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A microscopic theory for ultrafast coherent Raman spectroscopy of polyatomic molecules in 
condensed phases is developed. For off resonant excitation, an effective Hamiltonian that 
controls the molecular dynamics in a Raman process is derived. The limitations of the driven 
oscillator model are clarified, and generalized equations of motion, which hold for resonant 
and off resonant excitation, are derived. Spectral selectivity using pulse shaping is discussed. 

I. INTRODUCTION 

Coherent Raman scattering using femtosecond laser 
pulses is widely used as a probe for elementary molecular 
nuclear motions in condensed phases. I4 In an impulsive sti- 
mulated light scattering (ISIS) experiment, a single laser 
pulse is applied and coherent molecular motions whose time 
scales are slower than the pulse are observed in the time 
domain. In this technique, all Raman active modes are excit- 
ed. The development of femtosecond pulse shaping tech- 
niques’ has made it possible to optically control these ele- 
mentary molecular motions. In a recent experiment, a 
terahertz train of femtosecond pulses was used to excite an 
a-perylene crystal.” Only the optical phonon whose fre- 
quency equals to the inverse of the train interval is effectively 
excited, contributing to the macroscopic polarization of the 
medium, whereas the motions along other degrees of free- 
dom with different frequencies are discriminated against. 

A classical theory of off-resonant stimulated impulsive 
light scattering based on the molecular dielectric response, 
with linear coupling to the optically active modes in the 
ground electronic state was developed by Nelson and co- 
workers. Is2 This theory provides a clear and simple picture of 
the process. The quantum impulsive light scattering theories 
in the weak field limit developed recently by Chesnoy and 
Mokhtari,3” Walsley, Wise, and Tang,3b Walsh and Lor- 
ing3’ are based on solving the Bloch equations perturbative- 
ly with respect to the external field. In these theories the 
molecular system is modeled as two manifolds of vibronic 
levels associated with the electronic excited and ground 
states, respectively. These theories are valid for both reso- 
nant and the off-resonant excitation processes. We have re- 
cently developed a doorway/window density matrix formal- 
ism for time-resolved optical spectroscopy in the weak field 
limit.’ The doorway/window formalism provides a clear 
physical picture of time-resolved optical processes. In this 
paper, we apply the doorway/window picture to develop a 
microscopic quantum mechanical theory for off-resonant 
light scattering with an arbitrary excitation intensity. The 
theory is valid for anharmonic vibrational motions with an 
arbitrary dependence of the electronic polarizability on nu- 
clear coordinates, and the classical limit of the theory can be 
readily obtained. Extension to near-resonance excitation is 
discussed as well. In Sec. II, we use the density matrix and 
doorway/window picture to derive a general expression for 

coherent off resonant Raman scattering. The optical signal 
[cf. Eq. ( 10) ] is expressed in terms of the expectation value 
of the molecular polarizability calculated using the time-de- 
pendent doorway state prepared by the pump field. The mo- 
lecular dynamics are controlled by an effective Hamiltonian 
[cf. Eq. (5 ) 1, which consists of the nuclear adiabatic Hamil- 
tonian associated with the ground electronic state, and a 
time-dependent driving force which is proportional to the 
square of the pump Rabi frequency, scaled by its detuning 
from the electronic transition. The effective Hamiltonian 
holds for an arbitrary time dependence of the excitation field 
and an arbitrary coordinate dependence of the electronic 
transition dipole. In Sec. III, we consider the weak pump 
field limit in which the optical signal can be expressed in 
terms of the equilibrium response function of the molecular 
electronic polarizability. We further consider the lowest 
non-Condon effect in which the polarizability depends lin- 
early on nuclear coordinates. In this case we recover the 
linearly driven Brownian harmonic oscillator model which 
has been widely used in the theory of impulsive Raman scat- 
tering. ‘,* In Sec. IV, we discuss the consequences of pulse 
shaping and present a model calculation to demonstrate its 
frequency filtering effect, in which only the Raman active 
mode with a selected frequency is effectively excited. Final- 
ly, in Sec. V we interpret the pulse shaping experiment by 
examining the molecular density matrix, and discuss its im- 
plication on laser selective chemistry. 

II. OFF RESONANT COHERENT RAMAN SCATTERING 

Consider an optically thin medium interacting with an 
external laser field. The total Hamiltonian in the electric 
dipole approximation is 

HT(r,t) =H- F%(r,t), C la) 

H = l&H, 64 + le> W, + weg )(el, (lb) 

