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The relative magnitude ofthe sequential and superexchange electron transfer mechanisms in the primary electron transfer event 

in a reaction center is a controverwal issue. One complication in resolving this problem is that the conventional superexchange 
theory is valid only when the intermedlate energy level is sufficiently high. The precise position of this level in the reaction center 
is not known, and it is not clear whether this condition is met. We present a novel expression for the superexchange rate in a three- 
level system, which holds for arbitrary values of the system free energies and reorganization energies. Implications as to the 
relative contribution ofthe superexchange and sequential mechanisms are discussed. 

1. Introduction 

The mechanism for fast electron transfer in reac- 
tion centers is one of the many interesting puzzles in 
understanding the primary events in photosynthesis 
[ 1,2]. In the photosynthetic reaction center an elec- 
tron moves in 2.8 ps over a distance of 17 w from a 
bacteriochlorophyll dimer (P) to bacteriopheophy- 
tin (H) via an intermediate bacteriochlorophyll 
monomer (B). The model system suggested for the 
electron transfer in the reaction center (RC) [ 3,4] 
involves three electronic configurations. Using the 
notation of Marcus, we denote these states (P*BH, 
P+B-H and P+BH-) as II), 12), and 13), re- 
spectively. State 1 1 > is the optically excited chloro- 
phyll dimer state, state 13) is the charge transfer state 
observed after 2.8 ps and state 12 ) is a possible in- 
termediate state. The complete kinetic scheme for 
this system involves a 3 x 3 rate matrix whose matrix 
elements K,,, denotes the transition rate from state 
In) to state lj); n,j= 1,2, 3. Since a direct (through 
space) coupling between states I I > and 13) is ex- 
cluded by the large separation of P and H, there are 
two basic mechanisms that have been suggested for 
the electron transfer process [3,4]. The first is su- 
perexchange, whereby 12) serves as an intermediate 
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virtual state. When level 12) is sufficiently higher in 
energy than I 1 > and / 3) the superexchange rate is 
given by 

K1,=$V&. (1) 

Here S is a Franck-Condon-weighted density of states 
and Vs, is the superexchange coupling, 

AC?’ is the free energy difference between states I 1) 
and 12 ), A I2 is the corresponding reorganization en- 
ergy [ 51 and I+, is the electronic coupling between 
states lj} and 1 n). The other possible mechanism 
involves a sequential process whereby the electron 
transfers from level I 1 > to 12 } and then from I 2 ) 
to I 3 > _ This mechanism is described by rates K2, and 
KX2 and does not involve K,,. In the superexchange 
mechanism level 12) is never populated and the 
electron tunnels from level I 1) to I 3). Level 12 ) 
simply contributes to the tunneling matrix element 
(eq. (2) ). Another way of stating this is that due to 
the energy-time uncertainty relation, the system can 
spend only a very short time -A/(AGy,-A,,) in 
that level. Consequently, the dynamics of level 12 ) 
does not affect the rate. All we need to know is its 
thermally averaged energy. In the sequential mech- 
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anism on the other hand, level 12) is intermediate 
in the kinetic scheme II) --t 12) + 13) and it could 
be populated during the course of the reaction. Ul- 
trafast optical measurements [6] have shown that 
the rate of appearance of level 13) following the 
preparation of level ) 1) by photoexcitation is 
3.6~ 10” s- ‘_ These measurements have failed to 
detect a transient population of level 12). This ob- 
servation could support the superexchange mecha- 
nism. However, a sequential scheme with KJ 
KZ1 2 70 is also consistent with this result [ 7 I. Ex- 
tensive additional linear and nonlinear spectro- 
scopic information (such as hole-burning and pho- 
ton echo) is available for this system [ 8,9]. A major 
obstacle in resolving this issue is the lack of precise 
information regarding many’ of the relevant ener- 
getic parameters [ 3,4,10]. In particular the vertical 
transition energy AGyI - 1, 7 is not known. It should 
be emphasized that eqs. ( 1) and (2) hold only when 
AGi’, -i, 12 is large enough. V,, diverges when 
AGez -i, ,z vanishes. In this paper we report a mi- 
croscopic determination of K3, obtained by formu- 
lating the problem using the density matrix in Liou- 
ville space. This formulation was applied previously 
to nonadiabatic and adiabatic electron transfer in a 
two-level system and has been used to explore the 
role of the dynamics of solvation in electron transfer 
processes [ 111. Our expression is valid for any value 
of AC” , 2 -il II and can therefore be used to explore 
the interplay between superexchange and sequential 
electron transfer even when all three levels are 
degenerate. 

