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We investigate the third-order nonlinear-optical susceptibility y") in molecular aggregates and its
scaling with aggregate size. The aggregate is modeled as a collection of N-interacting, homogene-

ously broadened two-level systems, where the interaction includes both the static dipole-dipole cou-

pling and superradiant coupling. Our expression for y' ', derived using Liouville-space Green-
function techniques, contains contributions from excitons as well as biexcitons. The scaling of y( '

with aggregate size and its dependence on the laser detuning and homogeneous and inhomogeneous

dephasing rates are analyzed. y' ' contains terms that scale as -N and -N(N —1). However, un-

der off-resonant conditions these terms interfere destructively, resulting in a linear -N scaling,
which is precisely what is expected for N monomers. Detailed calculations of phase-conjugate de-

generate four-wave mixing and pump-probe spectroscopy are performed. In the first case we pre-
dict the existence of a narrow dephasing-induced resonance superposed on the broader superradiant
exciton line shape. Pump-probe spectroscopy shows a series of biexciton absorption lines, some of
which are superradiantly broadened.

I. iNTRODUCTION

Currently there is great interest in molecular aggre-
gates or clusters, the optical properties of which have
been studied in solution, ' on metal and semiconductor
surfaces, and in molecular beams. Of particular interest
are J aggregates, ' which form when certain dye mole-
cules such as pseudo-isocyanine (PIC) are cooled in solu-
tion at a suKciently high concentration. Upon aggrega-
tion the absorption spectrum of these systems dramatical-
ly narrows and shifts to the red. This has been attributed
to motional narrowing of the inhomogeneous broadening
in the excitonlike state, as proposed by Knapp. J aggre-
gates also display interesting excited-state dynamics;
in particular, an enhanced radiative decay rate that de-
pends on aggregate size, as measured by various
nonlinear-optical techniques. The enhanced radiative
rate may be attributed to the -N' scaling of the transi-
tion dipole moment, which results in a linear -N scaling
of the radiative decay rate with aggregate size X. The
efFect of homogeneous dephasing on the enhanced radia-
tive rate was studied by Grad, Hernandez, and Mu-
kamel' using an effective-Hamiltonian approach. It was
shown that the pure dephasing f' directly competes with
the radiative damping Ny (where y is the monomer radi-
ative rate). For large values of f'/Ny the enhanced radi-
ative rate Xy is quenched and is reduced to the monomer
value y. In a previous publication" we have theoretical-
ly investigated the excited-state dynamics of J aggregates
with intermolecular dipole-dipole coupling V and varying
degrees of inhomogeneous broadening, and have estab-
lished that the enhanced fluorescence rate is a result of
microscopic superradiance. ' A superradiant decay is ob-
served as long as N (o/V) n. ((I and f'/Ny &&1.
When either of these conditions is violated, the coopera-
tivity is determined by a coherence length which is small-

er than the aggregate size. As the homogeneous or inho-
mogeneous broadening is increased the coherence length
decreases until the superradiant decay is destroyed, yield-
ing the single-molecule result. It is interesting to note
that when V)) f'))Ny the superradiance is destroyed
but the transition frequency is still equal to the exciton
frequency. This shows that different cooperative phe-
nomena have different coherence lengths.

In the present paper we extend our investigation of
molecular aggregates to include the third-order nonlinear
susceptibility y' '. ' ' Our main goal is to calculate the
effect of aggregate size on y' ' and determine if large ag-
gregates possess enhanced or giant nonlinear susceptibili-
ties. Materials with large and fast nonlinear susceptibili-
ties for off-resonant optical frequencies which are not ab-
sorbed by the medium are needed for optical switching
applications in communications and optical computing.
The ability to fabricate materials with desirable nonlinear
properties is now an important engineering challenge.
One complication is that materials with fast switching
times will typically have smaller nonlinear susceptibili-
ties, and the response speed is inversely proportional to
the magnitude of the susceptibility. It has now been
established that quantum-well structures, ' ' ' conjugat-
ed organic molecules, ' ' ' and unconjugated polysi-
lanes' show enhanced third-order susceptibilities which
depend on the confinement dimension in the first exam-
ple, and chain length in the last two examples. Theoreti-
cal treatments of Wannier excitons in semiconductor mi-
crostructures (quantum dots, quantum wells) predict
an extremely large y' ' enhancement with size; howev-
er, we are unaware of experiments which show giant
enhancements of nonlinear susceptibilities. The present
paper deals with the analogous problem for Frenkel exci-
tons. Our starting point, as in Ref. 11, is the superradi-
ant master equation. ' We consider one-dimensional cy-
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clic aggregates composed of X-coupled two-level systems
and assume the linear dimension to be much smaller than
an optical wavelength. We allow for both homogeneous
broadening and inhomogeneous broadening within the
motional narrowing regime. Homogeneous dephasing is
described by the well-known Haken-Strobl model. A
completely quantum-mechanical expression for g' ' is de-
rived which includes the effects of biexcitons; we do not
invoke the semiclassical approximation. From the final
expression for g' ', it is apparent that the size dependence
arises from essentially two factors: the enhanced exciton
and exciton-biexciton transition dipole moments which
scale as X' and the superradiant decay rate which
scales as N. For large X, the enhanced transition dipole
moments combine to give an overall N dependence to

In contrast, the enhanced radiative rates which ap-
pear in the denominators act to reduce g' '. Since the
pure dephasing competes directly with the size-dependent
superradiant damping' it also has a profound effect on
the size dependence of g' '. Laser detuning also plays an
important role. When all applied E fields in a four-wave
mixing experiment are far off resonance, and there are no
resonant denominators in g' ' our expression reduces to
the monomer result (g ~N). This prediction, which
contradicts previous arguments, is a result of an in-
teresting interference between terms in g' ' with N and
N(N —1) prefactors (which arise from the enhanced os-
cillator strength). The complete N dependence which re-
sults from the combination of enhanced transition mo-
ments, superradiant damping rates, homogeneous de-
phasing rate, and laser detuning is quite complicated and
must be separately analyzed for each particular nonlinear
experiment. As an illustration, we evaluate the scaling
properties of phase-conjugate degenerate four-wave mix-
ing (DFWM) when the pump is tuned to the exciton
frequency, and show that the integrated ~y' '~ spectrum
ranges from an -N ' dependence to an -X depen-
dence as the homogeneous dephasing rate is increased
from zero to a value much larger than the superradiant
damping rate. In analyzing the DFWM spectrum we
predict the existence of a narrow resonance which results
from a dephasing-induced population transfer from the
k =0 superradiant exciton state to the Ã —1 subradiant
exciton states. This resonance provides an indirect mea-
surement of subradiance, which is experimentally much
harder to observe than superradiance because the small
transition dipole of the subradiant state does not allow
direct optical pumping. Such narrow resonances have
recently been observed in quantum wells and are related
to the dephasing-induced spectral holes in homogeneous-
ly broadened lines. We also analyze the probe absorp-
tion spectrum in the presence of a pump beam for a sys-
tem of aggregates. Unlike DFWM this technique directly
probes the biexciton states which have been studied in
great detail in CuCl. Most theoretical treatments of
biexcitons assume a simplified three-level system or a
two-boson model. In our Frenkel exciton model we are
able to exactly calculate the biexciton states for the
nearest-neighbor coupling model. We show that, for odd
N, there are in general (N —1)/2 biexcitons (labeled with

q = 1,3, . . . , N —1 ) which can be directly excited via

II. EQUATION OF MOTION

In this article we consider cyclic, one-dimensional ag-
gregates (N equally spaced molecules on a circle) with N
odd. Each molecule is modeled as a two-level system
with transition frequency coo. The calculation of g' ' is
greatly simplified in this configuration. We believe, how-
ever, that our analysis and general conclusions regarding
the cooperativity are not restricted to this special case.

