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The interplay between the sequential and the superexchange (tunneling) mechanisms for
electron transfer in condensed phases is studied by formulating the problem using the density
matrix. The sequential mechanism proceeds via populations of intermediate electronic states
(diagonal density matrix elements) whereas the superexchange proceeds through coherences
(off diagonal density matrix elements). The present formulation establishes a complete formal
analogy between these mechanisms and the incoherent and the coherent pathways in nonlinear
optical measurements, in particular, pump—probe spectroscopy.

1. INTRODUCTION

Many important chemical, biological, and solid-state
processes involve the transfer of charges (electrons or holes)
over long distances (> 10 A), where a direct “through
space” coupling between the donor and the acceptor is very
small.'™ The direct exchange coupling for electron transfer
decreases exponentially with the distance between sites
~exp( — R /¢) with a characteristic length ¢ varying be-
tween 0.8-1.3 A.2? It is then likely that sites other than the
donor and the acceptor could participate in these processes.
One possible mechanism for the electron transfer is a direct
tunneling mechanism whereby the electron tunnels from the
donor to the acceptor without spending any appreciable
amount of time at intermediate sites. The other sites play a
passive role in the process by contributing to the tunneling
matrix element. This is the essence of the superexchange
model developed in the theory of magnetism by Anderson®
and first applied to electron transfer by McConnel.*” The
superexchange model of a particle or a quasiparticle (spin,
exciton) assumes that the intermediate site energies are suf-
ficiently high, so that the process involves only a virtual exci-
tation of these sites. In intramolecular electron transfer this
is referred to as “through bond”’ coupling.>’ Alternatively
we can envision a sequential transfer mechanism which pro-
ceeds through a succession of incoherent hops among closely
lying sites. The mechanism requires the availability of sites
whose energies are within a few k; T of the donor energy,
since the process is thermally activated.®-!° If we envision a
system with high-intermediate site energies, the superex-
change mechanism will be dominant. As these energies are
lowered, there is an interesting interplay between both
mechanisms. In this article we develop a systematic method
for calculating electron transfer (ET) and transport in a
multicenter system coupled to a thermal bath. By formulat-
ing the problem using the density matrix in Liouville
space'!"'2 we carry out the averaging over the solvent degrees
of freedom and identify the distinct Liouville space path-
ways which are responsible for both mechanisms. This way
we obtain both mechanisms as limiting cases of the same
unified theory. Explicit expressions are derived for a three-
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site system when the solvent timescale is slow (static limit)
or fast (homogeneous dephasing). The evaluation of the rate
matrix in the static limit is the main accomplishment of this
article. The present theory holds for any values of the energy
parameters AG ), and the reorganization energy parameters
A; and can therefore be used to explore the relative contribu-
tion of the superexchange and the sequential electron trans-
fer. The fast fluctuation (homogeneous dephasing) limit is
less realistic for typical ET processes than the static limit. It
is an infinite temperature approximation'"'*!* which can-
not reproduce the correct detailed balance condition. Never-
theless, since it is exactly solvable to infinite order in the
nonadiabatic coupling, its analysis provides a useful insight
on the dynamics of ET processes.

The problem of superexchange versus sequential mech-
anisms for electron transfer is intimately related to the dy-
namics of nonlinear optical line shapes.'s The expression for
the nonadiabatic rate using the Fermi golden rule and the
superexchange coupling matrix element [Eq. (5.3)] is the
analog of the Kramers—Heisenberg expression for Raman
spectroscopy.'® There, too, the system evolves from the ini-
tial to the final state via an intermediate off-resonance state.
The analogy is not limited however to ordinary Raman and
off-resonance situations. More generally any optical transi-
tion can proceed coherently or sequentially. The transition
from Raman to fluorescence spectra as the optical frequen-
cies are resonantly tuned, or the dephasing rate is increased,
is completely analogous to the transition from the superex-
change to the sequential mechanisms.'® There is a whole
family of nonlinear optical spectroscopies related to four-
wave mixing and the nonlinear susceptibility y**, whose the-
ory closely resembles that of the electron transfer. We have
drawn this analogy previously for the simpler two-site prob-
lem."” In this article we show that the dynamics of two pho-
ton transitions and in particular pump-probe spectrosco-
py'® % is formally identical to the problem of electron
transfer in a three-site system.

The remainder of this article is organized as follows. In
Sec. II we derive a formal expression for the electron transfer
rate in an N-site system coupled to a thermal bath. The rate
expressions are formally exact, and expanded as a power
series in the coupling constant V). In Sec. III we truncate
the expansion to fourth order for a three-site system, and
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express the rate matrix in terms of solvent correlation func-
tions. In Sec. IV we evaluate these correlation functions in
the limit of slow solvent fluctuations (the static limit) and
obtain the complete rate matrix for the three-site system.
These rate expressions are used in Sec. V to investigate the
relative contribution of the superexchange and the sequen-
tial electron transfer using parameters typical for the photo-
synthetic reaction center. In Sec. VI the electron transfer
process for a three-site system is analyzed in the fast fluctu-
ation (homogeneous dephasing) limit. Finally, in Sec. VII
we establish the connection with stationary and femtose-
cond pump-—probe spectroscopy. Important technical details
are given in Appendices A-E.

Il. FORMAL EXPRESSION FOR THE ELECTRON
TRANSFER RATE

We consider an electron transfer (ET) system in which
the electron has NV accessible sites, embedded in a medium
(solvent). We denote by | j) the state whereby the electron
resides on the jth site j=1,2,...,N. The j and k sites are
coupled by an exchange nonadiabatic coupling ¥, which
decreased exponentially with the intersite separation. We
assume that this coupling is not affected substantially by the
dynamical behavior of the solvent and thus does not depend
on the solvent coordinates. The interaction of the solvent
with the system will depend on the electronic state | j). We
denote the solvent adiabatic Hamiltonian in the state | j) by
H;(Q), where Q denotes the nuclear degrees of freedom of
the solvent. The total model Hamiltonian for the system and
solvent is

H=H,+H’, (2.1)
where
E | VH (D) ], (2.2a)
jﬁl
2 Vil k. (2.2b)
=1
sték

We will set throughout this article # = 1, except in the final
expressions for the rate, where # will be explicitly included.
The total density matrix p(#) of the ET system and the sol-
vent satisfies the Liouville equation

dp(t)/dt = — i[Hp(t)]1= — iLp(t) (2.3)

where the Liouville space operators L, L ', and L are defined
by their action on an ordinary operator 4, i.e.,'®

LOAE[HO’A] ’
L'A=[H A], 2.4)
LA=[H.A].

We further introduce the following complete set of system
operators

Ay = | k| (2.5)
which satisfy
Ay A, = A4,,6;, . (2.6)

We denote the total trace, and the partial traces over the ET
system and over the solvent by Tr, Tr¢, and Tr<, respectively.

By definition Tr=Tr?Tr". The population on state | ;) at
time # is given by
pi (1) =Tr(A4;p) = TrQ(JIP(t)U) (2 7

We now define the projection operator P acting on an arbl-
trary operator B in the Hilbert space of the total ET system
and the solvent by'?

PB= 5 iy Tr(4,B) (2.82)
and the complementary projection by
0=1-5, (2.8b)

where p; is the equilibrium solvent density matrix in the sate
| ), ie.,
p; =exp( — H;/kyT)/Tr¥{exp( — H,/kyT)}. (2.9)

We assume that at ¢ = 0 the population in state | j) is p; (0)
and the solvent is in thermal equilibrium, i.e.,

N
p(0) = z pi(0)A4,p; . (2.10)
i=
One can easily show, using Egs. (2.8)-(2.10)
Bo(0) =p(0),
L,P=PL,=0, (2.11)
PLP=0.

