
Liouville space (superoperator) methods in condensed-phase 
molecular dynamics. Our earlier resultsI4 are extended in this 
article in two ways. First we present a closed expression for the 
full frequency-dependent reaction rate (eq (11-1 2)). This ex- 
pression allows us to define precisely the transition state even when 
simple rate equations do not hold and we need to use a generalized 
master equation instead. It is clearly shown how the transition 
state then occupies a larger volume in phase space. We further 
apply our rate theory to electron transfer (ET) in polar solvents 
and relate the solvent dynamics in ET processes to the complete 
wave vector and frequency-dependent dielectric function of the 
solvent c(k,o) (eq IV-7). This provides a natural extension of the 
conventional dielectric continuum theories. 

11. The Frequency-Dependent Reaction Rate: Liouville Space 
Dynamics 

We consider a reactive molecular system with two electronic 
levels (la) and Ib)) undergoing a rate process such as electron 

'Camille and Henry Dreyfuss Teacher/Scholar. 

transfer or isomerization in solution. The total Hamiltonian is 

H = Ho + Hi,,, (11-1) 

where 
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Figure 1. Solvation dynamics during a rate process. U i s  the solvation 
coordinate. V, and V, denote the adiabatic potential surfaces while A, 
and Ab are the solvent reorganization energies for reactant and product, 
respectively. Eo is the endothermicity, AC*,b is the activation free energy 
for the forward (la) to Ib)) reaction. The solvent time scales T, and T~ 

characterize the relaxation of a solvent fluctuation at the transition state 
(curve crossing U = - E o )  in the reactant the the product adiabatic 
surfaces, respectively. In the perturbative limit, the rate depends only 
on the single Marcus reorganization energy parameter 2X = X, - Ab > 
0. 

We further introduce a macroscopic solvation coordinate U which 
is the key quantity in describing the solvent effect on the reaction 
rate 

u E Hb - Ha - E’ (11-2c) 

Here Eo denotes the endothermicity (standard free energy) of 
the forward reaction in the absence of the solvent nuclear degrees 
of freedom. Ha and Hb represent nuclear degrees of freedom (both 
intramolecular and solvent) and Vis the nonadiabatic coupling 
between the two reacting species (Figure 1). Equation 11-2 can 
represent an electron-transfer process, in which case la) and Ib) 
denote the state of the system where the electron is on the donor 
and on the acceptor site and Vis  the exchange coupling. Al- 
ternatively, it can represent an isomerization whereby la) and Ib) 
represent the reactant and the product and Vis the nonadiabatic 
coupling. The dynamics of the system may be calculated by 
solving the Liouville equation for its density matrix 8 

dp/dt = - i[Ho,p] - i[Hint,P] (11-3a) 

and assuming that initially the system is in thermal equilibrium 
within the la) state; Le., p(0)  = la)p,(al, where we define 

pi = exp(-Hj/kT)/Tr exp(-Hj/kT) j = a,b (11-3b) 

For brevity we set h = 1 in this article, except in the final ex- 
pressions for the rates. The probability of the system to be in the 
state b) at  time t ,  Pj(t), may be obtained by calculating the 
diagonal density matrix element p&) and tracing it over all nuclear 
(intramolecular and solvent) degrees of freedom. This may be 
accomplished by using projection operator techniques in Liouville 
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In general, the system satisfies a generalized rate 
equation of the form 

R(T) and w’(7) are the generalized rates for the forward and for 
the reverse reactions, respectively. Performing a Laplace transform 
we introduce the generalized frequency-dependent rate for the 
forward reaction by 

K(s)  = A t  exp(-st) R(t) (11-5) 

The rate K’(s) for the reverse reaction can be defined by a similar 
expression. Hereafter we shall focus on the forward reaction rate 
K(s). Using Liouville space projection operators we have derived’ 
an exact formal expression for K(s). This expression may then 
be evaluated perturbatively in the nonadiabatic coupling. We have 
calculated K(s)  to fourth order in V, Le., 

K(s)  = C2(s)(P/h) - C4(s)(P/h)’ + ... (11-6) 

and constructed a Pade approximant which provides a partial 
summation of the series to infinite order, resulting in 

with 

C4(s) = C4(8)(s) + CJb’(s) (I 1-7 b) 

T&) = C4(8)(s)/Cz2(s) (11-7~) 

Tb(S)  C4‘b’(s)/C22(S) (11-7d) 