The equation of motion which describes the elec-
tromagnetic interactions between the N molecular polar-
izations within the aggregate and between the aggregate
polarization and the applied electromagnetic field is the
superradiant master equation

iaro[p, blab„]+ g ifI „[p,bt b„]
n=i mWn

+ g y „[b pb„—,'(b b„p—+pb b„)]
m, n =1

+ g E(r„,t)[p(r), b„+b„],
2A n=&

(2.1)

where p is the density matrix of the aggregate and b„and
b„are the Pauli creation and annihilation operators, re-
spectively, for an excitation at site n, obeying the an-
ticommutation relation:

[b,b„]+=b b„+b„b =5 „+2b b„(1—5 „) .

(2.2)

In Eq. (2.1), E(r, t) is the applied electric field, p is the
transition dipole moment, and the coupling coefficients
are given by'

3p 2 cos(x )
mn cos m~

2 sin(x) cos(x)
cos m~ (x) (x)2+ 3

(2.3a)

two-photon absorption from the aggregate ground state.
This paper is divided into eight sections. In the second

section we present the model and the superradiant
density-matrix equation of motion in terms of the collec-
tive exciton operators. In Sec. III we calculate the
Liouville-space eigenvectors which are the exciton and
biexciton coherences and populations. In Sec. IV we use
Liou ville-space Green functions and the response-
function formalism to derive an expression for y' ' in
the limit f'=0. In Sec. V pure dephasing is included per-
turbatively resulting in a more general expression for g' '.
In Sec. VI we study the aggregate size dependence of

and the narrow dephasing-induced resonances in
phase-conjugate DFWM. Pump-probe absorption spec-
troscopy is dealt with in Sec. VII, and in the final section
we summarize our findings.
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y „= (cos8 „—1)3y 2 sin(x)
mn X

+ ( 1 3 Qg )
cos(x ) sin(x )

(x) (x)

(2.3b)

where, because of the translation symmetry, the sums
may be evaluated about any of the N molecules [molecule"1"in Eq. (2.9)].

In this article we assume that the aggregate is small
compared to an optical wavelength k0r „&(1,so that all
E(r„,t) can be replaced by E(r, t) in L;„,. In this limit
we further have

where x =k0r „and 0 „=p r „. p is a unit vector in
the direction of the dipole moments, assumed parallel
within an aggregate and r „=(r —r„)/r „ is the unit
position vector between site rn and n. We also have
kp —cop /c.

Using the translational symmetry of our model we
define collective creation and annihilation operators ac-
cording to

Nb„'=X-'" y exp
n =1

i 2nk(n —. 1)
N n (2.4)

with bk =(bk ) . The reverse transformation is

N —1

bJ=X '" y-exp
k=0

i 2vrk (—n —1)
(2.5)

d
p(t) = i (L, +L2+L—;„,)p(t),

dt
(2.7)

where L „1.2, and ij„t are Liouville operators, defined by
their action on an arbitrary operator Q as

N —1

L, Q = —g co(k)[Q, bk bk ]
k=0

y(k)(bkbkQ+—Qbkbk»
k=0

N —1

L2Q =i g y(k)bkQbk,
k=0

(2.8a)

(2.8b)

(2.8c)

The zero subscript in b0 refers to k =0 and the functions
co(k) and y(k) are defined by

T

co(k)=cop+ g Q, „exp
n=1

i 2mk(n —1).
N

(2.9a)

The collective operators bk and bk obey the following
commutation relationship:

[bk ~ bk' ] ~kk' ~ g bn bq (2.6)
n=1

Because of the second term on the right-hand side, bk
and bk are not boson operators. They can only be treated
as bosons for infinite crystals when N~ ~ and in linear
optics when (b„b„) is very small. However, for non-
linear optics of small aggregates we cannot invoke the bo-
son approximation.

Equation (2.1) can now be partitioned as

and

3y (1—3cos 0 „)
4 (kpr „)

(2.10a)

Ymn V (2.10b)

where V „ is the static dipole-dipole coupling and y is
the single-molecule spontaneous emission rate. For sim-
plicity we shall include only the nearest-neighbor cou-
pling in the real part of the interaction V „. (This ap-
proximation, although not necessary at this point,
simplifies the calculation of the biexciton states, so we in-
voke it hereafter. ) From Eqs. (2.9) and (2.10) it follows
that

2m. (k —1)
co( k ) =cop+ 2 V cos (2.11a)

y( k) = (Xy /2 )5k p (2.11b)

The equation of motion (2.7) and Eq. (2.8) with the cou-
pling in Eq. (2.11) define the basic model system which
will be studied in this article. In this model we do not in-
clude explicitly the coupling to other (bath) degrees of
freedom. This will be done in Sec. V where we introduce
homogeneous broadening. Inhomogeneous broadening
may be incorporated by assuming that the transition fre-
quency for the absorber at site m is co0+5co . In this
case we lose the translational symmetry. Nevertheless, if
the inhomogeneous absorption linewidth is not too large,
it can be incorporated perturbatively. This is done in
Sec. VI ~

III. EXCITON AND BIEXCITON OPERATORS

The ground-state density matrix of the aggregate is
denoted as lo)(ol and represents a state with all mole-
cules in the ground electronic level. A complete basis set
of operators which can be used to represent an arbitrary
density matrix may be generated by acting with any com-
bination of bk(bk ) operators on the bra (right) or the ket
(left) of the vacuum state. The calculation of y' I requires
only a limited number of operators consisting of the re-
sult of one or two operations of bk and bk on the
ground-state density matrix. These will be defined below.

We first define exciton coherence operators generated
when the collective creation operator bk (bk ) acts once to
the left (right) of the vacuum state:

lb(k) » =—b'lo&(ol,

lb(k) » —= lo&(olb„,
N

y(k) = g y, „exp
n=1

i2mk (n —1)
1V

(2.9b) where l. . . )) denotes the corresponding Liouville-space
ket. The bar above the b(k) indicates an exciton with
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wave vector k on the right side (bra). Operating with L,
from Eq. (2.8a) it is evident that ~b (k) )) is a Liouville-
space eigenvector of L

&

..

L, ~
b ( k ) )) = [ —co( k ) i —y ( k ) ] ~

b ( k ) )) . (3.1)

L, ib (k)b(k') )) = [co(k') —co(k)

—
~ [y(k)+ y(k')] I ~

b (k)b(k') )) .

(3.2)

From Eqs. (3.1), (3.2), and (2.11b) we see that the k =0

Similarly, an exciton population (k =k') or exciton-
exciton coherence (krak') is created by application of bz
to the right and bI, to the left of the ground-state density
matrix ~0)(0~:

ib (k)b(k') )) =
bf,"iO—) (, Oib~

The operator ~b(k)b(k'))) is also a Liouville-space eigen-
vector of L].

exciton population as well as the exciton coherence de-
cays N times faster than the corresponding quantities for
an independent single molecule. The superradiant nature
of the k =0 exciton state is discussed in detail in Ref. 11.
Also notice that the k&0 exciton does not radiate at all.
This "subradiance" results from the absence of a transi-
tion dipole moment between the ground state and the
k&0 exciton state.

The biexciton coherence subspace is spanned by opera-
tors which result from the application of two collective
creation (annihilation) operators to the left (right) of the
vacuum state:

~
b(k)b (k') )) =

bl, bI,—~0) (0~,

ib(k)b(k )))—= io)(orb„b„, .