Making use of standard projection operator techniques,?' we
can derive a generalized master equation for the populations

dP/dtzJ K(t — 7)P(r) dr, (2.12)
0

where P is an N-dimensional vector with components p; (1)
and K(¢) is an N X N generalized rate matrix, with matrix
elements K, (¢). We further introduce the Laplace trans-
form of K(¢), i.e.,

K (s) =J dtexp( —st)K, (1) .
0

The exact formal expression for K, (s)is
1

Ki(®) = —Tildy —— L LG L4y p,
1+ L'GoL'G,Q
(2.13a)
with the Green function
Go=1/(s + iL,) . (2.13b)

K, (s) can be expanded in a power series in L, i.e.,

Ky(s)= 3 (=D"KE"(s), (2.14a)
n=1
where
K2 (s) = Tr[d;(L'G,L 'G(,@)" “'L'GoL Ay pi] -

(2.14b)

It will be useful to eliminate the complementary projection Q
in K2 and express K 2" in terms of the matrix T?™,
whose elements T ™ are defined by

T2 () = Tr[ Ay (L'GoL 'Go)™ 'L 'Gol "Aus pi] -
(2.15)
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Following the derivation of Appendix A in Ref. [12a], we
have the recursion relation:

K2 (s5) = T?"(s)

1 n—2
Z KZ(n—m—l)(s)Tl(m+l)(s) ,

S m=0
n=273,... (2.16)

Equations (2.14)~(2.16) constitute the basis for calculating
the electron transfer rate K, (s). We first calculate T to
the desired order and then calculate the frequency depen-
dent rate constant K*” using the recursion relation [Eq.
(2.16)]. Note that K = T and in general K may be
expressed in terms of T*™ with m<n. In many cases, the ET
process is much slower than the dynamics of the solvent
degrees of freedom. In that case the system satisfies an ordi-
nary rate equation where the ordinary rate matrix is
K=K(s=0),1i.e.,

dP/dt=KP. (2.17)

It should be noted that the divergent 1/s factor in Eq. (2.16)
will not cause any difficulty in that limit since it is cancelled
by other terms so that K*” (s = 0) is well behaved.'? The
remainder of this article will focus on analyzing the ET rate
for a three-site system.

lll. GENERALIZED RATE MATRIX FOR A THREE-SITE
SYSTEM

We shall specialize to a three-site system, which is the
simplest model showing the interplay between tunneling and
sequential electron transfer. The Hamiltonian Eq. (2.1)
thus becomes

3
H=3 | H; (@) (| + V(1) 2] + [2){1])
ji=1
+ Va3 (12) (31 + 3)€2]) . (3.1)
When the nonadiabatic coupling ¥, is sufficiently weak, we
can truncate the expansion [Eq. (2.14a)] to fourth order in
V., which is the lowest order contributing to Kj,(s) and
K,;(s). We thus have
Ko, ()=K32(s) + K0 (),

K@) =T,

(3.2)
(3.3a)
3
KR()=T(s)—(1/s) ¥ TPOT (), (3.3b)
i=1

where
TP (s) =Tr(A4,,L'GoL'A,,,, Prm) (3.4a)
T (s) =Tr(A,,L'GyL'G,L'GyL'A,,,. p..) . (3.4b)
When the Green function G, acts on 4,,,,, it makes it evolve
by H, from the left and by H,, from the right. We shall

therefore introduce a new definition of a Green function
which acts only on solvent operators

G,, ()B=exp( — iH,t)Bexp(iHl,.1) , (3.5)

where B is any solvent operator. In the frequency domain we
have

6975

G, (S)BEf dtexp( — st)a,,,,, (t)B. (3.6)
0

The trace over the electronic states in Egs. (3.4) can be easi-
ly evaluated since the Green function G, is diagonal in the
site representation. The bookkeeping of the various terms
contributing to T'%”, j,k = 1,2,3 may be visualized using
Fig. 1(a). In this figure we show the complete 3 X 3 density
matrix of the system. Each bond represents the nonadiabatic
coupling V) . Since in the Liouville equation [Eq. (2.3)] L'
acts as a commutator, it can act either from the left (vertical
bond) or from the right (horizontal bond). In order to cal-
culate 7§} for example, we need to start in 11 and count all
the possible 4-bond pathways which lead to 33. A simple
inspection of Fig. 1(a) shows that there are six such path-
ways. Since the paths appear always in complex conjugate

Via

(b)

)
R
&

-G

il
FIG. 1. (a) Liouville-space coupling scheme (Refs. 16 and 17) showing the
pathways contributing to the ET rate. Each bond represents a nonadiabatic
coupling ¥V asindicated (see thetext). (b) Liouville-space pathways (Ref.
16) contributing to the rate K, to fourth order in the nonadiabatic cou-
pling. From (a) we see that there are six pathways which lead from 11 to 33
in fourth order. We need to consider only the three pathways shown (the
others are their complex conjugates). Pathways (i) and (ii) represent a
sequential nonequilibrium process and pathway (iii) is the tunneling (su-
perexchange) term. The three terms in Eq. (3.7) correspond to pathways
(i), (ii), and (iii), respectively.
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pairs, we only need to consider half of the paths, which are
shown in Fig. 1(b). Further description of these type of dia-
grams was given elsewhere.'® Apart from the initial 11 and
final 33 points on this figure, each path will have three inter-
mediate points. Each intermediate point labelled jk corre-
sponds to a Green function G, (s). The corresponding

expression for T} (s) is

Tg‘l‘)(s) == 2V%2 V%s Re[<GZ3(S)GZZ(S)GI.2(S)pl>
+ <G33(S)622(S)Gn(5)91>

+ (G23(S)G13(S)Gu(3)p1>] s 3.7

where we have used angular brackets (- -) to denote a trace
over the solvent Tr< The three terms in Eq. (3.7) corre-
spond, respectively, to pathways (i), (ii), and (iii) in Fig,
1(b). They can be classified into two types. The first is the
paths that start at population 11 and end up at population 33
passing only through coherences (i.e., G,,, G,3, G,;) [path
(iii) ]. The other type is the paths which pass once through
the population 22 {paths (i) and (ii) ]. This classification is
also valid for all the paths representing the other elements of
T(s). We shall introduce angular brackets (---) with
subscripts ¢ or p to represent the paths which pass only
through coherences (G, ) with j#k and the paths which
pass through the population (G, ) once. We shall denote

them the coherent and the population pathways, respective-
ly.
(Gj/(S)Gkh ()G, (S)pr)c

= (G,/ ()G, (5)G,,,, (S)p,)

+(G; ()G ()G, (9)p,), h#k,

<Gj/ (5)Gi ()G, (S)pr)p

5<[Gj/(s) +G;(8) ]G () [Gom (5) + G iy (5) ]Pr>

— (U/5){[G;,(5) + G;(5) ]px)

X{[Com () + G, ()] p,) . (3.8b)
These correlation functions have the following symmetries:
(Gj/ (8)G, (8)G,, (5)p, ).

(3.8a)

= <G/j(s)th ()G, (9)p,). (3.9a2)
(Gj/(S)Gkk ()G, (S)Pr>p

= (6, (G ()G (5Ip,),

= <Gj/(S)Gkk ()G, (S)P;)p . (3.9b)

The other elements of T " can be evaluated in a similar way.
There are eight pathways (plus their complex conjugates)
which contribute to T} or T{Y. In terms of these correla-
tion functions, the frequency dependent rate constants
K. (s) (to fourth order in ¥, ) assume the form

Ky (s) =2V, Re(Gy(s)py) — Vi, { (Gl2(s)G22(S)G12(s)pl)p + (Gl2(s)Gll(S)G12(s)pl>p]
- VLV [(623(5)622(5)612(5)P|>p + (Gp(5)G 3(5) Gy, (5)py) .

-+ (G|2(S)Gl3(s)G12(S)P1)c] s

(3.10a)

Ky, (s) = 2V, Re(Gos(5)p,) — Vi [(Gz3(5)Gzz(S)Gza(S)P2>p + (GZ3(S)GBB(S)GZ3(S)p2)p]
—VhVi [(623(5)622(5)G32(3)P2>p + {Gy3(5)G3(5)G12(5)p2) .

+ <G23(S)G;3(S)Gz3(s)P2>c} s

Ky (s) = V%z V%s [(023(5)013(S)G|2(S)P1>c + <GZ3(S)GZZ(S)GlZ(S)pI)p] -

The other three rate constants, K,,(s), K,;(s), and K,5(s),
may be obtained from Egs. (3.10) by interchanging the in-
dexes 1 and 3 in Kj,(s), K,,(s), and Kj,(s), respectively.
The diagonal elements of the rate matrix are given by

K;j(5)=— 3 Ky(s). (3.11)

=7

Equations (3.11) guarantee the conservation of probability.
So far, we have expressed all the matrix elements of K, (s) to
fourth order in the nonadiabatic coupling in terms of the
quantities (G, (s)p,), (G;(5)G\,(5)G,,(s)p,). and
(G, (5)G (5)G,, (s)p,) ,. In the coming sections we shall
calculate these quantities using a specific model for solva-
tion.

