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PHASE CONJUGATE DEGENERATE FOUR-WAVE MIXING

IN MOLECULAR AGGREGATES

Francis C. SPANO and Shaul MUKAMEL *

University of Rochester, Chemistry Department, Rochester, New York 14627, USA

We investigate phase conjugate degenerate four-wave mixing (DFWM) in molecular aggregates consisting of N interacting,
homogeneously broadened two-level systems in a cyclic configuration with a dimension much smaller than an optical
wavelength. The interaction includes both the static dipole—dipole coupling and superradiant coupling. We show that, in
general the size dependence of x‘® is determined by the relative magnitudes of the homogeneous dephasing rate and the
superradiant decay rate. We predict the existence of a narrow dephasing-induced resonance superposed on the broader

superradiant exciton lineshape.

1. Introduction

The optical properties of molecular aggregates and
semiconductor microstructures have received a great
deal of attention recently since they exhibit properties
between those of the isolated molecule and the bulk
crystal. Of particular interest are J-aggregates [1] con-
sisting of a regular arrangement of dye molecules. Upon
aggregation, the absorption spectrum of a dye solution
dramatically narrows and shifts to the red. These ag-
gregates also display interesting excited state dynamics
[2], in particular, an enhanced radiative decay rate (su-
perradiance) which depends on aggregate size. Semicon-
ductor quantum wells [3] and quantum dots [4] display
size dependent blue shifted absorption spectra (com-
pared to the bulk). As with the J-aggregate Frenkel
exciton, there is evidence that the semiconductor Wan-
nier exciton is also superradiant [5]. Futhermore, it has
been theorized that these microstructures should exhibit
giant third order nonlinear susceptibilities [6] although
experimental confirmation is thus far lacking. Materials
with large values for x® for frequencies far from the
absorption maxima are ideal for fast switching optical
modulators needed in optical communications and com-
puting.

The present paper deals with the third order nonlin-
ear optical properties of Frenkel excitons in molecular
aggregates. We calculate the phase conjugate degenerate
four-wave mixing (DFWM) signal from a system of
homogeneously broadened, one dimensional cyclic ag-
gregates composed of N coupled two-level systems with
an aggregate dimension much smaller than an optical
wavelength. The homogeneous dephasing is described
by the well known Haken Strobl model [7]. The analysis
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is based on the superradiant density matrix equation of
motion [8], the details of which can be found in ref. [9],
where a completely quantum mechanical expression for
x® is derived including the effects of biexcitons. We
use this expression to evaluate the phase conjugate
DFWM spectrum and consider two cases: when the
pump beams are tuned to the exciton absorption and
when they are far from resonance. Within these limits
the combined effects of homogeneous dephasing and
superradiance on the DFWM spectrum is determined.
We predict the existence of a narrow resonance which
results from a dephasing induced population transfer
from the k = 0 superradiant exciton state to the N —1
subradiant exciton states. Such narrow resonances have
recently been observed in quantum wells [10].

2. Model

We consider cyclic, one dimensional aggregates (N
equally spaced molecules on a circle) with N odd. Each
molecule is modelled as a two level system with transi-
tion frequency, w,. The calculation of x® is greatly
simplified in this configuration. We believe, however,
that our analysis and general conclusions regarding the
cooperativity are not restricted to this special case.The
equation of motion which describes the electromagnetic
interactions between the N molecular polarizations
within the aggregate and between the aggregate polari-
zation and the applied electromagnetic field is the su-
perradiant master equation [8]:
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Fig. 1. Phase conjugate DFWM spectra | x®(—2w, + w,; w;,— w,,w;) |2 versus w; — w, for several aggregates sizes N = 3, 5, 7 and

9 with the pump beam tuned to the exciton absorption peak resonance. (a) I'=0and spectra with the larger peak values of |x

(3)|2

correspond to the smaller aggregate sizes. (b) =10 v, and the size progression is reversed. N =9 now has the largest values of

N
+ Y Yl bpbl —1(bbo+pbtb,)]

mn=1
i N
+ 35 X E(n, Ole(0), b +b,] =il (1),

n=1
(1)

where b (b,,) are creation and anilhation operators for
the excitation at site m, £, (¥,,,,) is the real (imagin-
ary) part of the electromagnetic coupling, and E(r, t) is
the component of the external electric field along the
molecular transition dipole moment p. In this article we
assume that the aggregate is small compared to an
optical wavelength k.7, <1, so that all E(r,, t) can
be replaced by E(r, ¢). In this limit we further have:

3y (1 -3 coszﬂm")

Qmﬂ T = Vmﬂ (2a)
4 (kot)

and

Yon = V> (2b)

where V,  is the static dipole-dipole coupling, v is the
single molecule spontaneous emission rate, and k,=
wy/c. For simplicity we shall include only the nearest
neighbor coupling in the real part of the interaction V,,,
and define V'=V,.