The biexciton operators which are eigenvectors of L, are
more di%cult to derive. They are not simply the result of
two interactions with bz to the right of the ~round-state
density matrix yielding ~b(k)b(k))) since bI, and b& are
not boson operators. This can easily be checked by appli-
cation of L, :

L, ~b (k')b (k") )) = —[co(k')+co(k" )+i [y(k')+y(k")] [ ~b (k')b (k") ))

2 N —
1
—k'

+ —g [co(k +k')+iy(k +k')]~b (k'+k)b (k"—k) )) .
N (3.3)

In order to calculate the biexciton eigenbasis we first
define the following translationally invariant operators:

L& ~8(k, q))) =[—Q(k, q) —iI (k, q)]~8(k, q) ))

i g I"(—k, q, q') ~8(k, q') )), (3.6)

~
C(k, s )) = —g exp

1 i 2nkr
/2b + /2 IO »

(3.4)

q'Wq

where the biexciton frequencies and damping rates are
given by

where ~0)) is the Liouville-space notation for the
ground-state density matrix ~0)(0~. The index r is equal
to (m + n ) l2, where the sites m and n are separated by a
distance s. The index s can take on values from 1 to
N —1; s =0 and s =N are not allowed since two excita-
tions cannot reside on the same molecule. The operators
defined in Eq. (3.4) are overcomplete and therefore not
orthogonal since ~C(k, s))) = ~C(k, N —s))). We can use
these operators to construct the biexciton eigenbasis of
L, when N~5:

2y 1 (q +k)m
N 4 2N

I (k, q)= . (q —k)m+cot
2N

5« for k odd,

Q(k, q) =2' +4Vcos cos
m.k mq

0 N N

2

(3.7a)

for k even,

~s~8(k, q))) = g sin ~C(k, s) )), (3.5)O'N, , N

where the sum is now over only (N —1)/2 states. [For
N = 3 the biexciton eigenbasis is given by
~B (k, 1)))= ~C(k, 1) )).] There are (N —1)/2 orthogonal
operators (N is odd) for each value of k; since there are N
values of k there is a total of N(N —1)l2 biexciton states
which is the expected number based on the total number
of independent b b„~O) states. Operation of L, on the
biexciton states yields

(3.7b)

and q =1,3, . . . , N —2 in all cases. (For N =3 we have
Q(k, 1)=2coo+2V cos(2+k/3) and I (k, 1)=y[1
+ cos(2m. k /3 ) ]). Strictly speaking, the basis set
~B (k, q) )) does not diagonalize the imaginary part of L, .
There remain nonzero off-diagonal matrix elements:

I"(k,q, q') = ((8 (k, q) ~Im[L, ]~8(k,q') )) .

Using standard perturbation theory, however, it is
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straightforward to derive the conditions under which the
corrections to the first-order eigenvalues and eigenvectors
are negligibly small; the difference between the real parts
of any diagonal elements, A(k, q) —O(k, q'), must be
much greater than I"(k,q, q'). lt is easy to show that
I"(k, q, q') (Ny and therefore we have, for the k =0 sub-
space, the condition

I"(O,q, q') N y
A(O, q) —Q(O, q') 16V~'

When this condition holds, the oA-diagonal part of the
coupling, I", can be neglected and the operators
l8(k, q) » provide a good approximate eigenbasis of I.]
whose eigenvalues are the biexciton frequencies and radi-
ative decay rates given by Eq. (3.7). For a value of
V = 10 y (two oscillating dipoles with coo= 3 X 10'
separated by 1 A, with 8 „=0) Eq. (3.7) is valid for
N & 5000.

where ~., kj, and E are the frequency, wave vector, and
electric field envelope of the jth field, respectively. In this
paper we consider only the cw case so that all E are time
independent. The third-order polarization for an aggre-
gate at position r with kor „«1 can be written as

P (r, t) = g exp(ik r co, t )—P (k„t),
k, cc)

(4.2)

where ks +km +kn +kq and cc)s +~m +~n +~q
m, n, q = 1, 2, or 3, and any combination of plus and
minus signs are allowed. Hereafter we choose the partic-
ular combination cu, =co, +co2+~3 and k ki+k2+k3 ~

Any other combination can be represented by changing
one or more k- to —k, ~ to —u, and E to E*. The
polarization is related to the applied electric fields via the
third-order susceptibility:

IV. CALCULATION OF y' ' P (k„t)=Z' '( —co, ;co],coq, co3)E]EqE3 (4.3)

In this section we derive a general expression for g' '

using the Liouville-space Green-function technique. In
order to clarify the presentation, we first consider the iso-
lated aggregate without line broadening and delay the in-
clusion of homogeneous dephasing until Sec. V.

A four-wave mixing experiment may involve as many
as three applied electric fields; the total applied field is
given by the superposition

3

E(r, t)= g [Eiexp(iki r ico,t)—
j=1

The nonlinear susceptibility may be evaluated using
third-order perturbation theory ' and is given by

( cog p co ] y co2p co3 ) g R ( co ] +co~ + co3p co ] + co2p co ] )

P

(4.4)

The material response function

R ( mco+ co+neo~ mco+ neo~ nco)

+E*exp( ik r+ico —t.)], (4.1)

I

is defined as

R (co +co„+co,co +co„,co )=(( Vl9 (co +co„+co~)VQ (co +co„)VQ (co )Vp( —~ ) &&, (4.5)

where p( —~ ) is the equilibrium density matrix. The ag-
gregate polarization operator Vis given by

N

V=]]c g (b „+b„)=N' p(b o+bo),
n=1

(4.6)

and the Liouville operator V, which represents the in-
teraction of the applied field with the aggregate dipole
under the dipole approximation, is defined by

Via » —= lt v, a) », (4.7)

where
l Q » is an arbitrary operator. The frequency-

dependent Green function g (co) is

Q (co)=
co —L —L1 2

(4.g)

The three Green functions in Eq. (4.5) appear in chrono-
logical order from right to left. The system first interacts
with the field E . The single-photon Green function
9 (co ) describes the evolution of the system until the
time of the second interaction which is with the field E„.

Subsequent propagation is described by the two-photon
Green function 0 (co +co„). Following the third in-
teraction with field E, the evolution is represented by
the three-photon Green function g (co +co„+co~). The
response function R in Eq. (4.5) is found by multiplying
the final state of the system by V and taking the trace. In
the nonlinear susceptibility y' ', the fields E, , E2, and E3
can interact in any order in time. The summation g~ ap-
pearing in Eq. (4.4) is over all 3!=6 permutations of the
frequencies co„co2, and co3 which account for all possible
time orderings of the external field interactions.

The evaluation of the response function in Eq. (4.5) is
tedious but straightforward. For a system of noninteract-
ing two-level systems Eq. (4.5) yields eight terms (or
Liouville-space pathways) for a given ordering of the
three electric fields. These arise from the eight possible
ways the three V's can operate, i.e., each operation yields
two terms according to Eq. (4.7), one a result of the V
acting to the right of the initial operator, and one from
the V acting to the left. The eight pathways afford a sim-
ple graphical representation. In our ease the operation
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of V on an intermediate coherence or population con-
taining a single excited state in the bra or ket yields both
a double excited state (biexciton) and the ground state,
depending on whether bo or bo operates in Eq. (4.7).
For example, V lb (0) » =N' pI [lb (0)b (0)»+ lO»]—lb(0) » }. The first two terms are a result of action
from the left and the last term comes from action on the
right. When one takes into account biexciton states, the
total number of terms becomes 16 (for each particular
time ordering of the interactions). Of these, half involve
only the exciton state and half involve both exciton and
biexciton states. As an example of this classification we
show, in Fig. 1, Feynman diagrams corresponding to (a)
an all-exciton term and (b) a mixed exciton-biexciton
term contributing to g' '( —co, ; —co3, co2, co&).