~=pc1(q)[ld(el + l4Wl. (ICI 
The system consists of a solution of chromophores with two 
electronic states lg) and le) and the corresponding nuclear 
adiabatic Hamiltonians Hg and He. Here, wcg denotes the O- 
0 electronic transition frequency and V represents the elec- 
tronic transition dipole. The present theory holds also for the 
optical phonons studied by Nelson. et ~1.~ provided the 
phonon bandwidth is narrower than the inverse timescale of 
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the experiment. In this case spatial dispersion can be neglect- 
ed and an Ginstein model for the optical phonon can be used. 
Coherent Raman scattering is often carried out in a transient 
grating configuration, 1*2*6 in which the system is first subject 
to two identical pulses with the mean frequency fl, and 
wave vectors k, and k, , which create a dynamical grating 
with wave vector k, - k2. Following a delay time TV, the 
system is probed using a third pulse with mean frequency a, 
and wave vector k, . The coherent Raman scattering signal is 
detected at the direction k, = k3 + k, - k, corresponding 
to the Bragg diffraction off the grating, and is recorded as the 
function of the delay time TV. The external lield in Eq. ( la) 
is 

is then electronic polarizability at frequency QL,. Equations 
(4)-( 5) are valid for an arbitrary intensity and shape of the 
pump field. It should be noted that the present theory is not 
limited to the transient grating configuration. It generally 
holds for any doorway state prepared by an off resonant 
excitation process which could involve for example only a 
single excitation pulse. I** For resonant excitation, the mo- 
lecular dynamics depend also on the electronic excited state 
Hainiltonian He.?’ In this case, the equations of motion for 
pgg and pee are coupled (cf. Appendix A) and the effective 
Hamiltonian formalisin is intipplicable. 

E(W) = Ep (r,t> + E&f), CW 
Ep(r,f) = Ep(t) exp( - iCl,t) Iexp(zk,r) 

+ exp(zlc,r)] + c.c., (2b) 
E,(r,t) =E,(t- TV) exp(A,r - it?+) + C.C. (2~) 

Here, C.C. denotes the complex conjugate; Ep(t) and 
E, (t - 7D ) denote the temporal envelopes of the pump and 
the delayed probe fields, respectively. 

We shall calculate the transient Raman scattering line 
shape when the pump and the probe are well separated. We 
can then use the doorway/window picture of pump-probe 
spectroscopy,’ where the pump field prepares the doorway 
state, which is then detected through the window defined by 
the probe field. 

We shall be interested in the k, - k, spatial Fourier 
component of the doorway state that cmonstitutes the relevant 
Raman grating: 

p(t)= 
s 

drexp[ -i(k, - k2)r]pgg(r,t). (6) 

We shall now consider the detection process using a 
weak probe field delayed by rD with respect to the pump 
field, and calculate the coherent Raman scattering signal 
from the prepared doorway state. The coherent Raman sig- 
nal in the direction k, = k, + k, - k, is given by’*” 

S(7D) = s 
co df If’(k.4 1’2 (7) 
-92 

with 

Let us start with the preparation process and define the 
doorway state. For a molecule located at position r, thl mo- 
lecular density matrix is represented in the form: 

P(W) = s 
dr exp( - z&r + i&.t)~(r;t). (8) 

pr(rA = ldp,,(r,f) (81 + le>p,, (r,t) @I 

+ le)p, (rJ> (81 + 18)pg. (r,t) (4 (3) 
where each matrix element pm,,, with m,n = e, or g, is an 
operator in the molecular nuclear space; pgg or pee describes 
the nuclear dynamics when the medium is in the electronic 
ground or excited state, whereas peg or pgc represents the 
nuclear dynamics when the system is in an electronic (opti- 
cal) coherence. The four coupled Heisenberg equations of 
motion ofp,,, (r,t) are given in Appendix A [ Eq. (A2) 1. In 
this paper, we shall focus on off resonant Raman spectrosco- 
py, in which the pump and the probe electronic detunings 
wcg f nP and w,~ f fin, are large compared with the inverse 
time scales of the excitation pulses and the molecular nuclear 
dynamics. In this case the equations of motion forp, andp,, 
are decoupled. Since the system is initially in the ground 
electronic state, the state prepared by the pump (the door- 
way state) is characterized only by ppg (r,t), which satisfies 
the equation of motion (cf. Appendix A) : 

This polarization can further be expressed in terms of the 
nonequilibrium molecular dipole-dipole correlation func- 
tion (cf. Appendix B) calculated using the doorway state 
p ( t) [ Eq. ( 6 ) I. The evaluation of the dipole-dipole correla- 
tion function generally involves complicated molecular nu- 
clear dynamics.” In the case of off resonant probe detection, 
the nuclear dynamics in the dipole-dipole correlation can be 
neglected’2T13 and we obtain (cf. Appendix B) 

P(k,;t)m==E,(t--rz,) Tr[a,p(t)]. (9) 
Here, a, is the molecular polarizability at the probe frequen- 
cy, given by Eq. (5b) with replacing 02, by R,. Substituting 
Eq. (9) for Eq. (7), we get 

S(r,) F 
s 

m dtIE,(t--~)l’{Tr[a,p(t)]}*. (10) 

