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SUSCEPTIBILITIES, LOCAL FIELD, AND POLARITONS IN NONLINEAR OPTICS:

A UNIFYING THEORY

Jasper KNOESTER ! and Shaul MUKAMEL ?

University of Rochester, Chemistry Department, Rochester, NY 14627, USA

A general scheme is presented for calculating the nonlinear optical response in condensed phases which provides a unified
picture of excitons, polaritons, retardation and local field effects in crystals and in disordered systems. From a fully
microscopic starting point we show that the traditional approach of applying response theory to the material system perturbed
by the external field, is justified if retardation is neglected. For the case of strong retardation effects, we propose a new
procedure to evaluate optical response, based on a hierarchy of equations of motion for polaritons.

The traditional approach to calculate (nonlinear)
optical signals is based on performing response theory
of the material system with instantaneous intermolecu-
lar interactions with respect to the external laser fields
[1,2]. From this, one may, for instance, obtain the
nonlinear optical susceptibilities as equilibrium correla-
tion functions of the polarization field of the material
system. For dense systems the application of response
theory requires the solution of a many-body problem, as
a result of the intermolecular interactions. One there-
fore often invokes the local field approximation [1], in
which every molecule is considered to interact only with
an effective (local) electric field which incorporates the
interactions with the environment. A more fundamental
problem than the proper inclusion of the instantaneous
Coulomb interactions, is that the radiation field itself is
a degree of freedom. In condensed phases with a large
density of oscillator strength, this may lead to the
formation of coupled material-radiation eigenmodes
(polaritons). In recent years, many nonlinear optical
experiments were performed in which polariton proper-
ties played an important role [3]. The traditional ap-
proach of calculating the response of the material sys-
tem with instantaneous interactions to the external field
cannot account for these effects. A complete theory of
optical response should be derived from a microscopic
basis in which the coupled evolution of the radiation
field and the molecular system is considered. Only then
is it possible to address the response of systems in
which polaritons are important and, moreover, it can be
shown in what approximations the susceptibilities may
be used and defined as done traditionally. In this paper,
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we present exact equations of motion for the radiation
fields and the material variables which serve as such a
general starting point and we discuss their practical
implementation.

We consider an arbitrary system (lattice, disordered
system, monolayer, cluster, etc.) of multilevel molecules
with localized electronic states coupled to the radiation
field. The multipolar Hamiltonian for this system reads
in the dipole approximation (a caret denotes an oper-
ator) [4]:

ﬁ=zf}m+ﬁmd—fﬁ(r).i)*(r) dr
m

+2'rr2f|13m*(r)|2 dr, (1)

where I-}m is the Hamiltonian of the isolated molecule
m and ﬁrad is the contribution from the free radiation
field. The third term is the coupling between the radia-
tion and the molecules; ﬁ( r) is the polarization field in
the medium and b*(r) is the transverse electric dis-
placement field, which is related to the Maxwell field
operator E(r) by D*(r)=E*(r)+4cP*(r). Finally,
the last term in eq. (1) is a self-energy, in which IA’mL(r)
is the transverse polarization field caused by molecule
m only. In the multipolar Hamiltonian, D*(r) is the
conjugate momentum of the vector potential A (r) [4],
so that in second quantization it is totally expressed in
terms of radiation creation and annihilation operators
only, and commutes with all material operators.

The basis for the calculation of optical response is
the time evolution for the coupled radiation-matter
system, which can be described by the Heisenberg equa-
tions of motion. For the radiation operators, these
equations can be shown to be equivalent to the Maxwell
equations in the dipole approximation [5]. To describe
the material evolution, we have to face the problem of
total absence of explicit intermolecular interactions in



J. Knoester, S. Mukamel / Nonlinear optics: a unifying theory 267

the multipolar Hamiltonian. Interactions are instead
carried by exchange of photons between the molecules.
Consequently, it seems that even to describe the intui-
tively simple notion of instantaneous interactions, we
are forced to include the radiation field in our descrip-
tion. We present an exact representation of the Heisen-
berg equations of motion in which instantaneous inter-
molecular interactions are explicitly recovered, without
addressing the dynamics of the radiation field. For an
arbitrary material operator Q this equation is derived
by formally writing the commutator of the Hamiltonian
eq. (1) with Q, while realizing that lA)*(r) commutes
with all material operators. Substituting the relation
D (r)y=E*(r)+4xP*(r) and explicitly writing the
transverse polarization field in terms of the molecular
dipole operators fi,,, we arrive at [5]

+E4(r,) [Rn. 0]}, )

where all operators are taken at time ¢, r, is the

m
position of molecule m, and
ﬁ0=Zﬁm+%z,ﬁm.(rjn_3rmnrmn)'ﬁn/rnsrn' (3)

m m.n

Here r,,=r,—r, and the prime on the summation
excludes terms with m = n. The last term in ﬁo is the
instantaneous dipole—dipole interaction. The great merit
of this equation is that it separates the contribution
from the material Hamiltonian ﬁo, which is the com-
mon basis for optical response theories and the calcula-
tion of susceptibilities. Furthermore, the interaction with
the Maxwell electric field is obtained in the familiar
p- E* form. Because in eq. (2) the electric field appears
as an operator, it is possible to define coupled
matter-radiation eigenmodes (polaritons); on the other
hand, this prevents us from directly applying response
theory and obtaining susceptibilities.