(3.10b)
(3.10¢)

IV. SLOW SOLVENT FLUCTUATIONS: THE STATIC
APPROXIMATION

The nuclear Hamiltonian H,(Q) may be partitioned
into the following terms:

HQy=E +H; + U, 4.1
where E; represents the electronic energy of the state | /) and
H g represents the Hamiltonian of the bath, which is taken to
be a polar medium. U, denotes the interaction between the
electron system and the medium. In electron transfer pro-

cesses in a polar medium it is common to adopt the following
electrostatic model for U,*'%**%%:

U= - Jdr D;(r)-P(r) . (4.2)
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Here D;(r) is the electrostatic field produced by the charge
distribution of the system in the | j) state, and P(r) is the
polarization of the solvent at point r. It should be empha-
sized that U; depends on a macroscopic number of polariza-
tion degrees of freedom P(r), which undergo complicated
motions resulting from thermal fluctuations. The statistical
properties of U; contain all the relevant information for our
problem. We shall model U; as Gaussian random variables.
This is a common assumption in electron transfer theo-
ries.® %12 It has been recently verified by an extensive nu-
merical simulation of outer sphere electron transfer in wa-
ter.?*

In this section we shall evaluate the rate constant in the
static limit, which generally holds for ET processes. This
limit is introduced as follows. Coherences in condensed
phases are usually subject to fast dephasing processes result-
ing from the solvent motions. 1 Consequently, the coherence
Green functions [Gj, (¢) with j#k] are expected to decay
rapidly, on the dephasing timescale. The latter is typically in
the picosecond to femtosecond range, as can be seen from the
linewidths of optical transitions in solution. Pure dephasing
processes do not affect the diagonal elements of the density
matrix (populations) so that the typical time scales of
G (1) are of the order of the lifetime of the electronic states,
which may be much larger (typically in the nanosecond
range). The static approximation is based on this observa-
tion and assumes that the solvent motions are slow com-
pared with the fast dephasing time (but not necessarily com-
pared with the timescale of change of populations).'” We
therefore neglect all solvent motions in the coherence Green
functions but include solvent relaxation in the population
Green functions. This situation is common in spectral line
broadening in condensed phases and is known as spectral
diffusion. When the static (Classical Condon) approxima-
tion is made, we replace the coherence Green functions by
G, () =exp( —iH,, t) =exp( —iE,, t—iU,,t),

n#m 4.3)

with

il

i

H nm H, n H m

Enm En —Em H (4'4)
v.=U,-U,.

In the static limit, the correlation functions appearing in

Egs. (3.10) assume the form

(G,,()p,)= Jw dtexp( —st—iE, 1)
(4]

X (exp( — iU, 0)p,) (4.5a)

(G, (5)G 1 (5)G,,, (5)p,),
= s/m s/
= (277)2J; dt exp( — st) fdx dymm
X <5(x _Hj/)[Gkk(t) - Gkk(oo)]

X‘S(y_Hnm )Pr) ’ (4~5b)
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(Gj/(s)Gkh (S)Gnm (S)Pr>c
=2 Ref dt;,f dtzf dryexp[ — (s +iE;)t;
0 (v} 0

— (s+iEy)t, — (s+iE, )t ]
X{exp( — iU, t; — iU t, — iU, 1))p,) .  (4.5¢)
Equations (4.5) may be evaluated for the Gaussian

model by using the cumulant expansion to second order in
the interactions U, and then performing the time integra-
tions. The first correlation function [Eq. (4.5a) ] appears in
nonadiabatic ET theories and was calculated previously.'?
In Appendix A we calculate Eq. (4.5a) and the s-dependent
population correlation function [Eq. (4.5b)], and in Ap-
pendices B and C we calculate the corresponding coherence
correlation function [Eq. (4.5¢)]. When these expressions
are substituted in Eq. (3.10) we obtain the full frequency
dependent rate of the generalized rate equation. For the sake
of clarity we shall concentrate now on the s = O limit of the
rate constant, K, (0) =K, . This is the rate appearing in the
ordinary rate Eqs. (2.17). Our rate expression is given in
terms of several physical quantities. We first define the free
energy change for the | j) to |n) transition

MG, =(Hyp,) — (H,p,) (4.6)
and the vertical transition energy for this transition when the
system is in state |m)

Note that AE; = — AE 7 and AG), = — AGY,.

We next introduce the solvent Marcus reorganization
energy for the | j) to |k ) transition®

_ <U}k Pr) _ fk

T 2k, T 2k,T’
where p, is given by Eq. (2.9) with H; replaced by H,. The
reorganization energy parameter in the | j) state is

1= (U,k Ujm PB>
4 2k, T

where j, k, and m are the permutations of 1, 2, and 3. It can
easily be shown that

A=A +A4,, j#k
In the high-temperature limit we further have (see Appen-
dix D)

AE" =AG® —4.
AE;, =AG, + A
AEY, =AGS, +A,—A4,, k#nm.

In Fig. 2 we display the energetic parameters introduced
here. We also define the following combinations of param-
eters:

4.7

(4.8)

jk

(4.9)

(4.10)

AE A, +AEL LA,
"7;k=\/Rjk 2 k}' £ ’,

jk

(4.11a)

where j, k, and m are the permutations of 1, 2, and 3 and

_ A _ (4.11b)
[AiA2s —A3]2k,T

R

J. Chem. Phys., Vol. 91, No. 11, 1 December 1989

Downloaded 21 Jun 2002 to 128.151.176.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6978 Y. Hu and S. Mukamel: Long-range electron transfer

Free Energy

1>

vy

Uy,

FIG. 2. Configuration coordinate scheme showing the transition free ener-
gy AGY, the reorganization energy A,, and the vertical transition energy
AE}, . Similar schemes apply for the other pairs of levels (1 and 3,2 and 3).

R}, depends strongly on the correlations of the various U;. A
measure of these correlations is given by the correlation coef-
ficient ¢
y= <U_/k Uim PB>
b,
where j, k, and m are permutations of 1, 2, and 3. The
Schwartz inequality implies that |y|<1. If the various U; are
totally uncorrelated and have equal fluctuations, i.e.,
(U;U, pg) ={U’py)8; then y = — 1/2. If on the other
hand, they are fully correlated, i.e., (U, U, ) = + (U?) we
get ¥ = + 1. The latter case, in which R, diverges is dis-
cussed in Appendix E. Making use of the correlation func-
tions evaluated in Appendices A and B, and performing a
Pade resummation of the series (3.2), similar to what was
done in Ref. 12 for the two-site problem, we obtain our final
expression for the rate matrix in the static limit:

(4.11¢c)

o 2
2 +—VLV5
14 00,7, + 0217 + 03,7, #i

K, =

X [R121(77}2 )S,(AE L)+ stl(ﬂéz )S5;(AE ;3 )] ,
(4.12a)

2
> 32 - + -z ViV
1 + 03,7, + 0237 + 07, #i
X [Rlzl("ﬁz )SIZ(AE%Z )+ R231(77§3 )st(AE§3 ) ] ’

(4.12b)

K=

2
Ky = 0y,05,7. + —ﬁz ViV [R131("7}3 )S15(AE )

- R121(77:2 )S1(AE 2) — R23I(77i3 1S (AE ;3 ) ] .
(4.12¢)
Each rate constant has two terms. The first is coming from

the population pathways and the second from the coherence
pathways. The population term depends on o, and various

solvent timescales 7;, 7;. g;, is the nonadiabatic transition
rate from state n to j,

0, =Qun/M)V]S, (AE},) . (4.13)
and S, is the Franck—Condon weighted density of states

1 x?
S, (x)= ————————exp[ — ————-] . (4.14)
’ Ak, T4, 4k TA;,
Ta» Tyr Ty Tp and 7, are characteristic solvation time scales,
defined as follows. We first introduce two time scale func-

tions

= 1 M, (Dq*
T.():J dr ex[ S ]—1 ,
w7 [ A r R RO

(4.15)