&(rJ> = - W+i) [Hef(rA,pgg (r,O]. (4) 
Here the effective Hamiltonian is* 

HcR(r,t)=Hg -2[1 +cos(k, -k,)r]a,IEP(t’)lZ 
(W 

and 

P2 ap=- 
[ 

l -I- l 
fi we&? -0, *, + f-b 1 (%I 

Equation (10) tiiether with (4) and (5) constitute the for- 
mal basis of this paper. They are valid for arbitrary (anhar- 
manic j nuclear adiabatic Hamiltoniais H, or H, , arbitrary 
shapes of the pulse envelopes Ep (t) and E, (:t) and any in- 
tensity of the pump field. The probe field is assumed to be 
weak. The key quantity in the calculation of the spectral 
signal [Eq. (lo)] is Tr[a,pltj], the expectation value of 
the molecular electronic polarizability with respect to the 
time-dependent doorway state [ Eq. (4) I. The electronic po- 
larizability Cap or aTj depends parametrically on the nu- 
clear coordinates. The Raman active modes are character- 
ized by a relatively strong coordinate dependence and the 
Raman signal reflects their coherent motions. ‘3314 Nuclear 
motions that do not affect the polarizability do not show up 
in the spectrum. In the following section we shall consider 
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some limiting cases, in which the calculation is further sim- 
plified. 

III. COHERENT RAMAN USING WEAK FIELDS; THE 
NUCLEAR RESPONSE FUNCTION 

When the pump and the probe fields are weak, we can 
expand the dynamics of pgg [Eqs. (4) and (5)] to lowest 
order in lEP (t) 1’. We then have13 
Tr[a,p(t)] 

-=Smd~~E~it-r)j’((i/~)[a,(r),a,(0)]). (11) 
0 

The molecular nuclear dynamics is, in this case, described by 
the response function” of the polarizability: 

(Wfij [aT(7Lap(0)]) 
=Wfi) Tr{[a,(r)a,(O) - ap(0)a,(d]p,,}. (12) 

Here, pes is the equilibrium nuclear density matrix of the 
system in the ground electronic state and 

a,(r) =exp(iH,r/fi)aj exp( - iH,r/fi); j= P,T. 
(13) 

Using Eq. ( 11)) the coherent Raman signal [ Eq. ( 10) ] re- 
duces to 

S(?-,j = 
I 

- dtIE,(t-TD)12 
--m 

x 
[I 

md~IE,(t-7)12((i/~)[a,( 1 
0 

7- ,a,dO)$ 

(14) 

The effect of the pump field spectrum on Raman signal 
can be easily seen when the pump and probe are well separat- 
ed. In this case we may change the lower integration limit of 
r to - m and Eq. ( 14) reduces to 

S(TD I= s 
- dtIE,(t-TD)12 
-03 

x/L 
-m 

I I 

2 

2n- --cc 
dw exp( - iwt)IP(w)R(w) , 

(15) 

where 

Ip(w)= 
s 

* dtexp(iwt)IEP(t)12, (16a) 
-m 

s 
m R(w)- dtexp(iwt)((i/fi)[a,(Tj,ap(0)]) . 
-cc 

(16b) 
As shown in Eq. ( 15)) the spectral profile of the pump field 
IP (in)) provides a frequency$ltering function for the Raman 
signal. In the impulsive pump limit, IP (w ) is independent of 
frequency and all the Raman modes contribute equally to 
the signal [ Eq. ( 15) 1. If a train of femtosecond pulses is 
used, IP (w ) becomes a sharply localized function around 
some selected frequencies CL, = no,; n = 1,2, . . . In this case 
the pump excitation creates a frequency grating pattern 
within the optical medium and filters out a few Raman 
modes with frequencies around ‘nw,, while discriminating 
against other nuclear motions. This filtering effect will be 
illustrated further in the following sections. 

Off resonant Raman scattering is induced by the depen- 
dence of the electronic polarizability on the nuclear coordi- 
nates a = a(q) . Usually this dependence is weak and in the 
Condon approximation, which is often used for resonant ex- 
citation, it may be neglected.9.‘4 Making use of this weak 
dependence, we expand a(q) to first order around the equi- 
librium configuration q”: 

aP(Q) =aP(qo> + CKjqj + “*> 
i 

(174 

q-(q) =a*(q’> + CKi)qj + “*. 
i 

(17b) 

Here, K~ zda,/dqj evaluated at q” and ~,i is defined similar- 
ly. In this case we have [cf. Eq. (5a) ] 

.Kr(r,f) =H, - 2[ 1 + cos(k, - k, jr] C Fj(t)qj, 
i 

(1W 

where 

F,(t)"KjlEp(t)lL (18b) 
is the driving force for the jth mode. If the qj vibrations are 
harmonic we obtain the driven oscillator model.‘T2 We have 
neglected the pure Condon term since it does not contribute 
to the doorway state p (t) or peg (r,t) [ Eq. (4) 1. The signal 
[ Eq. ( 14) ] becomes 

I 
m S(T,) = dtI-Wt--o)12 
-m 

X 
[I 

md7/EP(t-~)~2 
0 

with 
qj(t)=exp(iH,t/ti)qj exp( - iH,t/3). (19b) 

When the nuclear motions are classical we can use the classi- 
cal response function. l5 For Eq. (12) we have 
(WV [aT(7LapW]) 

zF Fk (aT(T) C$Pj) 9 (20a) 

and in Eq. (19a) we substitute 

((ii% [qj(T),qk(O)]) zMkLBTB (qj(T)p,), (2Ob) 

where Mj is the mass and pi is the momentum of modelj; k, 
is the Boltzmann constant and TB is the temperature. 