In order to define susceptibilities, the expectation
value of the polarization field must be expanded in the
average Maxwell electric field. If in eq. (2) the electric
field would appear as the expectation value E*t >, we
could use the expectation value of this equation to
generate a hierarchy of equations of motion, coupling
material variables to each other and to (E*). The
susceptibilities could be obtained from this by truncat-
ing the hierarchy at some point, substituting for all
introduced material variables expansions in terms of
{ E+ 5, and iteratively solving for the expansion coeffi-
cients [6]. In reality, however, the expectation value of
eq. (2) involves averages of products of material oper-
ators and the electric field, so that such a hierarchy can
only be built if we factorize these products. Instead of
introducing an ad hoc factorization approximation, we
will use an approach which gives a more physical mean-

ing to this approximation. Consider the formal solution
to the Maxwell equations in Fourier space [7]:

kk — (w/c)’
k*— (w/c+i0%)°

Pk, w), 4
where E,

.xi denotes the external electric field, which is a
¢ number. Subtracting from eq. (4) its expectation value,
we obtain

E(k, w)=E., (k, w)—4n

E(k, 0) = (E(k, 0)) ~4n— =t ,;+ ;
k= (w/c+107)
(P(k, )= (P(k, ©))). &)

From this, we find that the transverse Maxwell field
equals its expectation value up to a contribution of the
order (w/c)2. Thus, if we totally neglect retardation
(w/c=0), we may replace the operator E* in eq. (2)
by (E*), and susceptibilities can be obtained in the
way described above. In this approximation, the material
evolution can be described by a time-dependent effec-
tive Hamiltonian

ﬁeff(t)=ﬁ0_2ﬁm'<EA-L(rm’ t)> (6)

We may alternatively describe the material evolution by
transforming to the Schrédinger picture and giving the
Liouville equation for the reduced material density op-
erator
AM

BRI - _[Ru(r). M), (1)
where pM(1) is the total density operator traced over the
radiation field. This is the common starting point for
performing response theory, yielding the expressions for
the susceptibilities in terms of equilibrium correlation
functions of the material polarization field in the stan-
dard way [1,2]. Because of the many-body character of
the material evolution in condensed phases, susceptibili-
ties are hard to evaluate for such systems. A common
approximation is obtained by factoring in the expecta-
tion value of eq. (2) any product of operators acting on
different molecules into the product of expectation val-
ues. This mean-field approximation allows us to con-
sider the evolution of a single molecule responding to
the well-known local field

E(r, )= (E(ry. 1)) + 5 (B(r, 1)), )

and leads to susceptibilities given by the single molecule
hyperpolarizabilities multiplied by local field correction
factors [1].

Clearly, the above replacement of E* by its expec-
tation value destroys the possibility to describe polari-
tons in crystals. To do this, the full operator nature of
the radiation field should be maintained, so that we
return to eq. (2). Combining this equation for the



268 J. Knoester, S. Mukamel / Nonlinear optics: a unifying theory

material (exciton) creation and annihilation operators
with the Maxwell equations, the polaritons are derived
as eigenmodes of the coupled radiation-material
Hamiltonian (cf. ref. [8], where this is done within the
minimal coupling (p-A4) Hamiltonian). The explicit
separation of the instantaneous interactions in eq. (2)
proves advantageous in this derivation [5], because it
allows us to neglect Umklapp processes (high wave
vector modes) in the transverse electric field, which
considerably simplifies the eigenvalue problem involved
in the calculation of the polaritons. A similar approxi-
mation directly applied to the displacement field in eq.
(1) leads to an incorrect polariton dispersion relation
[5]. For systems in which polaritons play an important
role (typically, low-temperature crystals with a high
density of oscillator strength) the above theory of
susceptibilities does not provide a solid basis to calcu-
late optical response. Instead, a procedure which di-
rectly addresses the response of the polaritons to the
laser fields is favorable. We propose to describe nonlin-
ear optical response in terms of polaritons in the follow-
ing way [5]: the expectation values of the creation and
annihilation operators of the polaritons which are di-
rectly created by the external field can be found by
matching the boundary conditions for the electromag-
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Fig. 1. Diagram illustrating how the different approaches to
calculate nonlinear optical response discussed in the text derive
from a common root.

netic fields. Call these polaritons the “first order”
polaritons, because they describe the linear response of
the crystal. We now build a hierarchy of equations of
motion for polariton operators, which may be done
using the Maxwell equations and eq. (2). In doing this,
the Bose approximation for the commutation relations
of the exciton operators should not be made, because
this automatically leads to a truncation of the hierarchy
at the lowest level and the absence of nonlinearities. In
order to calculate the optical signal (which depends on
the expectation value of the polarization field), we take
expectation values of all the equations in the hierarchy
and truncate by factorizing at a certain level into lower
order variables and expectation values of single polari-
ton creation and annihilation operators. The set of
equations thus generated may be solved in terms of the
expectation values of the “first order” polariton oper-
ators, so that the signal can be expressed in terms of the
external field amplitudes. This procedure guarantees
that the optical signal has resonances fully determined
by the polariton dispersion relation.

In conclusion, we showed how both the traditional
approaches to optical response and a new procedure
which accounts for polariton effects can be obtained
from a unified starting point. The relation between the
different approaches is summarized in fig. 1.
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