© 1
(9,9") =f dt [————
o J1=M7%1)
29¢'M(1) — (¢ + q’z)Mz(t)] _ 1]
1 — M%) )

X exp[
(4.16)

Here ¢ and ¢’ are dimensionless parameters. M, (¢) and
M(¢) are the solvent correlation functions

(exp(iHzt) Uy, exp( — iHgt) Uy pp)

M, (1) = X , (4.17a)
ik
M) = (exp(iHgt) U,y exp( — iHzt) U, pg) (4176
A23Al2
We further define
AET
Gom = - (4.18)

S Th

In terms of these quantities we have 7, =71,,(g,),
Ty = T12(q21), To = T23(433), Ty = T23(g23),
7. = 7(¢34,,). Note that q,,. #4,., and that 7/, and 7, are
obtained from 7, and 7,, respectively, by interchanging the
indexes 1 and 3. 7, (¢q) was calculated and analyzed pre-
viously in detail.'? 7,(q) =7(q,9) provided we set
M, (t) = M(t). We further note that M, is normalized
such that M, (0) = 1. M(0), however, depends on the cor-
relations among the various U; and M(0) = — y where yis
the correlation coefficient introduced in Eq. (4.11c). In a
polar medium, U,, are related to the solvent polarization
[Eq. (4.2)]. M;, (t) and M(¢) can then be expressed in
terms of the two point correlation function of the polariza-
ton, which in turn is related to the solvent frequency and
wave vector dependent dielectric function €(k,w). In the di-
electric continuum model we neglect the & dependence of €
and relate these correlation functions to €(w) =€(k = 0,0).
These expressions were given elsewhere!? and will not be
repeated here. We have calculated the time scale function
7(g,q') assuming that the solvation coordinates of the var-
ious states are totally uncorrelated and have the same fluctu-
ations, i.e.,

(U,Uy pg) = {U%3)8; . (4.19)

In this case we have from Eq. (4.17b) M(0) =0.5. We
further assumed that M () decays exponentially with time
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as predicted by the Debye model of dielectric fluctuations.'’
We thus set M(¢) = 0.5 exp( — t/7,). The time scale func-
tion 7(g.,q’) for this model is displayed in Fig. 3. The func-
tion I(x) is given by

I(x)= — f tcos(xt)exp( — t%/2) dt. (4.20)
0
We have constructed the following approximation for I(x),
2
—1+0.5851x , x| <2.1
1) 1 4+ 0.4149x> 4 0.1235x*
*= — 1 4 0.5994x2 '
,  x[>2.1
11.2551 — 3.8396x2 + 0.5994x*
(4.21)
The asymptotic behavior of I(x) is
1/x%, x>1
I(x) = . 422
(x) {—1+x2, x<l1 (4.22)

I(x}) is displayed in Fig. 4. The dashed line in Fig. 4 shows
the difference between the exact [Eq. (4.20)] and the ap-
proximation [Eq. (4.21) ] for I(x). As noted in Sec. III, K ,,
K3, and K ; can be obtained from Xj,, X,,, and K, respec-
tively, by interchanging the indexes 1 and 3. The diagonal
elements K, K,,, and K3, are given by Eq. (3.11). Equa-
tions (4.12) thus provide the entire rate matrix for the sys-
tem.

V.SEQUENTIAL AND SUPEREXCHANGE ELECTRON
TRANSFER

We shall now analyze our rate matrix [Egs. (4.12)].
We first note that to second order in Vix» Egs. (4.12) reduce
to the well-known nonadiabatic rates® K, = 0,,, K3, = 05,
K, = 0. When setting V,; = O all rates vanish except for X ,,
and X,,,

Tat , (5.1a)

K21 =
1+ 0,7, + o7,

2 4 6
! ] I

Logyotria.q)/ro)

0
1

-2

T
0 5

q

FIG. 3. Solvent timescale function 7(g,q') [Eq. (4.16)]. Curvesa, b,and ¢
correspondto ¢’ = ¢, ¢’ = 0.6g and ¢’ = 0.2g, respectively. We also assume
M(1) = 0.5exp(t /1,) (see the text).

|
(4]

6979

(AP) .
1+ 01,7 + 047,
Equations (5.1) have been derived and analyzed previous-
ly.** 7, and 7, are typical solvent timescales. Equations
(5.1) interpolate from the nonadiabatic limit (7,,7, —0) to
the adiabatic limit, where 7, and 7, are long and the rate
becomes equal to an inverse solvent time scale. The first term
in K;,, K5,, and K5, [Egs. (4.12a)-(4.12¢) ] is an extension
of Egs. (5.1) to a three-site system. It depends on five differ-
ent solvent time scales 7, 7,, 7., 7,, 75 . Like Egs. (5.1), the
first term interpolates between the nonadiabatic rate (for
7;—0) to an inverse average time scale (as T;— o). The
second term in K, and K, comes from a coherent process in
which the electron transfers between the states via coher-
ences without passing through a population. K5, [Eq.
(4.12¢) ] has two terms. The first represents the process in
which the electron does pass through the population of the
state |2), but before it equilibriates with the solvent at the
state |2), the electron transfers to state |3). This term is
represented by diagrams (i) and (ii) in Fig. 1(b). The sec-
ond term in Eq. (4.12¢) represents the process in which the
electron tunnels from state |1) to state |3) without actually
passing through the state |2). This term is represented by
diagram (iii) in Fig. 1(b).

We shall now consider X, more closely. For simplicity
we assume that the relaxation of the system is sufficiently
rapid, 7. -0, so that the only quantity we need to consider in
K, is the second term in Eq. (4.12c). We shall examine a
few limiting cases of Eq. (4.12c). We first consider the case
whereby the energy level |2) is sufficiently far from the ener-
gy levels |1) and |3), i.e,,

AE} > A,k T, AEL > JAk,T . (5.2)
Equation (5.2) implies that the activation energies
AGY=(AGS;, —1,,)/44,, and AGH=(AGY; + 4,

— A3)*/4A,, are much larger than k, T. This limit is where
the conventional superexchange theory is usually formulat-
ed.””*?7 In this case, by using the asymptotic expression Eq.
(4.22) of I(x), Eq. (4.12c) assumes the form

K12= (5.1b)

0.5

10

FIG. 4. Auxiliary function I(x) [Eq. (4.20)] (solid line). The dashed line
represents the difference between the exact curve [Eq. (4.20)] and the ap-
proximation [Eq. (4.21)].
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K, = Qu/f) |\ Ve |2S,3(AE}3)
with

(5.3a)

V12 V23 X
AE |, (As/A13) + AE L, (A/A3)
Equations (5.3) may be obtained using the Fermi Golden
rule and the superexchange coupling matrix element V.
Note that in this limit the rate satisfies the detailed balance
condition

K, /K;s =exp( — AGS, 7k, T) . (5.4)

We next consider another limiting case where all the three
states are completely degenerate, ie, AE},
=AE), =AE}; =0. We further assume A,=4,
= A,=A. We then obtain from Eq. (4.12c)

(5.3b)

VSE =

2
K;, =7” [Vee ’S15(0) (5.5a)

where the superexchange coupling matrix element is
Vl 2 V23

kT

Equations (5.5) may be rationalized using a simple physical
argument. The variance of the energy level fluctuations is
~\AkyT. Vg is thus given by V,,¥,, divided by a typical
thermal energy fluctuation.