C4(s) has two distinct contributions, which are related to the 
solvation dynamics described by the Ha and the Hb Hamiltonians, 
respectively. We have denoted these two contributions by C4(8)(s) 
and CJb)(s), respectively. Consequently, T&) and Tb(s) represent 
characteristic solvent time scales, when the system is in the states 
la) and Ib), respectively. The precise significance of these 
quantities will be discussed below. We have derived closed ex- 
pressions for Cz(s), C4(8)(s), and CJb)(s). The calculation is based 
on the assumption of a separation of time scales between the 
diagonal elements of the density matrix, pa, and $bb, and the 
off-diagonal elements (coherences), $ab and pba. The latter are 
usually subject to fast dephasingprocesses which allow us to make 
a short-time approximation for their time evolution. This ap- 
proximation is usually well justified for solvated molecular sys- 
t e m ~ . ~  The s scale over which K ( s )  varies is determined by the 
solvation time scales and the activation barrier height. The values 
of s relevant in the generalized master equation are approximately 
equal to the inverse reaction time scale (the rate). Reactions with 
large activation barriers are slow and a separation of time scales 
is expected to hold. We can then neglect the s dependence of K(s) 
and replace it with K(s=O). In this case the system satisfies an 
ordinary rate equation with the rate constant K E K(s=O). For 
barrierless reactions this separation of time scales may not hold. 
In that case we need to retain the s dependence of K(s). For clarity 
in the presentation and the subsequent analysis we shall first 
consider the ordinary rate K(s=O) whose calculation requires the 
evaluation of Cz(0) and C.,u)(O), j = a,  b. These are related to 
a two-time correlation function and a four-time correlation 
function of the solvation coordinate, respectively. In this article 
we shall explore the classical approximation which is based on 
the separation of solvation time scales. There are two distinct 
types of solvent dynamical processes which affect electron-transfer 
reactions. One is the rapid solvent dephasing taking place when 
the system is in an electronic coherence between the reactant and 
the product (off-diagonal element of the density matrix). The 
other is the slower solvent relaxation following the charge rear- 
rangement. The fast dephasing makes the relevant time scale in 
which the system can be found in a coherence to be very short 
and allows us to ignore the slower solvent motions during the 
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period. When this approximation is made we find that the rate 
may be expressed in terms of two auxiliary quantities. The first 
is u,(x), which is the probability distribution of the solvation 
coordinate U when the system is in state j: 

ul(x) = (b(x-U)pl) j = a, b (11-8) 

The second quantity is the conditional probability for the solvation 
coordinate to have the value x at time t ,  given that it had the value 
y at  t = 0, and the system is in the state j ,  Le., 

W,(x,r;y) E [.aCv)l-l(b[x-u,(t)lbCv-U)~a) j = a,  b (11-9) 

Here U is the solvation coordinate (eq 11-2c) and 
U,(t) = exp(iH,t)Uexp(-MI?) j = a, b (11-10) 

Note that by definition, initially y(x,O;y) = ~(x-Y), and at  long 
times W,(x,m;y) = u,(x). We have derived the following ex- 
pressions for Cz(0) and C4(0) in terms of u, and W,:' 

C2(0) = 2ru,(-E0) (11-1 la)  

C40)(0) = 

4r2ua(-Eo) S m d t  [ y(-Eo,t;-Eo) - y(-Eo,m;-Eo)] 
0 

(11- 1 1 b) 