The Green functions needed to evaluate the response
function in Eq. (4.5) are simple to evaluate since we know
the eigenfunctions of L1. The inclusion of L2 does not
effect the diagonal elements of 0 in the exciton-biexciton
basis set as is shown in Appendix A. From Eq. (4.8) we
have

1

co+co(k)+i y(k)

« b (k)b(k')
l
0 (co) b (k)b(k') »

«b(k) &'( )lb(k)»= (4.9a)

1

co+ [co(k)—co(k')]+i [y(k)+ y(k')] (4.9b)

1

co+ A(k, q)+i I (k, q)
«B(k,q)l~'(co)lB(k, q) &&

=

(4.9c)

«B(k, q)b(k')l& (co)lB(k, q)b(k') »
1

co+ [fI(k, q) co(k'—)]+i [I (k, q)+y(k')] (4.9d)

Equation (4.9d) is the propagator for the exciton-
biexciton coherence operator lB(k, q)&&b(k')l represent-
ed by l

B ( k, q )b ( k ') » in Liouville-space notation. It
should be noted that expressions (4.9a) and (4.9b) are ex-
act, whereas (4.9c) and (4.9d) were evaluated by neglect-
ing I in accordance with condition (3.8). In addition to
the diagonal Green-function matrix elements, there is one
special class of nondiagonal elements which are nonzero
because of L2. This Liouville operator can couple the
state lbogbo » to the state lg ». For the aggregate y' '

IO& (OI Ib(0)& (b(0) I

Ib(o))

1 4(0)l

l B(O,q))

~2 Ib(0))

IO& (OI

(a)

(0& (Ol

(b)

FIG. 1. Feynman diagrams corresponding to two terms in
the expression for g' '( —co„—co„~2,co, ). These two terms are
representative of two general classes of terms found in the ex-
pression for y"'; those involving only exciton states as in (a) and
those involving both exciton and biexciton states as in (b). In
Eq. (5.26), Rl belongs to class (a) while the remaining terms
(R2 —R5) belong to class (b).

there are only two relevant elements,
« b (0)l ~'(co)IB (O, q)b(0) && and &&Ol ~'(co)lb (o)b(0) &&.

In Appendix 8 we evaluate these matrix elements and
show that the first is negligible when N y« lQ(O, q) —2co(0)l and the second element, which is re-
sponsible for the increase in ground-state population due
to superradiant decay in the exciton population, is given
by

«Ol S'(~) lb (0)b(0) &&
=—'—

co co+ /NQ
(4.10)

This term allows an additional pathway in the evaluation
of y' '. For example, after two interactions with the ap-
plied field to produce an exciton population, the system
may either remain in the exciton population [with its evo-
lution described by the Green function in Eq. (4.9b)] or
may return to the ground state via superradiant decay.
This additional pathway must also be included in evaluat-
ing g' ' and is responsible for preserving the condition
Trp(t) = 1 for all times.

We are now in a position to write down the full expres-
sion for the third-order susceptibility, y' ' This consists
of evaluating all possible pathways in the response func-
tion and inserting the expressions for the exciton and
biexciton propagators [Eq. (4.9)]. When this is done we
get

[co, +co,+co, +i [I (O, q)+Ny/2]}' —[co(0)—Q(o, q)]'

1 co, +i(Ny l2)
co(+co2+iNy [ )coi+(Ny/2)] —co(0)

p q =1,3, 5,

co(0) 1 co1+iNy /2
g' '( —co»co3, co2, co, )=8N p g

[co, +co2+co3+i(Ny/2)] —co(0) co)+coq+iNy [co, +i(Ny/2)] —co(0)

+8N(N —1)p g g I [co(0)—Q(0, q) ]

N —2

2N(N —1)p g-
p q =1,3, 5, . co, +co~+co3+co(0) Q,(O, q)+i [I—'(O, q)+Ny/2]
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N —2

+2N(N —1)p g
p q=1, 3, 5, .

~, +co2+co, co—(0)+i(Ny/2)

1 1

co, +co2 —Q(o, q)+iI (O, q) co, co—(0)+iNy/2

I 1

~, +~ +~ ~(o)+n(o, q)+& [r(o,q)+Ny/2]

1

co, +co2+ co, +co(0 ) + i ( N y /2 )

1 1

co, +co2+Q(o, q)+iI (O, q) co, +co(0)+i (Ny/2)
(4. 1 1)

In this expression the dimensionless weighting factors I~
are given by

2 2 g
N(N —1) 2N '

and are normalized according to
N —2

I =1.
q =1,3, 5, .

(4.12)

(4.13)

I is related to the exciton —qth-biexciton transition di-
pole moment, given by

((b (0)~ViB(o, q) )) =p[2(N —1)I ]' (4.14)

[We should point out that Eq. (4.11) is applicable for odd
values of N which, in addition, satisfy N ~ 5. For N =3,
Eq. (4.11) is still valid provided one uses I, = 1,
Q(o, q)=2coo+2V, and I (0, 1)=2y.] The first term in
Eq. (4.11) represents the contribution to y'3' from all in-
teraction processes which involve only the exciton state,
such as the one depicted in Fig. 1(a). The remaining
terms involve the biexciton states [Fig. 1(b)]; the second
term is resonantly enhanced for processes which involve
biexciton formation through single-photon absorption
from an initial exciton population, while the last two
terms involve biexciton formation via direct two-photon
absorption.

The aggregate size N appears in Eq. (4.11) as N and
N(N —1) prefactors, arising from the enhanced exciton
and exciton-biexciton transition dipole moments, respec-
tively, and in the imaginary parts of all three denornina-
tors, due to the superradiant radiative decay of the exci-
ton and biexciton states. Therefore, the scaling of y' '

with size depends on the particular nonlinear technique,
for example, y' ' for degenerate four-wave mixing will
have a distinctly different N dependence than y' ' for
third-harmonic generation. Our new expression for g' '

[Eq. (4.11)] will be analyzed in detail in Secs. VI and VII
for two specific four-wave mixing techniques. This wi11
be done following the incorporation of pure dephasing in
Sec. V. There is, however, one very general limiting case
which is the most important from a technological
viewpoint, i.e., when all three fields are far off resonance
(~i+~z+~3+~0&& V ~1+~2&&Ny, and co, +coo&& V). It
was predicted in this case that y' ' would vanish because
the two-level systems behave as harmonic oscillators.

The N parts of Eq. (4.11) beautifully cancel due to an in-
terference between the first and second terms of Eq.
(4.11). In addition, the third and fourth terms exactly
cancel, leaving the monomer result given by Eq. (4.15).
This is understandable since, under these far-off-resonant
conditions, the material response is very rapid and the
molecules will not have time to interact with each other
and establish aggregate properties. It is also important to
note that the biexciton states, which contribute the last
three terms in Eq. (4.11), are necessary to arrive at this
result. It is not appropriate to treat the aggregate as a
two-level system with an enhanced oscillator strength
and radiative rate.

V. HOMOGENEOUS DEPHASING

Molecular aggregates in the condensed phase are sub-
ject to medium-induced fluctuations which act to destroy
the intermolecular phase relationships. If the Auctua-
tions occur on a time scale much shorter than that of the
excitation dynamics, they result in homogeneous dephas-
ing. In this section we recalculate the expression for y' '

when this homogeneous dephasing is taken into account.
Homogeneous dephasing is introduced by assuming

that each molecular electronic frequency is undergoing
rapid fluctuations:

co„(t)=coo+'6co„(t),

with

( 6'„(t) ) =0,

(5.1)

(5.2)

I

In order to explore this point we take the off-resonance
limit of our g' '. This is done by substituting the approxi-
mations co(0)=coo and Il(o, q)=2coo into Eq. (4.11) and
neglecting the superradiant contribution in the denomi-
nators. It then appears, at first glance, that (when N is
large) y' ' is enhanced by a factor of N . Since, for N
monomers, y' '-N, we are led to the conclusion that the
effect of aggregation, in this limit, is to enhance g' ' by a
factor of N. This conclusion is, however, false. When all
the terms in y' ' [Eq. (4.11)]are added in this limit we get

X
(3)