The primary electron transfer process in the photosyn-
thetic reaction center (RC)* involves a transition from a
photoexcited bacteriochlorophyll dimer (P) to bacterio-
pheophytin (H). In this process the electron transfers over a
distance of 17 A in 2.8 ps. Since a direct (through space)
coupling between P and H is excluded by their large separa-
tion, it has been suggested that the bacteriochlorophyll mon-
omer (B), which is located between P and H plays an active
role in this event. This system may thus be described by the
present three site-model with states |1), |2}, and |3) corre-
sponding to the electron on P, B, and H, respectively. A
controversial issue?®® is the relative magnitude of the su-
perexchange and the sequential mechanisms in this system.
In the calculations presented in the following figures we have
used some characteristic parameters of the reaction center
ET system. We have calculated K;, using Eq. (4.12¢) and
the results are displayed in Fig. 5 as a function of
AE}, = AGY, + A,, for different values of AE},. The
dashed line in Fig. 5 represents the conventional superex-
change rate expression [Egs. (5.3)] which breaks down
when level 2 is not well separated from levels 1 and 3. Recent
ultrafast measurements performed on the reaction center®®
have probed the appearance of the state |3), following the
optical preparation of state |1). Since the appearance of |3)
may not be necessarily a single exponential, it is useful to
introduce a single characteristic timescale 7 which is analo-
gous to the mean first passage time, defined as follows:

SE —

(5.5b)

F=f [py(c0) —ps(n)] dt. (5.6)
(4]

Here p, (1) is the solution of the generalized master equation
with the initial condition p,(0) = p;(0) =0, p,(0) = 1. Us-

Q
a2

10

Kg; (10"/9)
0

-10

T
—-3000 0

AE121 (cm™)

FIG. 5. Dependence of the superexchange rate K, on AE j,. Curves a, b,
and c correspond to AE |, = 0, 700 and 1200 cm ~ ', respectively. The other
parameters in this calculation are: 4,, = 1000 cm™', 4,; = 1500 cm~',
A13=2000cm ™", ¥, = 80cm ™', ¥,; = 6V, T = 300 K. The dashed line
represents the conventional superexchange rate [Egs. (5.3)] with
AE}, =0.

3000

ing the definition of 7 and the general relation of Laplace
transforms p,( o0 ) = lim,_,sp;(s) we obtain

_ XK, + K5+ K33) + K5

T= 7 (5.7
with
X =K, K;;, — K;K,,, (5.8a)
Y= (K,, — K;;) (K3, — K33)
— (K — Ky (K5, — K3y, (5.8b)
K=K, (0). (5.8¢)

An important feature of 7 is that it only depends on the rate
matrix K (s) at s = 0. Even though the dynamics may re-
quire the full frequency dependent rate K (s), 7 depends
only on K, (0). Ignoring the reverse rates K3, K5, and K,
and assuming K5, > K, which is the situation for the reac-
tion center, Eq. (5.7) reduces to

T= N S . (5.9)

K31 + K21
We shall now introduce the following ratio as a measure of
the relative contribution of the superexchange mechanism to

the total rate:

K1

R=——2
K + K5,

(5.10)

When R €1 the sequential transfer dominates, and for R — 1
the superexchange transfer dominates. Figures 6—8 display
the dependence of R on the energy AE }, for different values
of AE |, coupling V,,, and reorganization energy 4 ,,. In all
figures R — 1 for large values of AE,,, indicating that the rate
becomes dominated by superexchange. The way in which R
attains its limiting value depends on the other parameters, as
shown in Figs. 6-8.

Our rate expression [Eqgs. (4.12)] was obtained in the
high temperature limit. It may be extended to low tempera-
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T T
0 2000 4000

AElzl cm™)

FIG. 6. Relative contribution of the superexchange mechanism R [Eq.
(5.10) ] is displayed vs AE }, . The solid, dashed, the dotted lines correspond
to AE}, =0, 400 and 700 cm ™", respectively. The other parameters are:
A3 =2000 cm™', A,;=1500 cm™', 4,, = 1000 cm ™', ¥,, = 80 cm™',
Vo3 =6V, T=300K.

tures by adopting a more specific model for H, and U;. A
common model in electron transfer theories assumes that U;
is dominated by a single harmonic coordinate representing
an intramolecular or intermolecular vibration with frequen-
¢y w. In this case Egs. (4.12) should be modified by replac-

ing all k, T factors by the average oscillator energy (¢)°

(e)=—ﬁa—)coth( i )
2 2k, T

(5.11)

In the high-temperature (kp,T>#w) limit {(€) =k;T.
When k, T in Eqgs. (4.12) is replaced by (¢) [Eq. (5.11)]
we obtain a rate expression which is not restricted to the high
temperature limit. We have used the present theory*° for K5,
together with Eq. (5.11) to analyze the temperature depend-
ence of the ET rate observed in Rhodopseudomonas viri-
dis.?®

' T T
0 2000 4000

AE',, (em™)

FIG. 7. Relative contribution of the superexchange mechanism R [Eq.
(5.10)] isdisplayed vs AE },. V|, = 80cm™" (solid line), 40cm ™' (dashed
line) and 20 cm~' (dotted line). Other parameters are: 1,, = 2000 cm ™',
Ay =1500cm=", A, =1000cm~', AE!, =0, V), =6 V,,, T=300K.

T T
0 2000 4000

AE121 (cm™)

FIG. 8. Relative contribution of the superexchange mechanism R [Eq.
(5.10) ] is displayed vs AE }, for different values of the reorganization ener-
gy 4,,. The solid, dashed, and dotted lines correspond to 4, = 100, 500 and
1000 cm !, respectively. The other parameters are AE |, = 0, 4,; = 2000
em~', A4,;=2000cm™", ¥, =80cm™', V5, =6V, T=300K.

It should be noted that for certain values of the param-
eters, K5, [Egs. (4.12c)] and 7(q,9’) can become negative.

This may happen when AE|;>./k;TA,, and level E, is lo-
cated between E, and E; (curve c in Fig. 5). In this case the
system cannot be described by simple rate equations and one
should calculate the complete frequency dependent rate
K, (s) which enters in the generalized rate equation [Eq.
(2.12)]. In the next section we present the exact solution for
the rate (to infinite order in the nonadiabatic coupling) in
the limit of fast solvent fluctuations. There, too, X5, (0) may
become negative for the same reasons.

VL. FAST SOLVENT FLUCTUATIONS: HOMOGENEOUS
DEPHASING

In typical electron transfer systems in condensed
phases, the solvent has a complex dynamics characterized by
many different time scales. In the previous section we adopt-
ed the static limit which assumes that the solvent time scales
are slow compared with the inverse characteristic line broad-
ening (spectral width of S, ). This limit is applicable in con-
densed phases where the linewidth is extremely broad. It
should be noted, however, that assuming a Gaussian statis-
tics for the solvation coordinate, it is possible to solve for the
correlation functions exactly for an arbitrary solvent time
scale, i.e., without invoking the static limit. In the theories of
spectral lineshapes, it is common to use stochastic models
which can be solved for an arbitrary solvent time scale.'®>!
The stochastic models are, however, classical and do not
allow the solvent to be affected by the system. Consequently
they show no Stokes shift. We have developed a more general
exactly solvable model which does not suffer from these limi-
tations.? The general solution is relatively simple in the time
domain, but requires a triple Laplace transform similar to
Eq. (4.5¢c) to get the correlation functions in the frequency
domain. It is the performing of these triple integrations that
makes the general solution more complicated. The results of
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the previous sections are the limit of that model when the
solvent fluctuations are slow. It is instructive however to
consider the reverse limit, i.e., when solvent fluctuations are
fast compared with their inverse magnitude. In this limit the
line shape is homogeneously broadened, in contrast with the
static limit which corresponds to inhomogeneous broaden-
ing. The homogeneous dephasing model is less realistic for
electron transfer. It is however exactly solvable to infinite
order in the nonadiabatic coupling V. Its analysis thus pro-
vides a valuable insight on the limitations of our perturbative
expansion [Eqgs. (3.10)]. A serious limitation of the homo-
geneous model is that it is an infinite temperature limit in
which K, = K;; so that at equilibrium all sites are equally
populated. The model thus fails to predict the desired de-
tailed balance condition at finite temperatures.

The equations of motion in the homogeneous dephasing
model for an N-site system assume the form

Pix = ( _i)(Ej —Ek)ij — Lk Pjx +iVi ik Pik—1
+ Vs Piksr — Vi1 Pi— vk

— Ve 1P (6.1)

with
pO={lpO] i), (6.2a)
pr (D =({jlp)k), j#k. (6.2b)

p; (2) represents the population on the site jand p;, (¢) repre-
sents the coherence between the state j and state k. T';, de-
notes the pure dephasing rate which satisfies the condition
I'; = 0. This condition implies that there is no damping for
the populations. The exact rate constants for this model are

»
N
wn
I
©
Nan IR
—
N
o
—4000 -2000 0 ) 2000 4000
2 (Cm )

FIG. 9. Dependence of the exact superexchange rate K, in the homoge-
neous dephasing model [Eq. (6.3c)] on energy E, for different values of
energies E, and E,. E, = — E,. Curvesa, b, ¢, and d correspond to E, =0,
100, 250, and 500 cm ™', respectively. The other parameters are I' = 500
cm™! ¥, = V,; =100 cm~". This figure shows that if |E, — E,| is large
enough, the superexchange rate K;, may become negative for some values of
E,. This behavior is very similar to that in Fig. 5, where the superexchange
rate K;; was obtained by using the static approximation.