The nature of the rate process is determined by the adiabaticity 
parameter v = 2 r ( p / h ) u , ( - E 0 ) ( ~ ,  + 7b) with 7, ~ ~ ( 0 ) .  The 
rate constant K K(s=O) can now be obtained by substituting 
eq 11-1 1 into 11-7. When v << 1 the reaction is nonadiabatic and 
we have KNA = 2rpu,(-E0). In the opposite limit v >> 1 the 
reaction is adiabatic and the rate is given by KAD = (7 ,  + 
The transition from the nonadiabatic to the adiabatic limit has 
been discussed previously by many  author^.^,^*^^ The present 
derivation, which starts with the nonadiabatic representation and 
is based on the evaluation of the four-time correlation function, 
provides an unconventional viewpoint for interpreting the ex- 
pression. Moreover, it establishes the connection with nonlinear 
optical spectroscopy (see section V). In the semiclassical (static) 
approximation (eq 11-7 and 11-1 1) the nonadiabatic rate constant 
KNA depends on the value of u,(x) a t  one point x = -Eo. That 
point is the curve crossing, or the transition state (Figure l ) ,  U 
= -Eo at which the thermal fluctuations of the solvation coordinate 
make the reaction feasible. KNA could be simply obtained by using 
the Fermi golden rule. When the adiabaticity parameter IS 
sufficiently large, the reaction becomes adiabatic, and the rate 
is equal to (7,  + Tb)-l. 7, and 7 b  are the characteristic solvent 
time scales which control the adiabaticity of the rate process. 
7 b  is the average time it takes for a solvent fluctuation at the 
transition state (U = -Eo) to relax to thermal equilibrium in the 
Ib) state, whereas 7, is the average time it takes for the same 
fluctuation to relax to thermal equilibrium in the la) state. This 
is represented schematically in Figure 1. If these times are fast, 
the adiabaticity parameter v vanishes and the rate process IS 
nonadiabatic. As the solvent time scales become longer, v in- 
creases, and a nonadiabatic rate will eventually turn adiabatic, 
with a rate equal to the proper inverse solvent time scale.' 

Let us consider now the complete frequency-dependent rate 
K(s ) .  It can be calculated by using the methodology of ref 1 and 
2. We then obtain 

ua(x) (11-12a) 
s / r  

C ~ ( S )  = 27r S m d x  -- (x + EO) + s2 

C40)(s) = 4 r 2  Jmdt exp(-st) X 

ua(y)[Wj(x,t;y) - Wj(x,m;y)] j = a, b (11-12b) 

If we set s = 0 in eq 11-12, the Lorentzian factors become b 
functions and they reduce to eq 11- 1 1. Equations 11-1 2 provide 
an interesting insight on transition-state theory. In the slow 
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reaction limit, the separation of time scales mentioned above exists, 
and the rate can be calculated by considering the transition state 
(U = -Eo) and using its equilibrium distribution uj(-Eo) and the 
conditional probability Wj(-Eo,t;-Eo) for the system to be in the 
transition state a t  time t given that it was there a t  t = 0. The 
configuration with U = -Eo is thus the transition state for the 
rate process. In other words, in this limit the reaction barrier is 
high and sharp and the transition state can be defined precisely 
by one point on the free energy surface. When the separation 
of time scales does not hold, eq 11-12 show that we need to average 
uj and Wj over a region of phase space whereby U Y -Eo f s. 
The transition state should now be viewed as the neighborhood 
of U Y -Eo f s rather than the precise regime where U = -Eo. 
The size of this neighborhood is of the order of s = K ,  Le., the 
inverse of the characteristic time scale of interest. 

111. Gaussian Approximation for Reaction Rates 
A useful approximation for the solvent quantities uj and Wj 

which appear in the semiclassical theory of solvation may be 
obtained by the cumulant expansion of eq 11-8 and 11-9 to second 
order in U. This approximation is equivalent to making the 
short-time approximation for the fast solvent dephasing time in 
the relevant response functions.z The distribution of the solvation 
coordinate assumes, in this case, a Gaussian form 

and the conditional probabilities of the solvation coordinate are 

(I I I- 2a j 

Here we have definedz5 the static auantities remesenting the 

(111-3a) 

(111-3b) 

(111-4a) 

(111-4b) 

j = a, b (111-4c) 

q(t) is defined by eq 11-10. A(?) represents the time-dependent 
solvent reorganization energy9sZ5 when the system, initially with 
density matrix pa, undergoes a time evolution governed by Hb. 
A(t) denotes the variance of the solvation coordinate during this 
time evolution. A, and Ab denote the coupling strength of the 
solvent to the system in the states la) and Ib), respectively, and 
A(0) = A, and A(m) = Ab. Similarly A(0) = A, and A(m) = Ab. 
Mj( t )  is the normalized correlation function of the solvation co- 
ordinate with Mj(0) = 1 and Mj(m) = 0. The calculation of the 
solvent quantities (eq 111-4) for specific model systems can be done 
using a variety of methods including molecular dynamics and 
diagrammatic techniquesz6 In polar solvents, these quantities 
may be related approximately to the solvent dielectric function!*27 

(25) Yan, Y. J.; Mukamel, S. J .  Chem. Phys. 1988, 89, 6160. 
(26) Maroncelli, M.; Fleming, G. J .  Chem. Phys. 1988, 89, 875. Kahlow, 