IV. THE DRIVEN BROWNIAN OSCILLATOR AND PULSE 
SHAPING 

The nuclear dynamics of a polyatomic molecule in solu- 
tion can often be described using the Brownian oscillator 
model, in which the ground state Hamiltonian Hg in Eq. 
( 19b) represents harmonic Brownian motions; that is, the 

jth mode satisfies the generalized Langevin equations: ’ ‘.16 

ijCf) =pj(t)/Mj9 (214 
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J--m 
-!=--zj,t-Tjsjk. 

(21b) 
MjWj 

Here, L - r denotes the invyse Laplace transform and r1 (s) 
is the Laplace transform of y, (tj. The coherent Raman scat- 
tering signal [Eq. ( 19a) ] in this case reduces to 

- S(-i-,) = 
s d+%(t--d12 -m 

Here, c (t) and& (t) denote, respectively, the non-Marko- 
vian friction kernel and Gaussian stochastic random force 
acting on the jth mode with frequency wj.’ They satisfy 
the flu_ctuation-dissipation relation: “.I6 ~Wfk(O)) 
= Mjljyj (t#,, . Here, Sjk is the Kronecker delta, 

and 

are the therm&y averaged energy and occupation number 
of thejth oscillator at temperature T,, respectively. The re- 
sponse function of the Brownian harmonic oscillator [Eq. 
(21)] is1’*16 
((ih% [9j(t)99k]) 

gj =tij(Ej + l/2) Wa) 

E = [exp(ti/kBTB) - I] - * (22b) 

= _L (9j (T)Pj) +, (Pie tT) > 6. 
2 (P/“) - (Pi>’ Ik 

= (MjUi) -‘L -I wj 
S*.+ S’yi (S) + Cd; I sjk 

X 
[J‘ 0 

md+P(t-r)12~~ 12. z, (7) 
I I - _ 

(24) 
In the impulsive excitation conjguration, where the du- 

rations of the pump and probe pulses are short compared 
with the molecular nuclear dynamics, we may approximate 
I&- ( t - rD ) and EP (t - r) by delta functions. In this case, 
Eq. (24) reduces to S(T~) a [Z~~~~/(~~w,)z~(r,)]‘, 
which recovers the previous result.‘.’ 

When the thermal motions of the bath are fast compared 
with the oscillator motion, the s dependence of rj (s) is weak 
and can be neglected, i.e., y,(s) = r, (s = 0) -rj. In this 
case we can perform the inverse Laplace transform in Eq. 
(23) resulting in’v2 

i 

(Wjfij) exp( - yjt/2) sin Gjt, 

Z,(t) = (yjt12) exp( - yjt/2), 
[[ (yj/Wj>‘-41 -i’2 [exp( --SW t) --exp( -S+ t)], “Ji>2Wj, 

Yj C 2wjv 

6 = 2uj, GW 

with 
q = (cd; - $/4) “2, Wb) 

S* = Yj/2 * ($4. - o$ j “2, (25~) 
where the three cases represent an underdamped, critically 
damped, and overdamped motion, respectively. 

In concluding this section, we present model calcula- 
tions that demonstrate the filtering effect of pulse shaping on 
a model molecule with three Raman active modes. For sim- 
plicity we assume that the probe scattering is impulsive, 
whereas the pump field consists of a train of iV identical ul- 
trashort pulses with 

6[t+ (n - l)T]. (26) 

Here, T denotes the train period and the pulse train energy 
1, (0) [ Eq. ( 16a) ] remains unchanged when the total num- 
ber of pulses Nis varied. In this case the power spectrum of 
pump field intensity [ Eq. ( 16a) ] is given by 

Ip(w> = Ip(0) exp[ - i(N- l)wT/2] sin(NwT’2) 
Nsin(wT/2) * 

?27) 
In the ordinary impulsive pump limit (the ISLS experi- 

ment),wehaveN= landI, =I,(O).AsshowninFig. 
1, when the number of pulses in the pump train Nincreases, 
the spectral protile of pump field ]IP (w) 1” is narrowed. Its 
maximum IP (0) remains, however, the same. Figure 1 dem- 

onstrates the filtering effect of pulse shaping [cf. Eq. ( 15) ] 
which allows only selected Fourier components of optical 
medium R (w) to be observed and discriminates against oth- 
er frequency components. It should be noted that the pulse 
train selects the Fourier component of nuclear motion, rath- 