K, (s) = K5(s)

e 2V?2B13(B23B13 + V%Z) - 2V%2 V%3BI3
A b

=R
(6.3a)
K;,(s) = Ky;(s)
e 2V3,B\3(B By + V3,) — 2V, V1, Bys

=R

A
(6.3b)

2VL, V3B
Ky (s) = K 5(s) = Re—“—Aﬁ—‘i, (6.3¢)

where

B, =s54+T, +Ii(E,—E,), (6.4)
A= (B12B13 + V%s ) (stBls + V%z) - V%z V%s . (6.5)

We have calculated the rate constant X5, (0) as function
of the energy E, with different energies E, and E;. The calcu-
lations displayed in Fig. 9 show thatif |E, — E;| €T, the rate
K;,(0) is always positive. However, if E;, — E; > T" and E, is
located between E, and E; the rate K;;(0) then becomes
negative. As E, is varied so that it is not between E, and E,,
the rate K, (0) becomes positive again. This is a similar situ-
ation to what we found for K, in the previous section except

that the dephasing rate I should be replaced by [4k; T4, .
In this case one has to use the full frequency dependent rate,
and the ordinary rate equation does not hold. Figure 10 dis-
plays the frequency dependence of K, (s), and shows that it
vanishes as s— . It should be pointed out that the rate
K, (s) always becomes positive for large s regardless of the
other energy parameters. We next calculate the time-depen-
dent population of state 3 when initially the electron is local-
ized in state 1. We present two different calculations. First
we solve the generalized master equation Eq. (2.12) exactly.

[«p]
ad\a
—_
wn
o~
©
N BN
_ b
s
o
C
T T
| |
0 500 1000 1500 2000

S cm™)

FIG. 10. Frequency-dependence of the superexchange rate K3,(s) in the
homogeneous dephasing model [Eq. (6.3c)]. E, = — E,. Curvesa, b, and
¢ correspond to E, = 0, 100, and 500 cm ™", respectively. The other param-
etersare: I' = 500cm ™' ¥, = V5, = 100cm ™ '. Though it is not very clear
in this figure, the rate K, (s) is always positive for large 5 [ K, (s) becomes
positive in curve ¢ for s> 600 cm™'].
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In the second calculation we approximate K, (s) by K, (0),
and solve the ordinary rate equation Eq. (2.17). We have
chosen parameters such that K, (0) is negative. The results
are displayed in Figs. 11 and 12. The exact solutions of the
generalized master equation are, of course, always positive.
The solutions of the ordinary rate equation may yield a nega-
tive population for a short time but approach the exact solu-
tions for long times. These calculations demonstrate that the
negative value of K, (s) at s = O is a signature of the break-
down of the ordinary rate equation at short times. As the
dephasing rate I increases, the ordinary rate equation holds
for shorter and shorter times (Fig. 12). When I' - 0, the
ordinary rate equations become exact.

VII. RELATION TO ULTRAFAST PUMP-PROBE
SPECTROSCOPY

The model system studied in this article (electron trans-
fer in a multisite system interacting with a thermal bath) is
formally identical to the models commonly used in the stud-
ies of the nonlinear optical response and susceptibilities in
condensed phases.””® In this section we elaborate on this
analogy in detail. The density matrix formulation of optical
(and nuclear magnetic resonance) line shapes is well devel-
oped'*® and by formulating rate theories in the same manner
we gain a better insight on the relationship among these dif-
ferent observables. Multiphoton processes are naturally
classified as coherent and incoherent, in complete analogy
with the tunneling and the sequential pathways, respective-
ly, appearing in the present rate theory. One well-known
example is the classification of emission line shapes into Ra-
man and fluorescence components. The Raman process is a
direct event proceeding via coherences whereas fluorescence
is a sequential process. At large detunings and in the absence
of dephasing processes, the emission is purely of the Raman
type. As the incident frequency is tuned on resonance, and
when dephasing processes take place, the fluorescence be-

| |

Il
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Ps(t)

|

-01 00 01
i

o
o

0.5

t (107s)

FIG. 11. Time dependence of the population p;(¢) in the homogeneous de-
phasing model. The initial conditions are p,(0) = 1, p,(0) = p,(0) = 0.
The solid line represents the exact solution using the frequency dependent
rate [ Egs. (6.3) ] and the dashed line represents the solution of the ordinary
rate equations with K(0). The parameters in this calculation are
E = —E=10cm ", E,=0cm™, V), =V,;=50cm™"'and I" = 20
em™ .

02 03 04 05
N

1

P3(t)

|

-0.1 00 0.1
I

o
=)

11 0.2
t (10™1s)

FIG. 12. Same as Fig. 11, but with a larger dephasing rate I' = 100 cm .
As the dephasing rate increases, the difference between the solution of the
generalized rate equation (solid line) and the ordinary rate equation
(dashed line) decreases.

comes dominant.'® This state of affairs is remarkably similar
to the dominance of the sequential mechanism as the inter-
mediate energy (E,) is tuned closer to E; and E;. In this
section we shall focus on pump-probe spectroscopy'®2°
which bears the closest analogy with the rate theory devel-
oped in this article. Consider a three-level molecular system
with energy levels E,, E,, and E, (Fig. 13). At t=0 we
subject the system to a short pump pulse with temporal enve-
lope €, (#) and frequency w,. Subsequently, the system inter-
acts with a second probe pulse €,(¢ — 7) with frequency w,
centered around ¢ = 7, and the total absorption of the probe
is recorded as a function of w,, w, and 7. We further consider
only resonant interactions (the rotating wave approxima-
tion) and assume that o, is resonant with E, — E, and o, is
resonant with £, — E, (Fig. 13). Under these conditions we

E¢

E

g

FIG. 13. Molecular level scheme for pump-probe spectroscopy. The pump
field with frequency w, is resonant with the |g) to |e) transition, whereas the
probe (w,) is resonant with the |e) to |f) transition.
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can consider the molecular states “dressed” by the radiation
field. The only relevant states will be the ground state with
one w, and one @, photon, the intermediate state with an @,
photon, and the final state with no photons. The energies of
these states are

E,=E, +0,+ 0,,
E,=E, +wo,,
E;=E,.
The system is now described by the Hamiltonian Egs. (3.1)
and (4.1) with the interactions
Vie= —pge () (e} (gl + lg)e]),
Vs = —pn&(t—7)(| )| + (S . (7.2)

Here u,, and p,, are the transition dipole matrix elements.
The probe absorption is given by?’

(7.1)

Ao(wye,) = 2“)2|l-‘fe|2|l‘eg|2[0'1 +oyu]. (7.3)

In a stationary [continuous wave (cw) ] pump—probe spec-
troscopy €,(¢) =€, and €,(t — 1) =€, independent on
time. o, and oy, are then given by

gy = Iell2|€2|2(G23(S)G22(s)Glz(S)P1>p , §-0, (7.4a)
oy = €216 G (5) G153 (5)G 1 (s)py)., s—-0. (7.4b)

o, is a sequential pathway whereas oy is the coherent path-
way. Equations (7.4) are formally identical to Eq. (3.10c).
We can then use the expressions derived in this article to-
gether with Eq. (7.1) to obtain the cw absorption spectrum.
Ultrafast (femtosecond) pump-probe measurements offer a
much better probe of molecular and solvation dynamics.
The signal is then given by the same coherent and population
pathways, but with the pulse envelopes properly incorporat-
ed. Using the formal expressions developed in Ref. 20 and
the correlation functions calculated in this article, we get for
a time-resolved pump—probe measurement

1 1
27A 1,4, J1=2%(0)

oy = (2m)? J‘w dtd(t—1)
0

(9, + c()]?
Xexp[ —q — —J:—CZZ(T] exp( —I't),
(7.5)
where
_ AE}, (1)
q, _—\Q—A_n—_’ (7.6a)
_AFL (7.6b)
YT '
(1) = (exp(iHgzt) Uyps exp( — iHgt) Uy 1p5) (7.6¢)
A12A23
(1) = f le (D) |ey (2 — 1) |* dt, (7.6d)
AE; () = Eyy + (exp(iH,t) Uy, exp( — iH,t)p,) ,
(7.6e)

oy = 27P(7) [R13S13(AE}3 )1(77:3 )
— R;8,(AE }2 M(11,) — Ry3S53(AE 53)1(n3, )] .