2. Superexchange in a polar medium 

We start our analysis by introducing the adiabatic 
(Born-Oppenheimer) model Hamiltonian for the 
system 

+I’~~(l2)<31+13)<21). (3) 

Here H,(Q) denotes the adiabatic Hamiltonian of 
the polar medium. V,,, represents the electronic cou- 
pling between states I n ) and lj) . The direct cou- 
pling V,3 between states 1 1) and 13) was neglected 

in eq. ( 3 ) due to the large ( 17 A) distance between 
the P and H molecules in the reaction center. The 
nuclear Hamiltonian H,(Q) can be partitioned into 
the following three terms: 

H,(Q)=&,+&+U,, (4) 

where E, represents the electronic energy of the un- 
solvated state lj) and HB represents the Hamilto- 
nian of the bath, i.e. the nuclei of the RC which form 
a polar medium. U, denotes the interaction between 
the electronic system and the medium, which may be 
expressed in terms of the polarization of the bath 
P(r), and the electrostatic field D,(r) produced by 
the charge distribution of the system in the l.j) state, 
i.e. 

U,=- drDi(r)-P(r). 
s (5) 

It should be emphasized that U, depends on a mac- 
roscopic number of polarization degrees of freedom 
P(r), which undergo complicated motions resulting 
from thermal fluctuations. The statistical properties 
of U, contain all the relevant information for our 
problem. We shall model V, as Gaussian random 
variables. This is a common assumption in electron 
transfer theories [ 51. It has been recently verified by 
an extensive numerical simulation of outer sphere 
electron transfer in water [ 121. Eqs. (3)- ( 5) con- 
stitute our basic mode1 Hamiltonian for the RC and 
they can be used to evaluate the electron transfer 
rates. We shall now introduce the following equilib- 
rium density matrices for the bath 

~,=exp( -H,lk,T)/Tr exp( -H,I~BT), 

j=s. 1,2, 3, (6) 

where Tr denotes a trace over the bath degrees of 
freedom. pR is the density matrix of the bath in the 
absence of the electron transfer system. p,, p2 and pi 
are the density matrices of the bath when the elec- 
tron transfer system is in states 1, 2 and 3, respec- 
tively. 

For the sake of simplicity we assume that the en- 
ergy fluctuation u, of the lj) state is totally uncor- 
related with the energy fluctuation U,, on any other 
state ) n), i.e. 

Tr(U,Li,,p,)=O, j#n. (7) 

This is a reasonable assumption for electron transfer 
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in the RC, because the different electronic states rep- 
resent configurations in which the electron resides 
on different parts of the RC, which have a different 
local environment, and their energy fluctuations are 
expected to be uncorrelated. The present calculation 
of the rate is based on formulating the dynamics in 
terms of the density matrix in Liouville space [ 11 1. 
The formalism allows a perturbative expansion of 
the rate matrix Kill in a power series in the nonadi- 
abatic coupling V. This formalism was developed for 
electron transfer in a two-level system resulting in 
general expressions for K2, and Kj2_ In this Letter we 
focus on the calculation of K,, . The calculation is very 
similar to the calculation of two-photon processes 
(two-photon absorption or fluorescence and Raman 
spectroscopy) [ 11,13 1. The lowest order in V,,, which 
contributes to K,, is fourth order. When the calcu- 
lation is done in Liouville space we find that there 
are three Liouville space pathways which contribute 
to KJ, in fourth order, i.e. 

K3, =2 Re(K\, +K\‘, +K\‘,‘) . (8) 

These pathways are represented diagrammatically in 
fig. 1. Path I represents the process in which the elec- 
tron transfers from state 1 1) to state 13) without 
actually passing through state 12). This is therefore 
a tunneling process. Paths II and III represent the 
process in which the electron does go through state 
12 >, but before it equilibriates with the bath at state 
12 >, the electron transfers to state 13). Of course, 
there is another process contributing to the popu- 
lation of state [3), i.e. the electron moving to state 
I 2 >, equilibriating with the bath, and then transfer- 
ring to state j 3). This process is the sequential trans- 
fer, which is described by the rates Kz, and Kj2, If the 
relaxation of the system (RC and environment) is 
rapid enough, the contribution to KS, from paths II 
and III in fig. 1 can be ignored, so the only quantity 