N 
x 0 

a 
2 
x3 a 
c 

0 
0.5 1 1.5 

cJT/2rr e 
FIG. 1. The spectrum IZP(o)/ZP(0)j2 [Eq. (16a) or (27)] of the pump 
train ofN identical ultrashort pulses [Fq. (26) ] vs wT/h Tis the pulse 
repetition time in the pump train and ZP (w ) = I,, (w + 2rr/IZ’) is a periodic 
function. The various curves correspond to different values of Nas indicat- 
ed. As the number of pulses N increases, ZP(o) becomes more sharply 
peaked around o = 27&T, with n = 1 2 I 9 ... , and the frequency selectivity 
of the pump field is improved. 
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er than the microscopic molecular mode that may be subject 
to dissipation and random force from the solvent as well as 
anharmonicities. As the number of pulses N increases, the 
spectral width of the frequency filtering function narrows. In 

(a) 

k,+, 
0’ 100 200 

F1-equency (cm-‘) 
300 

200 400 600 600 11 

200 400 600 600 1c 100 
TD cfs) 

FIG. 2.(a) The Raman signal S( 7,) [Eq. (24)] of a Brownian harmonic 
molecule [Eq. (25)] with three modes: w, = 100 cm- ‘, We* = 67 cm ‘, 
and wJ = 117 cm - ‘, the friction parameters “/I = y2 = y, = 5 cm ’ and 
coupling K,K;/(M,w,) = K~K;/LW& = K,K;/(M,w,). The calcula- 
tion is performed in the impulsive limit where both the probe and the pump 
fields are a single peaked fN = 1) ultrashort pulses. The power spectrum of 
the Raman signal is shown in the insert. No mode selectivity is observed. 
(b) The same as (a) but for the shaped pump train of N * 3 pulses [ Eq. 
(26) 1, and T = 334 fs (or l/cT = 100 cm ‘). The optical selectivity for 
mode 1 (w, = 100 cm ‘) is developed. (c) The same as (b) but for a 
longer pump train with N = 30. The optical selectivity for mode 1 (w, 
= 100 cm ’ ) is now clear. 

FIG. 3. The Raman signal S( r,,) vs the delay time rD and the repetition 
time T for the same model molecule in Fig. 2(c). The pump field is given by 
Eq. (26) with N = 30. The three modes are well resolved at different values 
of T. 
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the ideal case where N- CO, the spectral profile of the pump 
field becomes a series of delta functions and the Raman exci- 
tation selects only the coherent Raman modes with 
wj = 2nr/T, n = 1,2, . . . (assuming r, = 0). The selected 
mode motion is not amplified by splitting up a single pulse 
into many pulses with the same total amount of energy. We 
next present the Raman signal of a three mode system to 
demonstrate this filtering effect. Figure 2(a) is the impulsive 
(nonselective) limit (N = 1). Figure 2(b) and (c) shows 
the signals pumped by a train of 3 and 30 pulses, respectively, 
with repetition time T = 334 fs (corresponding to a vibra- 
tional frequency of 100 cm - ’ ) . The frequency selectivity of 
pulse shaping is demonstrated. In Figure 3, we present the 
Raman signal for the same model system with N = 30 versus 
the time delay rD and the train period !K The 67, 100, and 
117 cm - ’ modes are clearly separated and show up at differ- 
ent values of the train period. 

V. DISCUSSION 

In the previous section we analyzed the filtering effect of 
Raman excitation using pulse shaping, which allows us to 
observe the motions of a few selected Raman modes. It was 
suggested that the off resonant Raman excitation can also be 
used as a means of laser controlled chemistry.B Below, we 
analyze this possibility by examining the doorway state pre- 
pared by a properly shaped pump excitation of thejth driven 
Brownian harmonic oscillator [Eqs. (21) 1. The doorway 
state can in this case be factorized asp(t) = IIipi (t) . In the 
Wigner (phase space) representation we have”,” 

P(P?q;r) = np(Pj4jGt)> 

i 
with 

(28a) 

P(Pj,qj;t) = f$ exp 
Mjl$ 

I 
26, [qj - (qjicf)>]” 

J 

-L [Pj - (pitt>>]’ * 
2@ilj 

(28b) 
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Alternatively, w.e may expand the doorway density matrix in 
the vibronic state representation: 

p(V,V’$> =n (YjIPj(t)lY~)--nP(~j,z~;t), W-4 
i i 

where 

= (iij + 1) - Wj+ $ + l)(vj!v;!) - l/Z 

X exp[ - IAj(t)12/(Ej + lj] 

xi 
Vj!Vi’! 

/soz!(v, - Zj!(vj’ - I)! 

x[7i,.(7i, + l,]‘[Aj(t)]Y/-‘[AP(t)]~--. (29b) 
Here, the summation in Eq (29b) runs up to 
ZM =min(vj,$). In Eq. (28b), (q/(t)) and {p,(t)) are the 
expectation values of the coordinate and momentum of the 
jth mode in the doorway state: 

(qj(t))ETr[qjp(t>] 

- = - (MjWij --I 
s 

&E;(t- 7)Zj(7), (30a) 
0 

(Pj(t))~Tr[Pj~(t>] 

z=. - wj- I 
s 

Yi7qt- T)ij(7), (job) 
0 

and in Eq. (29b), 
Aj(t) = (MjUj/2fii)"'(qj(t)) 