(1.7

AEj, Ay, My, and R, are defined in Egs. (4.7), (4.8),
(4.11a), and (4.11b), respectively. I is the inverse lifetime
of level |e). In the high-temperature limit AE , is related to
AG}’k and 4, by Egs. (4.10). In a cw experiment we simply
set ®(7) = |€,|?|€,|* independent on time. When the fre-
quencies @, and @, are tuned such that E, is far from E, and
E,, the coherent term [Eq. (7.4b)] becomes dominant and
the process is direct (tunneling-like). For a given detuning,
if the dephasing rate is increased the sequential term [Eq.
(7.4a) ] becomes dominant. Extra narrow resonances in cw
pump—probe spectroscopy related to the coherent term oy,
have been observed.** In an ideal time-resolved pump—probe
measurement where the two pulses are well separated in
time, the coherent term vanishes and the process is sequen-
tial. This is shown by the ®(7) factor in Eq. (7.7). Other-
wise, the coherent term is responsible for ultrafast transients,
the “coherent artifact.” 3

The present analysis shows the strikingly close resem-
blance between the dynamics of nonlinear optical processes
and electron transfer. Since optical measurements are much
more precise and detailed than kinetic measurements, one
can use the present formalism to extract information from
optical measurements and predict electron transfer rates in
the same medium.'”®
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APPENDIX A: THE POPULATION PATHWAY

Using the same method used in Appendix D of Ref. 12a,
we define

W(x,t,Y)F—((S(X —}Ij/)Gkk(t)(S( y _Hnm )pr>
_ 1 1
27TAj/Anm \’1 — (1)

2
Xexpl_qg_ [ql+q22("(t)] ], (A1)
1 —c¢°(2)
where
x —AE; (1)
=—, (A2a)
qi x/iAj/
y— AE"IM
=27 A2b
q, \/iAnm ( )
(1) = (exp(iHpt) U;, exp( — iHgt)U,,,pp) , (A20)
Aj/Anm
AE; (nH=E, + (exp(iH, 1) U, exp( — iH,t)p,) ,
(A24d)
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where AE},, and A,,, are defined previously in Eqs. (4.7)
and (4.8). The time-dependent vertical transition energy
AE/,(¢) can be written as

AEL(D=E, + (U,p(1)
with

(A3a)

p(t) =exp( —iH, t)p, exp(iH,1) . (A3b)
We have p(f) = p, at t =0 and we expect that p(2) —p, as
t— . AE,(2) should satisfy the following conditions

AE[ (0) =AE],, (Ada)

AE () =AE} . (Adb)
We shall assume that the time dependent vertical transition
energy AE [ () can be written in the form

AE}/U)=AE;(/—,3<U,'/(t)UrkPB)- (A5)

Equation (A5) is exact for a harmonic solvation coordinate
and it satisfies conditions (A4). Substituting Eq. (AS5) into
Eq. (A2a) and using the fact that the r and & in Egs. (3.10),
only assume the values of either r = k or r = n and k = m.
Equation (A1) then becomes

_ | 1 )

Wix,ty) = 27b, B T— D exv[ —Ppi
R 2pm3c(t)+(p%+p§)c2(t)]
2 1 -2
(A6)
with
x—AE}, y—AE’, y—AEk

P1=—72—A—j:—, P2=——V5XZ‘~, P3=—WA"T—-

Inserting Eq. (A6) into Eq. (4.5b) we obtain the final
expression for the frequency dependent population Green
function

(G, (5)G ()G, (5)p,),

® ® /o s/
=2 Zf dt*"f dx dy ST _ ST _
(2m) 5 e - x ys2+x2s2+y2

X[ W(x,t,y) — W(x,0,¥)] . (AT7a)
We can also show using Eq. (4.5a) that
2 Re(G,,, (5)p,)
— 27 f_: dx szsi T Sun 3+ AES,) (A7b)
J

(ij (S)Gjm (S)ka (S)Pr>c

In the limit s -0, Egs. (A7) reduce to

(Gj/(s)Gkk (S)Gnm (s)pr>

2 o
=(_2£)Sj,(AE,-",)S,.m(AEZm)f dr——
0

V1 — (1)

2¢5,qkc(t) — [(g5)° + (g,.)?]c* (D) ]
1 — (1) ’

X exp[ -

(A8a)

and

2Re (G, (s)p,) = -z-ﬁlsnm (AE’,) s—0, (A8D)

where g*, = (AEX_)/(V2A,,) and S, (x) is defined in
Eq. (4.14). Equations (A8) were used in the rate expression
[Egs. (4.12)].

APPENDIX B: THE COHERENT PATHWAY

The coherent pathways appearing in Egs. (3.10) can be
classified into the following two types:
(G (5) Gy, (5) G (5)p, ). and (G (5) G ()G (5P, ) s
we shall thus evaluate these two types of terms in this appen-
dix. The same method may be applied to evaluate the more
general form of the coherent pathway [Eq. (4.5¢) ]. Westart
with the coherent pathway (G (s)G,,(s)G,,, (s)p,)..
Making use of the cumulant expansion in Eq. (4.5c), we
obtain

(G (5)G,,, (5)G,, (5)p,) .
=2Ref dt3f dtzj dt,exp[ — (s +iE} )1,
0 0 (1]
— (S+iE[ )ty — (s+iE,)t]

1
Xexp[ - 5[Afk(tz+t3)2+Aim(tl +8,)?

+2((jijkmpB>(t1+t2)(t2+t3)]]9 (B1)

where we have used the relation U,,, = U, + U,,,. Using
the correlation coefficient ¢ [Eq. (4.11c) ] we can recast Eq.
(B1) in the form

=2Ref dt3f dtzf dtiexp[ — (s+IiEj )t — (s+iE[ )t — (s +iE}, )]
0 0 0

1+

Xexp[ —

1—
n Y[Ajkt:! + (A + AL+ Akmt]]2] CXP{ - —4—7—/[Ajk’3 + (A — A — Akmtl]2] .

(B2)
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We shall limit our discussion to the case |y| < 1. |¥| = 1 will
be discussed in Appendix E. By using the identity

1
— = A%y 2]
exp[ 2

—ixt] dx . (B3)

1 [ x?
—1 xp —_ ——2—
V27mA? /- = 24
Equation (B2) becomes
(ij (S)Gjm (S)ka (S)pr ¢

Ref dxf dyf dt3J- dt2f dt,

(ij (S)Gjm (s)ka (S)Pr>c

= =]
el dx dyexp(—
vyl — — -

s — BC s

x2 y2
1+y - 1—7)
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2
X exp(-— x_ -—}-’-2—)
T4y 11—y
X expl — (s + id)t; — (s + iB)t, — (s + iC)¢,]
(B4)
with

A=AE}; + 8, (x+y), (BSa)

B=AE, + A, (x+y)+ 4, (x—y), (B5b)

C=AE;, +4,, (x—yp. (B5c¢c)

The integrations over ¢,, ¢,, and ¢t; may now be performed
resulting in

X[s2+A2 (> +BH(S+C?H

Each of the three terms in the bracket remain finite as s -0
when the integrations are carried out. Since the three terms
in the square bracket in Eq. (B6) have the similar structure,
we shall evaluate the first term (i.e., I,) in detail. I, and I,
can be evaluated in a similar way. We introduce the variable

Z= AEJrk + Ajk(x +,V) )
we then have

(B7)

« s/ 2 *
Il=f_mdzs2+z2 Ajk\/l——?" J-ﬂwdy
[(z—AEL)/Ay +y]? ¥ ]

1+ T 1—y
§ — (Z+f+ 290, (f+2DA,)

[ + (z+f+ 29A,)° ] [ + (f+ 20A,,,)7)
(B8)

X exp[ -

with
Ay, A,
—AE + -
Ajk Ajk

In deriving Eq. (B8) we have repeatedly used the relation
AE;, = AE}, + AE}, . Making use of the following identi-
ty (see Appendix C):

_ yz)
i’ XP( 287
£ — (a, +y)(a,+y)
[+ (a; + )21 + (a, + p)°]
___J'°° dx sin[ (a, — a,)x/2]
o (a, —a,)/2

Xcos(ﬁ%—a—z— x)exp( — X — % Azxz) ,  (B10)

f=AE;}, — (B%)

1
27A?