. . 
we need to consider 1s K:, , This term can be eval- 
uated using the static approximation for solvent 
fluctuations and assuming Gaussian statistics for U,. 
The details of these calculations will be given else- 
where. Here we only present the final results for K,, 
in the high temperature limit. K3, is given in terms 
of several physical quantities (fig. 2). We first define 
the free energy change for the lj) to I n) transition 

AC:!, =Tr(H,p,)-Tr(H,,p,,) (9a) 

11 12 w Q-9 

II III 

Fig. I. The three Liouville-space pathways [ IO] contributing to 
the rate Kxl to fourth order in the nonadiabatic coupling. Each 
pair of Indexes jn implies that the system is in the state 1~) (n I, 
wherej= n stands for a population and j# n for a coherence. Each 
bond represents a nonadiabatic coupling K There are six path- 
ways which can lead from 11 (upper left corner) to 33 (lower 
right) in fourth order (four bonds). These pathways come in 
complex conjugate pairs so that we need consider only the three 
pathways shown I. II and III. Pathway I which does not pass 

through a population in level 2 (eq. (2.2)) represents the tunnel- 
ing (superexchange) mechanism and was evaluated explicitly in 
the present theory. Pathways II and III represent a sequential 
noncquilibrium process whereby the system goes through level 2 
and proceeds to state 3 before thermal equilibrium. The contri- 
bution of these pathways may be made arbitrarily small if the 
medium relaxation times are sufficiently rapid. These pathways 
were neglected in the present theory. 

Fig. 2. Configuration coordinate scheme showing the transition 
free energy A@, , the reorganization energy A,* and the vertical 
transition energy AEII. Similar schemes apply for the other pairs 
of lcvcls ( 13 and 23). 
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and the vertical transition energy for this transition 
when the system is in state 1 I ) 

G,=Tr[W,-H,,hl. (9b) 

We further define the solvent reorganization energy 
in the (j) state, 

Ili=Tr( U,‘pB)/2kBT (10) 

and the reorganization energy for the ]j) to In) 
transition, 

I,,,=I,+I,,. (11) 

Using our Liouville space coupling scheme [ 111 we 

get 

xexp(-iAEz,t,-iAE,,tz-iAE,Zt3) 

xexp{-kRT[li,(tz+t,)‘+;12(t, -t3)’ 

+AJl(t, +hYl}. (12) 

When the time integrations in eq. ( 12) are carried 
out, the superexchange rate is finally given by 

K3I = $ Vfz V&[K13Z(V13) &,(hE,,) 

-R,2Z(V,2) SI?(ti,2)-&3f(lj23) &3(il.E23)1 . 

Here 

A,C 

(13) 

(14a) 

(14b) 

s/,I(x)= J& exp( - &) > (‘4c) 

where j, n, m are permutations of 1, 2, 3. q,,,(x) is 
just a Franck-Condon-weighted density of states. 
Using the definitions (9)-( 11) we have 

AE II =AG” -/z 12 12 1 

AE,, = AC’3 -1,3, 

AEZJ = AG:, t-l? -kJ. 

(Isa) 

(15b) 

(15c) 

Note that AE,,,= -AE ,,,, A(.$,= - AGf, and ;l,,l=A,l,. 
The function Z(X) is given by 

Z(X)=- j: t cos(xt)exp( - t’/2)dt. (16) 

0 

We have constructed the following Padt approxi- 
mant, which provides a very good fit {better than 
4O/o) for Z(x): 

I(x) x 
- 1+0.585 lx’ 

1+0.4149x’+0.1235x4’ 

IX] <2.1 ) 

- 1+0.5994x’ 

= 11.2551 -3.8396x’+0.5994x4 ’ 

IxI>,2.1 * (17a) 

Note the following limiting behavior of Z(x): 

I(x)= +> xX=-l, 

=-1+&x’, X.=X1. (17b) 

The general expression of the reverse rate KIX can be 
obtained from ( 13) and ( 14) by replacing the ver- 
tical transition energies AE,3, AEz3 and hE,? by 
ACT3 +A 13. AGql +;123 and AG?z +,I, -A,, respec- 
tively. Eqs. ( 13 ) and ( 14 ) which hold for any value 
of the energy parameters are the main result of this 
paper. The fluctuations in the energy levels 1 1 ), 12 > 
and 13) are fully incorporated in this theory and this 
is why it holds for arbitrary values of AGE, and A,,,. 
In contrast, the simple superexchange matrix ele- 
ment (eq. (2) ) depends only on the average over 
the fluctuations and consequently it breaks down 
when AC?: -,I. I? vanishes. It should be noted that 
for certain values of the parameters, K,, (eq. ( 13 ) ) 
can become negative. This may happen when 
AZ?,, B ,/m and lcvcl E2 is located between E, 
and E3. In this case the system cannot be described 
by simple rate equations and one should calculate 
the frequency-dependent rate KJ, (s) which enters in 
a generalized rate equation (with a memory) [ 1 I 1. 
Our K,, is then equal to the zero frequency value of 
the generalized rate K3, (s=O). For the subsequent 
discussion we recall that the nonadiabatic rates KzI 
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and KX2 are given within the same approximation by 