+ i(2?%l+z,) -(pi(t)). (31) 
At zero temperature, ?ij = 0 [ Eq. (22b) ] and the doorway 
state [ Eq. (29) ] represents a coherent state. ” Furthermore, 
(q, (tj > is directly related to the Raman signal [Eq. ( 10) ] 
via the relation: 

Tr[a,p(t)] =C K/(qj(t))* (32) 

In Eqs. (3Oj, F, (7) is the driving force [ Eq. ( 18b) 1, which 
pumps an excess energy of Acj (t) = +~cD, ]Aj ( f) 1’ to the jth 
Raman mode. If this mode represents a coherent vibration 
with ri = 0, we have Z, (t j = sin wj t and Eq. ( 3 1) reduces 
to 

Aj(t) = - i(2mjwi) - 1’2 

X 
s 

t 
drexp[ - iq(t - r)]l;i(r.). (33) 

After the pump ii,:, Aj (t > 0) is proportional to 1, (w. ) the 
pump field spectrum at frequency w, [cf. Eqs. (16;) ‘and 
( 18b) 1. In the presence of finite friction fi #O, the ampli- 
tude of the vibrational motions [Eq. (30) ] decreases, as 
shown in Fig. 4. For simplicity we shall consider the possibil- 
ity of Raman excitation controlled chemistry in the optimal 
case of rj = 0. Using the pulse train [Eq. (26)] we have 

A,(t) = -- ivi exp( - imjt)Ip(~j)/lp(0), (34aj 
with 

(34b) 

0 200 400 800 800 1000 

t (fs) 

FIG. 4. The amplitude IA,(t) 1 [E$. (31) ] of oj = 100 cm ’ oscillation 
motion for various values of friction y, (in cm ‘. ’ ). The pump pulse train is 
the same as in Fig. 2(c) (N = 30, T = 334 fs) . 

The amplitude of the coherent oscillation [Eq. (34a) ] 
[A,(t) 1 is given by the product of vj [Eq. (34b)] and 
IIP (w, )/I, (0) I, the amplitude of the pump profile at wj [cf. 
Eq. (27) 1. Consider an ordinary impulsive Raman experi- 
ment using a single pulse [ Eq. (26) with N = 11. In that case 
the amplitude in the coherent oscillation is given by 
]Ai (t) I = vj with all the Raman modes being equally excit- 
ed. Consider now a Raman experiment conducted using a 
shaped train of ultrashort pulses with a fixed total energy 
[ Eq. ( 26 j 1. If the repetition rate in the pulse train is tuned to 
match a particular Raman mode j, the pump profile 
]lP(p(wi j/1,,(0) 1, which acts as a frequency filter function, 
excites only thejth, Raman mode, whose amplitude is un- 
changed by the pulse shaping, but discriminates against the 
other modes: IA, (t) I z-0; k #j (cf. Fig. 1) . 

Finally, we should comment on the implications of these 
results on laser selective chemistry. Tannor, Kosloff, and 
Rice,” and Rabitz” have studied the resonant laser control 
of reaction selectivity. The selectivity is controlled in that 
case by the excited state dynamics and the Franck-Condon 
overlaps between the ground and the excited electronic sur- 
faces. It has been suggested6 that the Raman filtering may 
allow the selective pumping of molecular vibrations to high 
degrees of excitation, thereby promoting mode specific 
chemistry using off resonant pumping. By increasing the in- 
tensity of the pump field we increase the amplitude 
IA, (t) I = v1 of the selectedjth oscillator. This amplitude is 
proportional to the intensity of the excitation field [cf. Eqs. 
(34bj and ( 18b) I. At low temperatures an impulsive light 
excitation prepares a coherent state6 whereby all the mole- 
cules are equally excited. A stronger Raman amplitude thus 
implies that each molecule undergoes a larger amplitude 
motion. This argument holds for classical as well as quan- 
tum oscillators since the doorway state in the Wigner repre- 
sentation [ Eq. (28 j ] is identical for both cases. The picture 
is, however, very different if we examine the oscillator ener- 
gy. In an ensemble of classical oscillators we find that allj 
type oscillators acquire the same excess energy AC1 (t). If we 
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measure the energy of quantum driven oscillators, we find 
that A,$‘, (t) represents only the mean energy acquired by the 
j oscillators but that the oscillator energy has a probability 
distribution. When the oscillator energy is measured, we find 
that the probability of the oscillator to be in its vi state is 
p(~~,~~;t). By setting Y/ = Y; and rearranging Eq. (29b) we 
have ‘. 

p(yj,vj,t) =exP[ - IAj(t)12/(Ej :t: l)] 

xi ---yjl I-0 (v, - z>!(z!>2 

X(ii, + 1>-2'lAj(t)~(2'pq(vj -z,vj -r>e 
(35) 