M. A.; Jarzeba, W.; Kang, T. J.; Barbara, P. F. J.  Chem. Phys. 1989.90, 151. 
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This will be shown in the next section. These quantities may also 
be evaluated by using a perturbation expansion in the system- 
solvent interaction strength. To lowest order, we havez5 

A ( t )  = A’ + A[2M(t) - 11 (111-Sa) 

A2(t) = Az (111-5b) 

M j ( t )  = M ( t )  (111-SC) 

Here 
1 
2 
1 
2 

A‘ E -(ha + Ab) (111-6a) 

A E -(ha - Ab) 

A’ I ( V 2 )  - (U)’ 

M ( t )  I A-’[(U(t)U) - (V)2] 

(111-6b) 

(111-6~) 

(111-6d) 

with 
U ( t )  5 exp(iHBt)U exp(-iHBt) (111-7) 

Here H B  represents the pure solvent (bath) Hamiltonian in the 
absence of solute molecules. In eq 111-6, ( ) denotes the ensemble 
average over all the solvent configurations. Within this approx- 
imation, the only relevant dynamical variable is M(t ) ,  the nor- 
malized correlation function of the solvation coordinate with M(0) 
= 1 and M(m) = 0. A’ is the contribution of the solvation co- 
ordinate to the reaction free energy, AGO = Eo + A’, (see eq 
111-lob) while X is the solvent reorganization energy.g Upon the 
substitution of eq 111-5 and 111-6 in eq 111-1 and 111-2 we get 

(111-8a) 1 (x - A’ - A)2 
.,(x) = ( ~ T A ~ ) - ’ / ~  e x p l -  

2A2 
L J 

W,(x,t;y) = ( 2 ~ A f [ 1  - A@(t)])-1/2 X 
\ 

(111-8b) 
[X - A’ - A - M(t)O, - A’ - A)I2 

e x p ~ -  2A2[1 - A@(t)] 

“b(X) and wb(x,t;y) can be obtained from eq 111-8a and III-8b, 
respectively, by changing -A to A. At high temperatures, the 
fluctuation dissipation theorem implies that 

A2 = 2AkBT (111-9) 

When eq 111-8-111-9 are substituted in eq 11-7 and 11-1 1, the rate 
constant K f K(s=O) assumes the activated form 

K = A exp(-AG*ab/kBr) (111- loa) 

where the activation free energy is 

+ (111-lob) - - - (EO + A’ + A)2 
4A 4X 

AG*ab = 

and the preexponential factor is 

[ r / (Ak,T)1’ I2(~/h)  
A =  

1 + [ * / ( A ~ B T ) I ’ / ~ ( ~ / ~ )  exP(-AG*ab/k~T)(~a + Tb) 
(111- 1 OC) 

(111-1 1) 
The reverse reaction rate K‘can be expressed in the similar way: 

K‘ = A exp(-AG*ba/kBr) 

Here the activation free energy AG*& is given by the right-hand 
side of eq 111-lob with replacing AGO + A by AGO - A. The 
forward and reverse rates thus satisfy the detailed balance con- 
dition, which assures that the system relaxes to the correct thermal 
equilibrium at  long times: 

K / K ’ =  exp(-AGo/kBT) (111- 12) 

(27) Loring, R. F.; Mukamel, S. J .  Chem. Phys. 1987, 87, 1272 

IV. Electron Transfer and Dielectric Fluctuations in Polar 
Solvents 

We shall now apply our rate theory to electron transfer in polar 
solvents. In this case the charge-transfer system couples to the 
dielectric fluctuations of the medium and we can derive simple 
expressions for the parameters A, A’, A, and M(t) .  Let us denote 
the nuclear polarization of the solvent a t  point r by P(r). The 
system charge distribution when it is in the state u) creates an 
electric field Dj(r). The solvent-system interaction in the state 
la) is then given by - l d r  D,(r) P(r) whereas in the state Ib) it 
is - l d r  Db(r) P(r). The solvation coordinate (eq 11-2c) is now 
given by 

(IV-I) U = l d r  Dab(r) P(r) 

where 
Dab(r) Da(r) - Db(r) (IV-2) 

Since the solvation coordinate is related to the solvent polarization, 
its dynamics may be related to the dielectric fluctuations of the 
solvent which are described by its polarization correlation func- 
t i ~ n , ~ ~  

Cpp(k,t) = l ( P ( r , t )  P(0,O)) exp(ik-r) dr (IV-3) 