151 

K -2x IV 2, - R 
I2 Y_(AG”_-d _) I? ‘I’ 1’ I’ > (18a) 

KS?= $ it’2312S23(AG’?3-A23). (lgb) 

We shall now examine a few limiting cases of eq. 
( 13). We first consider the case where the energy 
level ( 2) is suffkiently far from the energy levels I 1 ) 
and 13): i.e. 

AE,? B J/r,2k,r, AE23 z-+ Jm , (19) 

Condition ( 19) implies that the activation energies 
A(;::= (AC:‘,-1,?)“/41,1 and AGIX= (AG&+L2 
-,13)2/4J?3 are much larger than k,T. This limit is 
where the conventional superexchange theory is usu- 
ally formulated [ 3,4,14,15 1. In this case eq. ( 13 ) as- 
sumes the form 

(20a) 

Eqs. (20) reduce to the ordinary superexchange rate 
( I ) and (2 ) when the electron transfer process is ac- 
tivationless, i.e. AIZ,3=0, so that AE12=AEJ2. In this 
limit K,%, and the reverse rate K,3 satisfy the detailed- 
balance condition 

k=exp(-$). (21) 

We next consider another limiting case where all three 
states are completely degenerate, i.e. A.E12=AEz3 
=AE,,=O. WC further assume J.l=,?2=J3=R. We 
then obtain from eq. ( 13) 

K~,=~lI/,,I’S,,(O), (22a) 

where 

(22b) 

Eqs. (22) may be rationalized using a simple phys- 
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ieal argument. The variance of the energy level fluc- 
tuations is z m. V’s, is thus given by V, 2 V23 di- 
vided by a typical energy fluctuation. 

3. Application to the photosynthetic reaction center 

We have calculated K,, using eq. ( 13 ) and the re- 
sults are displayed as a function of AEz, =AG!, + 
2 ,z for different activation energies AZ?,3 (fig. 3a) 

-3000 -1500 0 1500 3000 

AE,, (ad) 

a b 

I 

2000 40( 

AE,, (cm-‘) 

Fig. 3 (a) The dependence of the superexchange rate K3, on AEz, 
for different values of AE,,. Curves a, b and c correspond to 
A.Si3=0, 400 and 700 cm-‘, respectively. The other parameters 
in this calculation are: 1,2=1000 cm-‘, 123=1500 cm-‘, 
A-,1=2OOO cm-‘, V,,=80 cm-‘, IJ’~,=~V,~, T=300 K. The 
dashed line represents the conventional superexchange rate (eqs. 
(20)) with A_E,s=O. (b) The superexchange rate K,, versus AEz, 
for different values of the reorganization energy I ,*. Curves a, b 
and c correspond tol , z = 500, 1000 and 2500 cm- ‘, respectively. 
The other parameters are AJS,~=O, rli2=2000 cm-i, Vi,=80 
cm-‘, VL,=6V,,, 7.~300 K. 
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and reorganization energies I II (fig. 3b). The dashed 
line in fig. 4 represents the asymptotic rate expres- 
sion (eqs. (20 ) ) . Fig. 3 also demonstrates that AJ?, 3 
and ,I, 1 have a strong effect on the rate K,, for small 
values of AL, and have a negligible effect for large 
values of AI?, , , where the asymptotic rate expression 
(eqs. (20) ) holds. Assuming that KJz 3 K2,, as sug- 

0 2000 4000 

AE,, ((xn-‘) 

Fig. 4. (a) The relative contribution of the superexchange mech- 
anism R versus A,5?, for different values of the reorganization 

energy i ,>. Curves a. b and c correspond to 1, 2 = 100, 500 and 
1000 cm-', respectively. The other parameters are: I,J=2000 
cm-‘.l,,=2000cm-‘. VIL=80cm-‘. V21=6V,2. T=300 K. (b) 
The minimum coupling I’?“’ (solid line) and the corresponding 
minimum energy AEY;‘” (dashed line) required for the superex- 
change mechanisms to be dominant (R>0.9), are plotted versus 
/1,?. The other parameters are ,1,2=2000 cm-‘, hEll=O. 
P’,=6V,,. T=300 K. 