Here, pq (Y;,Y;,) is the initial thermal equilibrium popula- 
tion in the vibronic level 1~;). Equation (35) shows that the 
contribution to the population of 1~~) resulting from the ini- 
tial vibronic state Ivj- - Z ) is of the order of ,IAj (t) 12! We 
have shown that the upper bound of ]Aj (t) I2 is 7; [cf. Eq. 
(34a) 1, which is obtained by exciting the selected coherent 
vibrational mode with rj = 0. As shown in Eqs. (34b) and 
( 18b), $ depends on the non-Condon coefficient of the mol- 
ecule K~, the Condon transition dipole ,L&, the pump detun- 
ing parameter ai,, and is proportional to the square of the 
field intensity. Let us consider the typical value of 7; in 
pulsed Raman scattering experiments of organic mole- 
cules,6 in which we assume the optical medium with 
KjI(-M@j > “2 = 0.1 and ,uO = 1 D, subjected to a 5 ,uJ laser 
pulse with beam diameter of 0.1 mm and fii, = 5000 cm - ‘. 
We have, in this case, IA, ( t) I 2 < $ =: 10 7 4, which using Eqs. 
(30a) and (31) corresponds to an increase in the macro- 
scopic vibrational amplitude of -0.01 A for an oscillator 
with w1 = 100 cm- ’ and a proton mass. For such small val- 
ue of $, the molecule initially at Iv,) state can only be excit- 
ed to [Ye + 1) state, as shown by Eq. (35 j. The probability of 
exciting to higher states is of the order of VT-or higher and can 
be neglected. Therefore, as long as T,$ 4 1, raising the energy 
of the pump field results in exciting more molecules from 
Iv/) to 1.y -I- 1) th ere Y increasing the macroscopic Raman bv 
polarization. The spectral filtering under typical conditions 
for the Raman experiment is therefore a mtfcroscopic effect 
and does not involve exciting individual molecules to a high 
level of excitation, which is the primary requirement for 
mode specific chemistry. This is to be contrasted with elec- 
tronically resonant excitation.‘8-2o 

proportional to the intensity of the excitation field [Eq. 
( 18) 1. Finally, in Sec. IV, we presented a detailed model 
analysis of the effect of pulse shaping on optical and chemi- 
cal selectivity of molecular systems. Since the shaped pulse 
train serves as a frequency filter, it does not amplify the mo- 
lecular motion compared with excitation with a single pulse 
with the same total energy. Of course, amplification is possi- 
ble if the pulse train has more total energy than a single 
pulse. In some materials, optical damage thresholds that 
limit the peak intensity of a single pulse may be circumvent- 
ed by use of a pulse train, so that higher total energies can be 
used. The multiple pulse Raman experiments represent an 
interesting attempt to achieve a high degree of selectivity, 
whose chances should be viewed cautiously. Tailored pulse 
trains with variable train intervals may be required in order 
to pump anharmonic modes. Off resonance excitation typi- 
cally pumps very small amount of energy and when the ener- 
gy is measured its distribution shows a large number of 
weakly excited molecules rather than a small number of 
highly excited molecules (as is required for laser induced 
chemistry). High degree of selective excitation can however 
be easily achieved using resonant pumping. 
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APPENDIX A: THE DOORWAY STATE AND THE 
EFFECTIVE HAMILTONIAN flew: DERIVATION OF EQS. 
(4) 

The density matrix of our system with a classical pump 
field satisfies the Liouville equation: 

f&-W) = - WV [Kp,(r,i] 

+ Wfi)-% WI [ V;p,(r,r) 1. (Al) 
Here, His the total Hamiltonian of the material system [ Eq. 
( 1 b ) I ; Ep is the electric field of the pump pulse [ Eq. (2b) 1. 
As shown in Eq. (3), we shall expandpT(r,t) as a 2x2 
matrix in the electronic space and keep each matrix element 
as an operator in the nuclear space. The Liouville equation 
[Eq. (Al ) ] thus reads: 

In summary, we presented an effective Hamiltonian 
[ Eq. (5a) ] which controls the molecular evolution under off 
resonant light excitation. This effective Hamiltonian applies 
for an arbitrary intensity and shape of the excitation field. In 
the off resonant regime, the optical response of a medium is 
characterized by its electronic .polarizability [ Eq. (5b) 1, 
which depends on the nuclear motions of the optic,ally active 
modes. The resulting transient coherent Raman signal, to 
lowest order, depends on the response function of the polar- 
izability [ Eqs. ( 10) and ( 11) 1. This result is also valid for a 
stationary coherent Raman13 and for pump-p&be absorp- 
tion spectroscopy.’ ‘By assuming a weak (linear) depen- 
dence of the polariiability on the optically active mode, ,we 
recovered the driven oscillator model with the driving force 

p, WI .= - iY,p, (r,t) + iEp(r,t) 

x [ ~,-gg,e,P, kf> + Ygg,gcpgc 0-J) 1,. (A2a) 
bee (r,t) = - iY,,pee (r,t) + iE, (r,t) 

X [ 7-scgCpgC W) + FrTee,egpeg b-J> 1, (A2b) 
P, (r,f) = - i(Y, + weg)pcg (r,t) + iEP (r,f> 

x r ~w,**Pm Oft) + Y,g,ccpe, (0) 1, (A2c) 
&(rJ) = - icy, - me8 )p, WI + iE, W) 