We further introduce the static polarization structure factor S(k) 
Cpp(k,O). Equation 111-6 then results in 

1 
X‘ = dq i d k  [IDa(k)I2 - IDb(k)12]C,(k,-iq) 

(IV-4a) 

1 
2 0  A = - l l / k s T  dq l d k  lDab(k)l2cPp(k,-iq) (IV-4b) 

Here 

Dj(k) ( 2 ~ ) - ~ / ~ S d r  exp(ikr)Dj(r) j = a, b, and ab 
(IV-5) 

A general relationship exists between the polarization correlation 
function Cpp(k,t) and the wave vector and frequency-dependent 
dielectric function of the solvent, t(k,w). This relationship is based 
on the fluctuation dissipation theorem. The relevant frequency 
scale of t(k,w) is typically less than 1 cm-I, while a t  room tem- 
perature kBT = 200 cm-I. In this case the high-temperature limit 
is valid and we obtain’J’ 

(IV-6a) 

so that 

i8n2 __ 

(IV-6b) 

We then get 

- 
(IV-7a) 
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M ( t )  = 

( I V - 7 ~ )  

Usually the full wave vector and frequency-dependent dielectric 
function is not known. In most cases we readily have only its 
long-wavelength limit t(k=O,w) c(w) .  If we assume that c(k,w) 
is independent of k which amounts to neglecting the local solvent 
structure, eq IV-7 reduce to the results of the dielectric continuum 
approximation: 

Here to is the static (w = 0), and em is the high-frequency (optical) 
value of ~ ( w ) .  Equations IV-7 or IV-8 provide closed expressions 
for the response functions (eq 111-6) and relate them to the solvent 
dielectric function. This relation, together with eq 111-8 and the 
formulation in section 11, constitute a theoretical basis for the study 
of the effect of solvent dielectric fluctuations on the electron- 
transfer rate. If we approximate the electric charge distribution 
of the charge-transfer system by an electric dipole in a hard-sphere 
cavity, eq IV-8b yields 

= R31Pb - pa12(1 /em - 1 / to)  (IV-9) 

Here pa and p b  are the permanent dipole moments of the system 
in its la) and Ib) electronic states, respectively. R is the effective 
hard-sphere radius. The solvent dynamics are contained in M(t), 
which is the normalized correlation function of the solvation 
coordinate. Equations IV-8c and IV-9 are the basis for the Marcus 
theory of electron transfer5 and generalize it to a solvent with an 
arbitrary dielectric function t(k,w). It has been argued recently 
by Kakitani and MatagaZ that when gross changes occur in charge 
type or cavity type in the course of reaction, the solvation coor- 
dinate may have a very different interaction with the system in 
the two states la) and Ib). In particular, Aa and A,, (eq 111-3b), 
which are related to the line width of the absorption and the 
fluorescence line shapes, respectively, in the semiclassical theory 
(cf. section V), and which give the harmonic frequencies of the 
solvation coordinate in the two states, may be very different. In 
such cases we cannot use eq 111-5 and 111-6, which are based on 
the lowest perturbative expansion (eq 111-5) of the solvent-solute 
interaction; we need to use the more general results of section I11 
(eq 111-1-111-4). In concluding this section, we shall consider the 
solvation dynamics in a Debye solvent in the dielectric continuum 
limit with a single relaxation time 7D: 

€0 - em 
c(w) = c, + - 

1 + iW7D 
(IV- 10) 

Substituting eq IV-10 into (IV-8c), we obtain'v4 
M (t) = e x p ( - t / ~ ~ )  (IV-11) 

TL = ~ D ( L / ~ o )  (IV- 12) 
with 7L being the longitudinal solvent time scale 

V. Relation to Ultrafast PumpProbe and Fluorescence 
Spectroscopy 

We shall consider now the analogous model system for linear 
and nonlinear optical spectroscopy. Consider a molecule with a 

(28) Kakitani, T.;  Mataga, N. Chem. Phys. 1985,93,381; J .  Phys. Chem. 
1981. 91, 6277. 
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ground electronic state la) and a single excited electronic state 
Ib), interacting with the electromagnetic field. The Hamiltonian 
is given by eq 11-1, but Hi,, represents the interaction with a 
classical electromagnetic field E(r,t): 