gested by the ultrafast measurements [ 6,7], then the 
sequential rate is basically equal to Kz,. The follow- 
ing dimensionless parameter, 

provides a measure of the relative contribution of 
the superexchange and the sequential mechanisms. 
R is bounded between 0 and 1. R-0 when the se- 
quential transfer dominates, and R-t 1 when the su- 
perexchange transfer dominates. Fig. 4a displays the 
dependence of R on the energy AELI for different 
values of 1, ?. Estimates of the various parameters in 
the RC vary considerably among authors [ 2 1. In the 
following discussion we shall use the parameters V2,/ 

1/,,=6, bE13=0,;iIj=2000 cm-‘. We further recall 
that the rise rate of level 13) following the prepa- 
ration of level 11) is 3.6~ IO” SK’. If the superex- 
change mechanism is dominant this should be the 
value of KS,. We have varied AE, ,, I ,?, I 23 and V, I 
and searched for ranges of parameters for which the 
superexchange mechanism is dominant, defined as 
R2 0.9. It is clear that in order to reproduce the ex- 
perimental rise-time of level ( 3), V,, has to be larger 
than some minimum value V;l,l” which depends on 
the other parameters. We found that AZ3 has little ef- 
fect on V;lj”, changing it by less than 2 cm -I as ,I13 
varies from 1500 to 3000 cm-‘. Fig. 4b displays 
V ;‘j” (solid line) plotted against li , ?. For each value 
of I’?;“, the superexchange mechanism will be dom- 
inant if A.&, is large enough. We have defined 
AJY$” to be the value of A,%, for which R= 0.9, for 
a given ;1,> and V;‘2i”, For A.!?,, > AEY,;‘” the super- 
exchange mechanism is dominant, My,‘” is also dis- 
played in fig. 4b (dashed line). We conclude from 
fig. 4b that in order for the superexchange mecha- 
nisms to be dominant, the coupling constant V, 1 must 
be larger than 73 cm-‘. 

Our rate expression (eq. ( 13) ) was obtained in 
the high temperature limit. In order to extend it to 
low temperatures we need to adopt a more specific 
model for HB and UP A common model in electron 
transfer theories assumes that U, is proportional to 
a simple harmonic coordinate representing an intra- 
molecular or intermolecular vibration. In this case 
eqs. (13) should be modified by replacing all kBT 
factors by the average oscillator energy (e} [ 7,161 
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(24) 

Note that in the high temperature (k,T>> hw) limit 
(c)=kaT.Whenk,Tineq. (13)isreplacedby (E) 
(eq. (24) ) we obtain a rate expression which is not 
restricted to the high temperature limit. Martin et al. 
[ 71 have measured the temperature dependence of 
the RC electron transfer in the range 10 to 300 K. 
For Rb. sphaeroides the variation of the rate was 
found to be in agreement with the conventional su- 
perexchange rate assuming a single mode with w= 80 
cm- ‘. For Rps. virides on the other hand the con- 
ventional expression is inadequate and the best fit 
obtained [ 71 (using w=25 cm-‘) is shown in fig. 
5 (dashed line). Fig. 5 also shows the temperature 
dependence of our new expression for K3, (eq. ( 13 ) 
together with eq. (24) ). It is clear that our expres- 

a 

150 

T (K) ’ 
Fig. 5. Temperature dependence of the superexchange rate K3,. 
A coupling to a single vIbratIona mode with w=90 cm-’ is as- 
sumed and the calculation used eq. ( L3) with koT replaced by 
{t) (eq. (24)).Curvesa, bandccorrespond toA&,=800cm-‘, 
Ai??,= 1050 cm-’ and AE?,= 1500 cm-‘, respectively. The 
dashed curve represents the best fit with the conventional super- 
exchange rate using 0~~25 cm-’ (eq. (2) in ref. [ 71). The points 
( + ) show the experimental electron transfer rate in Rps. vi&is 
from Martin et al. [7]. Other parameters in this calculation are 
E.,,~2000cm-‘,1,,=200cm-‘,12,=2000cm~’, r/,,=79cm-‘, 
I/,,=6V,,, AE,l=O. This figure shows that our superexchange 
expression (curve b) provides a better fit with experiment than 
the conventional superexchange expression (dashed curve). 

sion is in better agreement with experiment than the 
ordinary superexchange rate. 
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