P+ C? (P +A4%)(P+BY

s* — AB s — 5>+ AC ]
— =+ -1,.
F+BI (F1ADGF+CHl T
(B6)
—
we get
1,=f .dzsjfzz[q;k(z,s)], (B11)
— ry2
I_;k(z)s) = —277'._.__1—exp|:__ _(.z__g.l_k)_]
Jarky T2, 4kp T

XJ‘“" dx sin(zx/2)
0

z/2
Xcos{[(_l- — .42_)Z+_77_J.k_] x}
2 A R,
X B12
Xexp| —sx — .
p( 2R,-k) (P12

The parameters 4,, 4, 7, and R, are defined in Eq. (4.8)—
(4.11). Applying a similar method to I,, I, and to the other
coherent pathway (G, (5)G,, (5)G,,, (5)p, ), we finally ob-
tain from the coherent correlation function

(G (5)G,,, (5) Gy, (5)p, ).,
—j dz LT S/’”zz (L. (28) — I} (2,8) =I5 (2,5)]
(B13a)
and
(G (5)G,,, (5)G; (5)p, ).
_f dz 2T S/" ~I5(z9)]. (B13b)

In the limits s -0, Eqs. (B13) reduce to
<ij (S)Gjm (S)ka (S)Pr>c
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= Eﬁz' [ijs;‘m (AE;m )I(%'m )~ Rijjk (AEjrk )I(ﬂfk)

— R Sim (BE 1 ) I (93 ) ] » (Bl4a)
(ij (S)Gjm (s)Gy (S)Pr>|s-o
= - ngjmgm(AE;m)I(n;m). (B14b)

It should be pointed out that Egs. (B14) can be alternatively
derived from Eq. (B4) by sending s— 0 first, then taking the
real part of the integrand and using the relation

cos(a+ b+ c) =cosacos(b+c¢)+cosccos(a+b)
(B15)

Equations (B14) were used in our final rate expression [Eq.
(4.12)].

—cosbcos(a—c).

APPENDIX C: DERIVATION OF EQ. (B10)
Using the following integral:

s — (a;+ ) a,+y)
[s* + (a, + »)21[s" + (a, + y)?]

—Re f at, J dt, expl[s + i(a, + 011,
0 0

— s+ i(a, +}’)]t2} ’

(ChH

the left-hand side of the Eq. (B10) becomes

1 0 o [ y2
R d dtf dt (—
1A ef_w yL 1)y P\ T a

—{ls+i(a, + ) 1t, — [s + i(a, +y)]t2})

=Ref dt,f dt, exp[ — (s + ia)t,
0 0

— (s+iay)t, — 1A (8 + 1,)°] . (C2)
Making the substitutions x = ¢, + t; and ¢t = £, we get

ReJ dtf dx exp[ — i(a, — a,)t — ia,x — sx — JA°x?]
0 t

=Ref dxj dtexp| — i(a, — a,)t — ia,x — sx
0 0

— 1A% =f dx —
o a,—a,
Xexp( — sx — 1A%?)
which proves Eq. (B10).

(sin @,x — sin a,x)

(C3)

APPENDIX D: DERIVATION OF EQ. (4.10)
In the high-temperature limit, we may use the expansion
exp[ —B(Hy + U))]
=exp( —BHy) —Bexp( —BHp)U;
+ (B*/2)exp( — BHp)U? . (D1)

The average energy when the system is in the | j) state is
given by

Go=(Hp) =E,+Hyp) +Up). (DD
We further note that

exp| —B(Hy + U,

p[ —B(Hy + U))] (D3)

p. = .
" (exp[ —B(Hp + U)])
Inserting Eqgs. (D1) and (D3) into Eq. (D2), and truncat-
ing the expansion to second order in U,, we obtain

G;-):Ej + (Hy p3)
—B(U2pp) — (B*/2)(Hy ps){U2 py)

+ (B*/2)(U Hp ps) -
By using the following relation:

(D4)

ad
'a—B-<U3, ps)= —ULHy pp) + (U2 pg)(Hg pp),
(D5)
Eq. (D4) reduces to
GO =E, + (Hy pa) —B(Upn) — B2 (U2 g,y
/ ! 2 dp g
(D6)

Since (U2 py) islinearly proportional to k;, 7,'** we define
(U3 ps) = (A/B) . (D7)

Substituting Eq. (D7) into Eq. (D6) we finally obtain

G?=Ej+<HBpB>-(B/2)<U}pB>’ (D8)
AGS =G~ G =E, — E, — (B/2)(U} p;)
+ (B/2){U% ps) . (D9)
We further have
AES=((H,—H,) p,)=E, —E, —B(U,U, pz) .
(D10)

Equations (4.10) immediately follow by combining Eqgs.
(D9), (D10), (4.7), and (4.8).

APPENDIX E: A SINGLE SOLVATION COORDINATE
AND A GENERALIZED ZUSMAN’S EQUATION

In this appendix we consider the special case whereby
the solvent fluctuations on the various sites are fully corre-
lated, i.e., |¥| = 1. In this case, we get from Eq. (4.11c)

(Us Ui ps) = + [(Uf pa) Ui ps)]"?.  (ED)
A physical realization of this situation is when the charge
distribution of the electron transfer system is well localized.
The solvent polar molecules experience the dipolar field
created by the charge transfer system. The strength of the
dipolar field will be different when the electron is at different
sites so that the fields can be written as

D;(r) =D,é(r), j=123. (E2)

Here &, (r) is the electrostatic field created by a dipole. The
corresponding interaction energy can be simplified as
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U=DU, U= —fP(r)d)(r) dr. (E3)

Thus, U is the only relevant solvent coordinate in the prob-
lem. Equation (E3) is a sufficient condition for Eq. (E1) to
hold. When |y| = 1, both R, and 77, [Eqgs. (4.11)] diverge.
Using Eq. (4.22) we then get
Ry I(m,) =R, /() = [ A i
jk jk 7 =Xjk jk AE;,,,/lk T AE;m/i. .
The rate matrix for y = + 1 can thus be calculated using
Egs. (4.12) with the substitution of Eq. (E4). After some
algebraic manipulations we get for K, when y = 1:

(E4)

29 1
K — ; Ln V2 V2
31 = 021037, + PR [AE;; —AE}J(A23/A,3)]2

AZ
X [SIB(AE}S) - —A'?"SB(AE;J )
13
A,
&%

(E5)

S(AE S, )] .

It should be pointed out that Eqs. (4.10) still hold in this
case. The conventional superexchange result can be obtained
by neglecting the last two terms in the square bracket of Eq.
(ES).

Equations (E5) can also be obtained from a generalized
Zusman’s equation'® which is the combination of the Bloch
and the Smoluchowski equations. We thus write

o (x,8) = (—1) z{: Vilog(xt) —o,(x,1) ]

al,.
~t a4

a

—+x ——/Ilfj]aﬁ(x,t)
x

(E6a)
djk (x,t) = ( - 1) z [I/Ijalk (.x,t) — V,kajl(x,t)]
I

a n d ,
— g (83 5+ Ak owno

— i[Ep + Dyx)ox(x,0), j#k,  (E6b)

where

;k = f ¢(rl)¢(r2) (P(l‘1)P(l‘2)pjk)drldr2,

1
kp

’

k=

TJ- o(r) (P(rl)pjk)drl’

x=U,

‘Djk = DJ _Dk’

Pu = exp( —BI{jk)/(exp( —B}Ijk)>’
Hy = (H, + H)/2.

A is a rate constant which describes how fast the system

relaxes to thermal equilibrium. The population on the state
[ /) is given by

Y. Hu and S. Mukamel: L.ong-range electron transfer

p; (1) =J dxo; (x,t).

By using standard projection operator techniques we can
derive the generalized master equation [Eq. (2.12) ] starting
with Eq. (E6). The result {Eq. (ES)] follows by applying
the static approximation for the coherent Green functions.
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