(V- 1) Hint = - d W ) ( l a )  (bl + Ib) ( 4 )  
Here Ha and Hb represent the Hamiltonians for the intramolecular 
(vibration,rotation) and for the solvent degrees of freedom, when 
the system is in the electronic states la) and Ib), respectively, and 
~1 is the electronic transition dipole matrix element. The optical 
properties of the system may be related to the time-dependent 
polarization P(r, t ) .  The polarization is usually expanded in a 
Taylor series in E 

p(r,t) = f i l ) (r , t )  + f12)(r,t) + fi3)(r,t)  + ... (V-2) 

# I )  is related to the linear optical properties, whereas H2), f i 3 ) ,  
etc., constitute nonlinear  contribution^.^ In an isotropic medium 
f i 2 )  = 0; we shall therefore focus on fil) and P(9 .  The polarization 
is calculated by taking the expectation value of the dipole operator 
p = p(la) (bl + Ib) (al), after fi  is calculated to the desired order 
(first order for HI), third order for f i 3 ) ) .  In a steady-state ex- 
periment we take E(r,t) to be the sum of a few monochromatic 
fields. fi') and f i 3 )  are then related to the optical susceptibilities 
x(') and x ( ~ ) ,  respectively. We have shown2 that the same terms 
which contribute to C2(s) enter in the calculation of f i l )  and the 
terms contributing to C4(s) enter in the calculation of f i n .  These 
results establish a fundamental connection between the calculation 
of rate processes and the optical polarization. The reaction rates 
and the optical polarization are related to the same dynamical 
quantities. The development of appropriate microscopic solvation 
models and approximation schemes results in a unified picture 
for reaction rates and optical line shapes.2 

We shall now illustrate our results by applying them to two 
specific x ( ~ )   technique^:^,^^ ultrafast pump-probe (hole-burning) 
and fluorescence spectroscopy. Both techniques start with the 
application of a short laser pulse. Prior to the absorption of a 
photon, the solvent molecules are in equilibrium with the 
ground-state solute. Upon excitation, the solute-solvent system 
undergoes a Franck-Condon transition to a state in which the 
solute dipole has its excited-state value, but the solvent molecules 
still occupy their previous configuration. The solvent molecules 
then relax to a configuration of lower energy, which is in equi- 
librium with the electronically excited solute. The solvation dy- 
namics is probed by sending a second short pulse, with a variable 
delay t with respect to the first pulse, and probing its frequen- 
cy-resolved absorption (pump-probe measurement) or by collecting 
a spontaneously emitted photon (fluorescence measurement). 

For our model system, the steady-state absorption spectrum 
is given by ua(wl-wba) while the stationary fluorescence spectrum 
is given by ub(w2-wba). Here a, and b b  are given by eq 11-8,111-1, 
or 111-8a. Wba = E o / h  represents the 0-0 transition frequency 
of the solute (cf. eq 11-2c). A, and Xb are the corrections due to 
the nuclear degrees of freedom of solvent (eq 111-3a). The ab- 
sorption spectrum ua(wl-wba) is centered at  w1 = Wba + Xa with 
width Aa (cf. eq 111-l), while the fluorescence ab(w2-wb) is 
centered at w2 = oba + Xb with width Ab. The Stokes shift, defined 
by the frequency difference between the peaks of fluorescence and 
absorption, is then given by Xa - Xb 2X > 0. The time-resolved 
hole-burning spectrum is given by 

SHB(u2,t;wl) = 
~2~a(~I-~ba)[Wa(~Z-~bart;~I-Wba) + Wb(wZ-wba,t&'l-~ba)l 

(V-3) 
The time resolved fluorescence is 

SFL(w2,t;Ul) = ~ l ~ 2 3 ~ a ( ~ I - w h )  Wb(~2-~ba,f;~I-wba) (v-4) 
Here wI is the frequency of the pump field, while w2 is the fre- 
quency of the probe field (pumpprobe) or of the spontaneously 
emitted photon (fluorescence). Wj, j = a or b, is the conditional 
probability of the solvation coordinate given by eq 11-9 or 111-2 
or 111-8b. According to eq III-2b, the peak of the fluorescence 
(eq v-4) at the delay time t is given by w2 = wb, 4- A(t)  + Mb(t)(q 
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- oba - Xa). The time-dependent Stokes shift is defined26 by the 
frequency difference between the peak of absorption and the peak 
of the fluorescence with the resonance excitation wl = cob, + A,. 
Therefore, the time-dependent Stokes shift is given by A, - A( t ) .  
The solvation dynamics is usually measured by the normalized 
time-dependent Stokes shift function defined by 

h( t )  - X(m) 

A(0) - A(..) 
A ( t )  - A, 

A, - A, 
=- 

In the linear perturbation theory for the solutesolvent interaction 
(eq 111-Sa) this quantity is equal to M ( t ) ,  the normalized corre- 
lation function of the solvation coordinate. 