COp C01
=SNp, g 2 2 2 2

p (M]+Cop+C03) Coo ~i +~/ Co] COQ

(4.15)
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and

(5'„(t)5'„(0})=f'5(t)5„„.. (5.3)
((b (n) ~L'~b (n') )) = —i —5„„ (5.5a)

d a(t) = i (L—o+L')o (t),
dt

(5.4)

where LO=L &+L2 and the matrix elements of L' are

Here ( . ) denotes an ensemble average over the bath,
and it is assumed that fluctuations on different molecules
are uncorrelated. 5'(t) is taken to be a stochastic
Gaussian-Markov process. This model was introduced
by Haken and Strobl to describe exciton transport in
solids. The ensemble aue-raged density-matrix (o ) equa-
tion of motion in the absence of the external field satisfies
the following equation:

in the exciton coherence basis set [ ~
b ( n ) )) —=b„~o ) ( 0

~ ],

« b (n)b(m) ~L'~b (n')b(m') )) = i —(1 —5„)f'5„„,5

in the biexciton subspace
IB (n, m) ) (0~ =b„b —~0) (0~, and

spanned by

(5.5b)

in the subspace spanned by the bt~o) (O~b basis,

((B(n,m}~L' B(n', m'))) = if'—(5„„5 ~ +5„5 „.),
(5.5c)

(( B(n, m) b(l)~L'~B(n', m')b(l'))) = i — (1—5 &)(1—5„I)+—5 &+ —
5„& [5n(5„„.5 ~ +5„.5 „.)],

3f' f'
(5.5d)

&(~o)= 1

co —L —L'
0

(5.6)

in the biexciton-exciton coherence space, spanned by
~B(n, m))(b(l)~= b„b ~0—)(0~bi

In order to evaluate y' ', we need to recalculate the
Green functions when L ' is taken into account:

((b (k)b(k'}lIL'lb (k")b(k"') ))

f'(51, 1
-5—a, I 1/&»—(5.9)

we cannot simply add f' to the superradiant decay rate
Ny in the exciton-population propagator. However, L'
is diagonal in the basis set

~
2 (k, s) )) defined by

T

This is most easily done for the single-exciton propagator
~
A (k, s) )) =X '"y„exp

i 2m.kr
N

((b(0}la~)lb(o))),
which describes the evolution of the system after a single
interaction with the applied field. Since
L '

~
b (0 ) )) = i ( f /—2 )

~
b ( 0) )) we have

xb„' „,io)(orb„„„, (5.1o)

where the indices r and s are defined the same way as in
Eq. (3.6). This basis set is orthonormal:

(( A (k', s')
~
A (k, s) )& =5„5„„ (5.11)

((b(0)l&( )lb(0))) = (5.7)
to+to(0)+i (Xy /2+ f'/2)

and the dephasing rate simply enhances the overall exci-
ton coherence decay.

The effect of homogeneous dephasing on the two-
photon Green functions is not as straightforward to
evaluate. We first note that L', like I, cannot couple
two operators with different numbers of excitations on
the right- and the left-hand sides, for example,
~b(0)b(0))) does not couple to ~b(0))). The two-photon
Green function can be of three types: (a) the biexciton
propagator, (b) the exciton-population propagator, or (c)
the ground-state propagator. In the first case the in-
clusion of homogeneous dephasing is treated in the same
way as the exciton propagator (the single-photon Green
function). This is because we have L'~B(k, q)&&= —i f'~B (k, q) )) and therefore

((B(k,q)l Q(co)IB(k, q) » = 1

c+oQ(k, q)+i [I (k, q)+f']
(5.8)

Because ~b (k)b(k') )) is not an eigenfunction of L',

Q(to) = 0 (co)+ 0 (to)T(ro)Q (co), (5.13)

where, because of the translational invariance, Eq. (5.13)
is separately true in each subspace spanned by ~

A (k, s) )),
i.e., the Green function is diagonal in k. The T matrix
T(to) is given by

i f'~ w (k, o) && && w (k, o)
~

1 —i f'Q (k, co)
(5.14)

The matrix elements of L' in the new basis set are

(( A (k', s')~L'~ 3 (k, s) )) = i f'51, „5,,—(1 —5, 0) . (5.12)

L is diagonal with all diagonal elements within a k sub-
space equal, except for the population term
(( A (k, o)~L'~ & (k, o))), which is equal to zero. This is
because homogeneous dephasing induces a coherence de-
cay but does not affect the populations. The null diago-
nal element can be treated like a single impurity and we
can therefore make use of single-impurity scattering
theory ' to evaluate the Green function. According to
the Dyson equation, the exact Green function Q(co) is re-
lated to the unperturbed Green function 0 (co) by
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with Q (k, co) defined as

g(k, ~}=&&A(k, O)l&'(~)IA(k, O))) .

By taking matrix elements of Eq. (5.13) we obtain

« b (0)b(0}lQ(~ }Ib (0)b(0) ))

1 ] if'(co+if')
cu+iNy +i f' (co+i y )(co+i y )

(5.15)

(5.16)

for the exciton-population propagator. The damping
rates y+ and y are defined as

+—'[(f'+ N ) —4 f']'
2

When f'=0 Eq. (5.16) correctly reduces to Eq. (4.9b)—
I

« b (k)b(k')
I
Q(~) lb(0)b(0) ))

=N l

(cd+i y+ )(~+iy )
(5.18)

For the three-photon Green function, the only propa-
gator which is not straightforward to evaluate is the
exciton-biexciton Green function. For this case the
inhuence of homogeneous dephasing cannot be calculated
exactly; however, we can use perturbation theory to get
an approximate result. We begin by writing the matrix
elements of L in the exciton-biexciton basis set:

the exciton propagator without dephasing. There is also
a coupling mechanism which transfers population from
the k =0 exciton to kAO excitons:

gf (N —1)/2

«B(k„q, )b(k)IL'IB(k2, q2)b(k'))) = g sin
N

']}7 g 2$ ]r(k —k')s
kl —k2, k —k' (5.19)

for off-diagonal elements, and equal to 3f'/2 2f'/N f—or diagonal elements. These diagonal elements are the first-order
(complex) energy correction. This is a good approximation to the exact energy correction when the magnitude of the
off-diagonal elements is less than the differences in the real, unperturbed, zeroth-order energy values given by

E(k, q;k') =Q(k, q} —cA k')=co—o+4 Vc os cos —2Vcos~k mq 2~k'
(5.20)

Now, the magnitude of the off-diagonal perturbations given by Eq. (5.19) cannot exceed 4I /N and the average energy-
level difference is of the order V/N . Therefore the first-order correction is good if

N —((1 .
V

The approximate exciton-biexciton coherence propagator can then be written as

(5.21)

«B (k],q] )b(k)
I
Q(co) IB (kz, q2)b(k') )) -=

E(k„q, ;k)+i [(Ny/2)5k o+I (k, , q, )+3f'/2 —2f'/N]
(5.22)

Using the Green-function matrix elements derived above, we can now calculate the third-order susceptibility with
homogeneous dephasing satisfying condition (5.21):

x(3)

=gN' 'y
~ (co]+co2+co3+iNy/2+i f'/2) —co(0)

2(co]+co&+i y+ )(co]+co&+iy )+ [i (N + 1)/N]f'(co]+co2+i f') —(N —1)yf
X

(co]+Q)2+iNy+i f')(co]+Q)2+i y+ )(co]+co2+iy )

co]+i (Ny /2+ f'/2)

[co]+i ( N y /2+ f'/2 ) ] —cu(0 )

N —2

+SN(N —1)p, g
p q=1, 3, 5, . . .