Homogeneous dephasing is represented by the last
term in eq. (1) and is introduced by assuming that each
molecular electronic frequency is undergoing rapid
fluctuations:

wh (1) = wy + 8w, (1)
with
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Here (... ) denotes an ensemble average over the bath,
and it is assumed that fluctuations on different mole-
cules are uncorrelated. dw(?) is taken to be a stochastic
Gaussian—Markov process. This model was introduced
by Haken and Strobl to describe exciton transport in
solids [7]. Accordingly, p(?) in eq. (1) is the ensemble
averaged density matrix. The general form of L’ is quite
complicated and is given in ref. [9].

Starting with eq. (1) we have derived in ref. {9] a
complete expression for x using time dependent per-
turbation theory within a Liouville formalism. For the
exact calculation it is sufficient to work in a reduced
operator space which includes only exciton and biexci-
ton coherences and populations.

3. Phase conjugate four wave mixing

In phase conjugate DFWM, two pump beams with
frequency w; counterpropagate in a nonlinear medium
(ky= —k,), with the probe beam (frequency w,, wave-
vector k,) entering at some arbitrary angle. A phase
conjugate signal with an intensity proportional to
IxP (=2, + @y @,,— wy,w;)|? is generated in the
k,=ky+k;—k,= —k, direction with a frequency
equal to 2w; — w,. In DFWM, the pump frequency w,
is held fixed while the probe beam frequency is scanned
over a narrow frequency interval centered at w,. In this
section we treat two cases. In the first case the pump
beams are tuned to the exciton absorption maximum
w(0) = wy + 2V so that w,; = w(0). In the second case,
the pump beams are detuned by at least an exciton
bandwidth (4¥) from the k=0 exciton absorption
maximum, Aw, =w; —w(0) >4V, and w, is scanned
over a narrow frequency interval centered at w,.

Previously it has been shown that x® is propor-
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Fig. 2. Phase conjugate DFWM spectra | x> (—2w, + w,; w;,~ wy,0,)|? versus w, — w, for N =5 and for I'/Ny = 0.01, 1, 10 and
100. (a) Aw, =0 and (b) Aw, =8V. All curves are normalized to a peak height of unity, and increasing values of I correspond to
curves with greater linewidths (at half maximum).

tional to N2, allowing for so-called giant nonlinearities
in semiconductor quantum dots. For near resonance
DFWM our calculation of x® shows that this is only
true if the dephasing is much greater than the super-
radiant rate, > N7y and that in the opposite limit,
< Ny, x® is actually degraded with size! (The peak
x® ~ N™1) Furthermore, the N dependence is a com-
plicated function of the particular nonlinear technique
as well as the laser detuning. For example, x® for third
harmonic generation and DFWM have different N de-
pendences. In figs. 1(a) and 1(b) band we shovxi the
phase conjugate DFWM spectrum in the case of I'=0
and I'=10* y for several aggregate sizes.

The addition of an arbitrarily small dephasing rate r
produces a narrow resonance located at the center of
the I'=0 spectrum. In fig. 2a we show normalized
spectra for N =5, Aw, = 0 and various values of I In
the limit " < Ny, the height and FWHM of the narrow
resonance are equal to 1/y and I /N, respectively (for
N> 1), so that as [" approaches zero, the area correctly
goes to zero. The physical origin of the narrow reso-
nance arises from the fact that only the & =0 exciton
state has a nonzero radiative decay rate and is super-
radiant. All other exciton states are nonradiative (sub-
radiant). The first interaction with a pump beam di-
rectly excites the exciton coherence. After the second
interaction (with the probe electric field) the k=0
exciton is populated; during the subsequent evolution
period homogeneous dephasing allows a transfer of
population to all N — 1, k + 0 exciton states. In a time
of order (Ny)~! the total k=0 exciton population
grows from zero to I /(Nvy) times the initial k=0
population. Because these states have no transition di-
pole moment to the ground state, they cannot radiate
and they cannot provide a third interaction with the
pump beam to create the phase conjugate beam. For

times greater than (Ny)~! the k # 0 population slowly
leaks back 10 the k = 0 population at a rate I’ /N where
it is rapidly converted to the ground state population as
the k =0 exciton states superradiates. It is this slow
build-up of ground state population that is responsible
for the narrow resonance. (The grating which diffracts
the pump beam in the third interaction to produce the
phase conjugate beam is a population difference grat-
ing, i.e., between the k = 0 excited state population and
the ground state population.) In the opposite limit,
I'>> Ny, homogeneous dephasing causes the total ex-
cited state population to be evenly distributed over all
exciton states in a time of order I'! (following the first
two interactions). The & =0 and k # 0 exciton popu-
lations now return to the ground state at the monomer
rate y causing the width of the narrow line to converge
to vy.

In fig. 2(b) we show the DFWM spectrum when the
pump beams are off resonance (Aw, = 8V"). The super-
radiant spectrum still appears despite the pump beams
being far off resonance. Compared with the on reso-
nance spectrum, the narrow resonance peak height is an
additional factor of two larger than the superradiant
peak. In both cases, the narrow resonance peak height
remains ~ N times larger than the superradiant peak
height.
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