A major goal of spectroscopic studies in condensed phases is 
to provide information which could allow the prediction of reaction 
rates in the same solvent. If we consider our simplest level of 
approximation (eq III-5-111-9), the solvation effect is characterized 
by a single static parameter X and a dynamical quantity M ( t ) .  
The solvent reorganization energy X in the optical spectra may 
be very different from that in the chemical rate system, due to 
the different nature of the solvation coordinates and the system 
charge rearrangement in these two physical situations. However, 
the dynamical quantity, M ( t ) ,  which describes the solvent fluc- 
tuations, is approximately the same in these two physical situations 
(cf. eq IV-8c). The spectroscopic measurements (e.g., the Stokes 
shift) of a chromophore in a solvent provide a direct probe of M ( t )  
which can then be used to calculate r, and Tb (eq 11-7) and 
correspondingly the adiabatic electron-transfer rate in the same 
solvent. 

Recent time-dependent Stokes shift measurementsz6 provide 
a direct probe for M(t) .  The analysis of these measurements using 
the continuum model (eq IV-8c) showed that it cannot always 
reproduce the experimental results. In particular it was found 
that, even in a solvent, for which the continuum Debye model was 
conventionally considered to be valid, M ( t )  showed a multiex- 

ponential behavior. This result is in contrast with eq IV-11 which 
predicts a single relaxation time scale, namely the solvent long- 
itudinal dielectric relaxation time, T ~ .  Molecular dynamics sim- 
ulations performed by Maroncelli and Fleming in liquid water 
showed that these multiple time scales result from the solvation 
structure; i.e., the solvent relaxation depends on its distance from 
the solute. The mean spherical approximation (MSA) was pro- 
posed as a means to account partially for solvation structure by 
taking into account the hard-sphere radii of the solvent and the 
solute.29 The procedure modifies the frequency dependence of 
~ ( w )  and gives a multiple time scale behavior even for Debye 
solvents. This is in qualitative agreement with the Stokes shift 
 measurement^.^^,^^ There are two problems, however, with that 
procedure. First the MSA was originally developed for the static 
dielectric function c(0,O). Its extension to ~ ( 0 , w )  by an analytical 
continuation clearly does not incorporate the complete solvation 
dynamics. Moreover, the analysis presented in the previous section 
shows that the more systematic way to introduce solvent structure 
is through the wave vector (k) dependence of t(k,w), Le., using 
eq IV-7c instead of eq IV-8c. Any procedure based on the k = 
0 alone is not sufficient to take full account of the solvation 
structure. Theoretical effort should therefore be directed toward 
developing microscopic models for c(k,w) and exploring its effect 
on nonlinear optical measurements as well as on electron-transfer 
processes . 2 7 9 3  

Acknowledgment. The support of the National Science 
Foundation, the Office of Naval Research, and the donors of the 
Petroleum Research Fund, administered by the American 
Chemical Society, is gratefully acknowledged. 

(29) Wolynes, P. G. J. Chem. Phys. 1987, 86, 5133. 
(30) Rips, I.; Kalfter, J.; Jortner, J. J .  Chem. Phys. 1988, 89, 4288. 
(31) Chandra, A.; Bagchi, B. J. Chem. Phys. 1989, 90, 1832. 

Molecular Theory of Solvation and Solvation Dynamics of a Classical Ion In a Dipolar 
Liquidt 

Amalendu Chandra and Biman Bagchi* 
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India 
(Received: March 7, 1989; In Final Form: June 26, 1989) 

A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent 
is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The 
calculated solvent polarization structure is different from the continuum model prediction in several respects. The value 
of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small 
oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to 
the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further 
shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized 
equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation 
with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the 
local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules. 
The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give 
rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed. 

I. Introduction 
An understanding of time-dependent response of a dipolar 

solvent to a changing charge distribution in a polar solute molecule 
is essential to understand solvent effects on many important 
chemical reactions, such as electron- and proton-transfer reactions. 

This is currently an active area of research, both experimentallyI4 
and 
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