[co(0)—Q(0, q ) ]
[co]+coz+co3+i[I (O, q)+Ny/2+( —', —2/N)f']I —[co(0)—A(0), q)]

(a)]+co2+i y )(co]+cu2+i y )+i (f'/N)(co]+a)~+i f') co]+i (Ny /2+ f'/2)
X

co]+co2+iNy + i f')(co]+co~+i y+ )(co]+co2+i y ) [co]+i (Ny /2+ f'/2) ] —co(0)
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N —2
2—N(N —1)JLc g

p q =1,3, 5,

I 1

co&+coz+co3+co(0)—A(O, q)+i [I (O, q)+Ny/2+( —,
' 2—/N)f']

1

co, +coz+ co3 co—(0)+i (Ny/2+ f'/2)

1 1

co&+coz —0( Oq)+i [I (0,q)+ f'] co&
—co(0)+i (Ny /2+ f'/2)

N —2

+2N(N —1)p g
p q =1,3, 5,

I 1

co&+ coz+co3 —co(0)+A(0, q)+i [I"(0,q)+ Ny /2+ ( —,
' —2/N) f']

1

co, +coz+ co3+co(0)+i (Ny /2+ f'/2)

1 1

co, +coz+O(0, q)+i [I"(0,q)+ f'] co, +co(0)+i (Ny /2+ f'/2)

N —1 N —2

+4N(N —1)p g g
p k&0 q =1,3, 5,

co(k) —Q(k, q)

Ico& +coz+co3+i[I (k, q)+( —', —2/N)I ]I —[co(k)—A(k, q)]

co, +i (Ny/2+ f'/2)
X

(co, +coz+iy+ )(co, +coz+iy ) [co, +i (Ny/2+ I /2)] —co(0)
(5.23)

1 (q —k)m. (q +k)m.
cot +cot

N (N —1) 2N 2N

2

(5.24)

and are normalized according to

N —1N —2

X Elk, =l
k=0 q odd

(5.25)

For the subsequent analysis we rewrite Eq. (5.23) in the
form

where the I were defined in Eq. (4.12) and Ik are
defined as

VI. PHASE-CONJUGATE FOUR-WAVE MIXING

As established earlier, the size dependence of g' '

varies with the particular nonlinear technique (singly,
doubly, or triply resonant) because of the N-dependent
superradiant damping rates in the three denominators.
In this section we specifically treat phase-conjugate four-
wave-mixing spectroscopy and analyze its dependence on
N, the pure dephasing rate f', and the laser frequency de-
tuning. We also include inhomogeneous broadening per-
turbatively.

In phase-conjugate DFWM, two pump beams with fre-
quency ~, counterpropagate in a nonlinear medium

(k3 = —k, ), with the probe beam (frequency coz, wave vec-
tor kz) entering at some arbitrary angle. A phase-
conjugate signal with an intensity proportional to ~y
is generated in the k, =k1+k3 —k2= —k2 direction with
a frequency equal to 2', —cu2. In this particular arrange-
ment we have

X'( . » z»)(3)

5

R (co&+coz+co»co&+coz, coi), (5.26)

5

y' '( —co„.co(, —coz, co))= g 2Ri(2co, —coz, co) —coz, col )

j=1

where R, j =1, . . . , 5, correspond, respectively, to the
five terms in Eq. (5.23). The general expression for g' ' in
Eq. (5.23) is too complex to draw general conclusions. In
the next two sections we will focus on two specific g' '

spectroscopies and analyze them in detail.

+R (2co~ coz, co~ coz, coz)

+2Ri ( 2co i coz, 2co i, co i )

(6.1)
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where R were defined in Eq. (5.26) and the factor of 2 in

the first and third terms arises from the possibility of ab-
sorbing either one of the pump-beam photons (k& or
—k&). In DFWM, the pump frequency co& is held fixed
while the probe-beam frequency is scanned over a narrow
frequency interval centered at ~i. In this section we treat
two cases. In the first case the pump beams are tuned to
the exciton absorption maximum, co, =co(0)=coo+2V. In
the second case, the pump beams are detuned by at least
an exciton bandwidth from the k =0 exciton absorption
maximum, co, —co(0)) V, and coz is scanned over a nar-
row frequency interval centered at co, .

A. Case A: Resonant DFWM

In the resonant case where co, =su(0), the dominant
terms in y' ' are the exciton terms [R,(2'

&

—aiz, co,—coz, co&) and R &(2'&
—coz, co, —coz, —coz)] in Eq. (6.1),

since only these terms are triply resonant when coz=co(0).
All other terms are at best doubly resonant. For exam-
ple, Rz(2', —coz, cu, —coz, cu, ) is resonantly enhanced in
the one- and two-photon Green functions when coz=co(0)
but not in the three-photon Green function. The last
term in Eq. (6.1) is resonantly enhanced in
R3(2', —coz, 2', , co, ) representing biexciton excitation via
two-photon absorption. However, the process is only
doubly resonant since the two-photon Green function is
not resonant when 2', —Q(0, q) ))f'+ I (0,q). This
difference is called the biexciton binding energy; substi-
tuting Q(O, q) =2coo+4V cos(rr/N) and co, =a~(0) into the
previous condition yields

~4V[cos(m /N) —1]~ ))f'+ I'(0, q) . (6.2)

In this case, the aggregate can be modeled as a two-level
system consisting of the ground state and the exciton
state, with an enhanced transition dipole moment.

We shall denote the pump-laser detuning from the ex-
citon absorption line center as b, co, =co, —co(0). In order
not to excite the biexciton state with two detuned pump-
beam photons we require that

~4V fcos(~/N) 1]+2bco,
~

&& f'+—I (O, q), (6.4)

which is condition (6.2) modified to include the detuning.
The inclusion of inhomogeneous broadening makes the

resulting expression for y' ' much more complicated; in
general we need to numerically invert a large coupling
matrix (order N XN ) so that a simple analytical expres-
sion is not available. However, if the inhomogeneous
broadening is sufficiently small it can be incorporated

Therefore the biexciton binding energy [Q(O, q) —2'(0)]
must be much greater than the superradiant decay rate
plus the pure dephasing rate in order to justify the
neglect of two-photon absorption [R~(2', —coz, 2co„co, )].
Including only triply resonant terms, Eq. (6.1) becomes

(—co, ;co), —coz, cut ) =2R ((2'( —coz, co) —coz, co, )
(3)

+R
~
(2'~ coz, co~ cizz, cdz).

(6.3)

yields the following first-order energy correction to the
(k =0) exciton energy of the aggregate:

X
5', =—g 5'„.

N„
(6.6)

5co, is also a normally distributed random variable but
with variance o. /N. Thus, the width of the exciton ab-
sorption spectrum is less than that of the monomer. This
reduction is a result of the central limit theorem and can
be interpreted as motional narrowing. When condition
(6.5) holds, the exciton-biexciton basis set is approximate-
ly the eigenbasis, and the expression for y' ' given by Eq.
(5.23) is valid for a particular distribution of 5'„provid-
ed the first-order corrections to ai(k) and Q(k, q) are in-
cluded. [For example, we replace the exciton energy co(0)
by co(0)+5a~, in R, (2a~, —~„~,—co„ro, ) and R, (2~,
—coz, cu&

—coz, —coz).] We must then average y' ' over all
values of 6m, in the Gaussian inhomogeneous line shape.
In order to continue to ignore two-photon biexciton ab-
sorption we require, as before, the two-photon Green
function in R 3 (2', —coz, 2co, , c0, ) to be nonresonant.
Since the shift in biexciton transition frequency is equal
to (2/N)g f, 5'„,we require that

N

4V[cos(~/N) 1]——g —5'„&&f'+I (O, q) . (6.7)

In order to characterize the scaling of DFWM with
size, we evaluate the total number of photons per second
emitted in the direction —kz integrated over the frequen-
cy range co, —coz. This quantity (apart from some
geometric proportionality constants) will be denoted as
S(N, f', b, co, ), which is also a strong function of the
homogeneous dephasing rate f' and the detuning b, co, :

S (N, f', b co, )

/l f ~g [ (2cci~ Q)z ), co~~ aiz, cgl~ ] ~
dcijz

(6.8)

We have plotted S (N, |,b, co, ) versus N for several values
of f' and pump-laser detuning b, co& in Figs. 2(a) —2(d). As
is evident the aggregate size dependence is not a simple
function N. Two general observations can be made when
the pump beams are tuned to the peak in the exciton ab-
sorption spectrum (b,co, =O). When superradiance dom-
inates homogeneous dephasing (Ny )&f'), S(N, f', hen, )

is a monotonic decreasing function of N; in the opposite
limit ( f' »N y ), S (N, f', b, co

&
) is a monotonic increasing

function of N. Simple analytical expressions are easily
derivable in these two limits. To analyze the small de-

perturbatively. This is done as follows. According to the
definition of inhomogeneous broadening, each molecule
has a unique transition frequency which is detuned from
coo by an amount 5co„. We assume 6co„are independent
Gaussian random variables with variance o. so that the
monomer absorption spectrum is Gaussian. A simple
first-order perturbative treatment, valid when '"

(6.5)
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The two-photon Green function can be reduced to
2l(co, c—oz+iy ) since f'»y. When this is substituted
back into Eq. (6.15) one recovers the N-monomer result.
In the fast dephasing limit S(N, f', hco&) is proportional
to N, which is the monomer result. When dephasing is
dominant (and superradiance is quenched) and the pump
beams are oQresonance, y' ' shows absolutely no enhance
ment with size above what is expected for N monomers

In the superradiant limit the interference between R1,
Rz, and R5 leads to the two-photon Green function of
the form

(( b (0)b(0)
l a(~, —~, ) lb (0)b(0) 8

2 2(N —1)yf'
(co& coz+—iNy } (Ny ) [co, co +—i(f /N)]

(6.16}

where the first term represents the superradiant line
shape and the second is the narrow resonance. The com-
plete y' ' is obtained by replacing the two-photon Green
function in Eq. (6.15) by expression (6.16). Again, the N
prefactor in y' ' has been reduced to N. It is easy to see
that S(N, f', b, czz) ) in the superradiant limit is proportion-
al to N [only the superradiant portion in expression (6.16)
will contribute when N y » f'] as opposed to
S(N, f', b,co, ) in the resonant case which has an N
dependence [see Eq. (6.9)]. In Fig. 5(b) we show the
DFWM spectrum when the pump beams are off reso-
nance ( b co, =8 V). Compared with the on-resonance
spectrum, the narrow resonance peak height is an addi-
tional factor of 2 larger than the superradiant peak due to
the two-photon Green function [compare Eq. (6.16) with
Eq. (6.13)]. The superradiant spectrum still appears
despite the pump beams being far off resonance. Note,
however, that, like the resonant case, the narrow reso-
nance peak height remains -N times larger than the
superradiant peak height.

beam. The third-order polarization which causes the ab-
sorption change generates an electric field with wave vec-
tor k =k1 k& +kz =kz and frequency ~z+ ~, —cu, =~z.
The third-order field copropagates with the probe beam
and is identical in frequency. The third-order absorption
is proportional to Imp' '( —coz, —

co&, coz, co&). Analysis of
Eq. (5.23) reveals the possibility of triple resonances in all
but R4. For example, R3(coz, co, +coz, co, ), Rz(coz, O, co, ),
and Rz(coz, 0, —co, ) are triply resonant when
coz =Q(0, q) —czz(0); the dephasing-induced terms
R5(coz, O, co, ) and R5(coz, O, —co, ) are triply resonant when
coz =A(k, q) co(k—), and R, (czzz, coz co„—coz), R, (coz, czzz

—co„—co, ), and R, ( coz, 0, co, ) are triply resonant when
coz=czz(0). In the superradiant limit, setting f'=0 elimi-
nates the Rs contribution; Rz(coz, O, co, ), Rz(coz, O, —co, ),
and R3(coz, coz+ co„co, ) are then responsible for a series of
biexciton absorption lines, one for each value of q, with

q =1 corresponding to the largest peak. In Fig. 6 we
show the differential probe absorption spectrum (absorp-
tion spectrum in the presence of the pump minus the
spectrum with no pump). This is given by
Imp' '( —coz, —co„coz,co, } and clearly reveals the q = 1, 3,
and 5 biexciton peaks lying to the red of the exciton peak
for positive values of V. The exciton peak arises from the
triple resonances in R, . Notice that the exciton peak and
the biexciton peaks carry opposite signs. The initial exci-
ton population created by the pump beam serves to am-
plify the probe beam (via stimulated emission) when it is
tuned to the exciton absorption peak, leading to a posi-
tive differential absorption. The initial exciton popula-
tion also enables the probe to be absorbed more strongly
when its frequency matches the exciton-biexciton transi-
tion A(O, q) —czz(0). This leads to a negative differential
absorption. Also notice that all biexciton line shapes

VII. PUMP-Pa&BE SPKCTRDSCGPY

The phase-conjugate FWM spectra described in the
preceding section are dominated by the k =0 exciton line
shape. The terms leading to the biexciton spectral peaks
are doubly resonant at best (when hco& =0) and are small
in comparison to the (triply resonant} exciton peak. The
question arises as to how one could observe biexciton line
shapes which are enhanced through a triple resonance in
the nonlinear susceptibility. Two standard nonlinear op-
tical techniques will accomplish this: the transient grat-
ing experiment and a pump-probe nonlinear absorption
experiment. The former measures ly' 'l while the latter
measures Imp' '. In this section we will focus attention
on the absorption experiment. A resonant pump beam
with frequency m& interacts with the system of aggregates
with co] =coo+2V. The spectrum is obtained by measur-
ing the absorption of a probe beam as its frequency is
tuned through resonance. The change of the probe ab-
sorption in the presence of the pump beam is a third-
order nonlinear process requiring two interactions with
the pump beam and a single interaction with the probe

2m(0)

I

I

I

I

I

I

I

I

1

I

I

I

I

I
I

I
Q(0, 1)

1 I
G(0,3) Q(0,5)

co2 + co(0)

FIG. 6. Differential absorption spectrum, Im[y"'( —coz,

coz, —co, , co, )] vs coz+co{0) for X =21. The pump-beam frequen-
cy co& is equal to coo+2V and the probe-beam frequency is co2.

The homogeneous dephasing rate f' is zero. The negative peak
is due to saturated exciton absorption, while the positive peaks
are biexciton absorption spectra for q = 1, 3, and 5 and k =0 as
indicated. When V )0 these peaks lie to the red of the exciton
peak.
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which is obviously independent of q.
Figures 7(a) and 7(b) show the eff'ects of pure dephasing

on the exciton and biexciton absorption peaks, respec-
tively. Note the appearance of the narrow resonance in
the exciton peak. This arises from the time-ordered in-
teraction with the pump beam followed by the probe
beam and finally with the pump beam again. This pro-
cess is triply resonant in R, (~2, aiz —co, , —co, ). Scanning

CO

1 —100 —50 0
(tot - t02)Q

1

50 100

C)
I—100 —50 0

(Mi - (02)Q

I

50

FIG. 7. Differential absorption spectra Im[y' '( —co2,
'
co2,

—co„cg, )] vs co, —co& for N =21. (a) The k =0 exciton absorp-
tion line is shown for f'/Ny= =0, 0.01, 0.1, and 1.0. (b) The
k =0, q = 1 biexciton spectrum is shown for the same values of

In both cases the peak magnitude decreases as f' is in-
creased.

have equal values at the absorption peaks but exhibit
smaller linewidths for higher q values. This is a manifes-
tation of the fact that biexcitons with higher q values
have smaller superradiant damping rates I (O, q), but also
smaller weighting factors I which are reduced in the
same proportion, i.e.,

(7.1)

the probe-beam frequency through co(0) produces the
narrow resonance which can be traced to the two-photon
Green function.

VIII. CONCLUSION

We have calculated the nonlinear susceptibility g' ' of
a distribution of small (kor „«1) molecular aggregates,
allowing for homogeneous dephasing. Throughout the
calculation interaggregate interactions have been neglect-
ed. This is justified only if the local electric field acting
on a particular aggregate, which is composed of the ap-
plied field plus the field generated by all other aggregates,
can be safely approximated by the applied field only.
When inhomogeneous broadening is included this ap-
proximation is easier to justify. By the arguments of Ref.
13 the system must be (1) optically thin and (2) dilute, so
that the number density il satisfies g «cr /(Nyk ). Con-
dition (1) ensures the neglect of macroscopic, interaggre-
gate superradiance and condition (2) prevents energy
transfer among neighboring aggregates.

The general expression for g' ' has a complicated N
dependence which is a function of the particular non-
linear technique, the homogeneous dephasing f' and the
detuning of the laser beams. An important conclusion to
be drawn from this work is that y( ' does not show in gen
eral a universal enhancement with size, and that under
off 'resonant co-nditions it shows no enhancement at all.
For phase-conjugate degenerate four-wave mixing with
f'«N), larger aggregates display smaller values of y'
when the pump beams are tuned to the exciton absorp-
tion peak. The number of photons per second emitted in
the phase-conjugate direction and integrated over
co&

—
co&, S(N, f', hen&), is inversely proportional to N. In

the opposite limit (I ))Ny ), S(N, I,bcoi) is enhanced
over the monomer dependence by a factor of N . Howev-
er, when the pump beams are off resonance there is no
enhancement and the monomer result is recovered. We
also predict a narrow dephasing-induced resonance in the
phase-conjugate DFWM spectrum, which is an indirect
measurement of the subradiant exciton states. For small
dephasing values, the linewidth is f'/N and the narrow
line is superposed on a broad superradiant peak. The
superradiant linewidth is linearly proportional to the ag-
gregates size Ã and may thus be used to experimentally
determine the aggregate size. As I increases to values
much greater than Ny, the resonance linewidth con-
verges to a width of y. In this limit the aggregate exhib-
its collective properties as well as independent molecular
properties. The DFWM spectrum is a maximum when
the pump beams are tuned to the exciton frequency
ct7p+ 2 V, but the radiative linewidth is characteristic of a
single molecule.

Finally, we have calculated the biexciton absorption
spectrum in the presence of a pump. It consists of a
series of (N —1)/2 equal height absorption lines with
steadily decreasing radiative linewidths given by Eq.
(3.7b) as the index q increases. For sufficientl high q
values the biexciton states become subradiant.
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APPENDIX A

« "m'J'lQ (t)ln"'m' '» (n, n, n', m'=0, 1, . . . , N),

are zero for all time when n & n' and m )m'. Here, we
use a more general notation to denote the eigenstates of
L&. The state ln'~)) corresponds to ln") &Ol, where
ln") denotes the ith eigenstate in the nth-excited-state
manifold. For example, n =1 for all X exciton states
(i =1,2, . . . , N) and n =2 for all N(N —1)/2 biexciton
states [i =1,2, . . . , N(N —1)/2].

To show why this matrix element is zero we begin by
writing its equation of motion. Substituting lp(t)))= 0 (t)lp(0) )) into Eq. (2.7) (neglecting L;„,) we obtain

In this appendix we show that the Liouville operator
L2 does not contribute to the diagonal matrix elements of
0 (co)=1/(co L, L2—) [—Eq. (4.9)]. We begin by show-
ing that the off-diagonal matrix elements

dC' t
i (—L, +L2)Q (t),

which for the element in question becomes

(A 1)

d n "m"'~P t In' " " =[i(co' —co' )
—(y' +y'„)]« n"'m"'l 9'(t)ln"'m'~" &&

dt

i g «—n "'m ' 'l L, lP &) « Pl 0'( t ) l
n "'m "'»,

where —co'„—iy'„ is the eigenvalue of L, corresponding to ln")) and lP)) is the complete eigenbasis of L, . Since
iL 2 Q—=N y b 0 Qb o, the only eigenvectors

l f3 )) which will lead to a nonzero term in the summation are
lP)) = l(n +1)'"'(m +1)'")). In order to solve Eq. (A2) we need to now how «(n +1)'"'(m +1)'"lQ (t)ln" 'm" '))
evolves in time. This would require solving another equation of motion similar to Eq. (A2) for this element, in which
«(n +2)'"'(m +2)"lQ (t)ln" 'm'~ ')) would appear as a source term on the right-hand side. This hierarchy will con-
tinue p times until either n +p or m +p becomes equal to N, at which point the equation of motion becomes (in the case
of n +p =N, for example)

d«N"(m +p)'"lQ (t)ln" 'm" '))
=[i (a)~ co' +~)——(y~+y' + )]&&N"(m +p)'"lQ (t)ln" 'm'J ')) . (A3)

Now, the solution of Eq. (A3) is simply the initial condi-
tion times

e"p['[(~N ~ + ) ()'N+3 )]t j

however, the initial condition for any off-diagonal
Green-function matrix element is zero since

0'(t =0)=I, (A4)

where 1 is the identity matrix. It follows that the matrix
element is zero for all times. The next set of equations in
the hierarchy (with n =N —1) will now be missing source
terms and because of Eq. (A4) they also will also be zero
for all time. Continuing in this fashion one can show that
all off-diagonal matrix elements (with m )m' and n )n')
are zero for all time. (Physically this corresponds to the
fact that there is no coupling mechanism which can
transfer coherence or population from a lower-energy
manifold to a higher-energy one. ) It is now straightfor-
ward to show that the diagonal Grreen-function matrix
elements are unaffected by L2. Since n =n' and m =m'

in a diagonal element, the equation of motion will contain
a source term which contains an off-diagonal matrix ele-
ment «(n+1)'"'(m+I)'"lQ (t)ln' 'm' ')). As we have
just shown, this element is equal to zero, and iherefore
the diagonal matrix elements are independent of L2.

APPENDIX 8

In this appendix we calculate the off-diagonal Green-
function matrix elements

« ol e'(t) lb (0)b(0) »

and

« b(0)l & (t)l&(o, q)b(0) » .

The first element describes the ground-state feeding from
the k =0 exciton population due to superradiance and
the second represents the superradiant decay of the
three-body exciton-biexciton coherence to an exciton
coherence. These elements are in a class of off-diagonal
matrix elements represented by



FRANCIS C. SPANO AND SHAUL MUKAMEL

«." '~'lÃt)l. '' '~'&),

(in the notation of Appendix A), with n ( n
' and m (m '

and may therefore be nonzero. By the same arguments in

Appendix A,

«ol s'(t) lb (o)b(0) »
can be shown to satisfy the equation of motion:

d OQ t hobo = —i y«OIL, +L2lp»«pl~'(t)lb(0)b(0) &),
dt

P

which further reduces to

d OPt b Ob0 = —t « OI12 lb (0)b(0) » « b (0)b(0)
I
Qo(t) lb (0)b(0) »

dt

=Ny « b (0)b(0)
I

~'( t) lb(0)b(0) )& .

Substituting

« b (0)b(0)
I
9 (t) b (0)b (0) )) = exp( iNy t )—

[Fourier transform of Eq. (4.9b)] and taking the one-sided Fourier transform yields

(B1)

(B2)

«Ol 0'(co) Ib (0)b(0) » =——

In order to calculate

« b (0) I
~'(t) IB (O, q)b(0) )),

1

co+iNy
(B3)

we follow the same procedure. Its equation of motion is

=i co(0)+i « b (0)
I
0 (t)IB (O, q)b(0) ))

N —2

+4y g cot «B(o,q)b(0)IQ (t)IB(O,q)b(0))),2N (84)

from which the formal solution can be written

« b (0) 9 (t)', B (O, q)b(0) » =exp i~(0) — t

X f '4y g cot expIi [Q(o, q) —2'(0)]t' —[I (o,q)+Ny]t'}dt',o,dd 2N

where Eq. (A4) has been used. This reduces to

N —2 4 r

2N i [A(o, q) —2'(0)]—[I (O, q)+Ny ]

Xexp ice(0) — t (exp[i [Q(o, q) —2'(0)]t —[I ( , 0) qN+y)t }
—1)Ny

(B5)

(B6)

The entire right-hand side is negligible and

« b (0) I
~'(t)

I
B (0,q) b (0) )&

is approximately zero for all time when

2Ny
~V[cos(vrq /N) 1]—

which is essentially the same as condition (3.8), which we have assumed from the start.
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