X [ 2”,,,,~,, W) + rge,gg~gg WI 1, (A2d) 
where .Y,, and Yicmn,m~n~, with m,n,m’,n’ = g,e, are the 
Liouville space operators defined by their actions to an arbi- 
trary dynamical variable A: 
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F mn,m,n, A =S - ’ [S,, ( 1 - a,,, )/LA 

--AM1 -&,~M,,,+], Wa) 
Lf,,A=fi-‘[&A-AH,]. (A3b) 

We further define the Green’s function Y mn (t) associating 
with 3,, by 
Y,,,, (t)A = exp( - iH,t/fi)Aexp(iHnt/fi); 

m,n = e, or g. (A4) 
In the absence of nuclear degrees of freedom, Y,, = 0, 
Ym, (t) = 1, Ym,,.,,, =,~Jfi, and Eqs. (A2) reduces to 
the optical Bloch equations. 

The formal solution to the generalized Bloch equations 
(A2) can be obtained as follows: The electronic coherences 

P with m#a can be expressed in terms of the electronic 
p&ilationsp, andp,, by a direct integration of Eqs. (A2c) 
and (A2d), with the initial conditions pea ( - CO ) 
= pse ( - CO ) = 0. We then have, 

peg b-J) 

.I 

f 
=I dr EP (T,T) exp [ - iw, (t - 7) ] 

X G”, (1 - 4 [ ~eg,8gp, (r,d + 7ry/eg,,,pee (r,d 1. 
(A5) 

Its Hermitian conjugatep, = [p&J + can be obtained from 
Eq. (A5) by simply interchanging the indexes g and e. 
Closed equations of motion for the electronic populations 
can then be obtained by substitutingp, [ Eq, (A5) ] and its 
Hermitian conjugate pge for (A2a) and (A2b). We thus 
have, 

& (r,t) =- - i-Yggpgg (r,t) 

s 

t 
- dr X(w)p, (r,d 

--m 

I 

f 
+ dr X’(t;.r)p,, (r,d, (A6) 

--ma 
with 
X(t;r) =.Ep(r,t)Ep(r,r) exp[ - iw,(t- T-)] 

x r*8p e* R&-- dYeg,ggi 

+EpW)Ep(r,d exp[io,(t--I] 

x ym*~ 9, (t - 7) ygc,gp W’a) 

I 

Z?‘(r;r) = - EP(r,t)EP(r,r) exp[ - iw,(t - T)] 

x my*&, 9 ‘?g (t - -i-l Ye*,ee 

- -%(r,fWp(r,d exp[iw,(t- r)] 

x ~r8&8e ~&--7)qe,,. (A7b) 
Here, pee (r,t) satisfies a similar equation of motion that can 
be obtained from Eqs. (A6) and (A7) by simply interchang- 
ing the indexes g and e. The first term in rhs of Eq. (A6) 
describes the adiabatic motions of the system in the elec- 
tronic ground state in the absence of the external field. Also, 
X (t - 7) [ Eq. (A7a) ] is a Liouville space operator repre- 
senting the nuclear relaxation processes, following the elec- 
tronic excitation, within the g state as well as the loss of 
population from g to e; X’( t - 7) [ Eq. (A7b) ] represents 
processes in which the system transfers from e to g. Equa- 
tions of motion forp, (r,t) [ Eq. (A6) ] and p,, (r,t) consti- 
tute the generalized master equations for the optical system. 
If we specify the representation, Eq. (A6) can be recast more 
explicitly as 

&(r,t> = --i dr ~,(lT)p,(~,t) s 
t 

- 
s s 

dr d r’c%/( r,t;r’,~)p, (r’>T) 
-09 
f 

+ s s 
do dr55~‘(r,t;r~,7)P, (r’,7). -ca 

(A@4 
Here, I? stands for the molecular nuclear degrees of freedom 
and it depends on the choice of representation. In the Wigner 
representation, r = pq and 

sdr’=ssd$dq’ (A%) 

represents the integration over the entire phase space of the 
nuclear degrees of freedom. However, in the vibronic eigen- 
state representation, I? = vv’ and 

I dl-“=-& 
vd 

648c) 

Consider the kernel .xT or S’Y’ [ Eqs. (A7) 1. The spatial 
direction and the optical phase factors associating with the 
kernel are determined by the product of the pump fields. 
From Eq. (2b), we have 

EP(rrt)Ep(r,T) = 2[ 1 + cos(k, - k2)r]E;(t)Ep(T) exp[iSl,(t- T)] 

+ [exP(%r) + exp(ik,r)]‘E,(t)E,(~) exp( - z2flpt) exp[ia,(t--)I + c.c. (A9) 

I 
The key quantity in the calculation of the kernel developed recently. ’ ’ 
X(r,t;I”,T) or Z/‘(r,t;F’,T) [Eqs. (A7) ] is the general- Consider an off resonant excitation optical processes in 
ized Green’s function 3 mn (l?,t - .r;F) [ Eq. (A4) 1, whose which Ifi, f w,* 1 are large compared with the inverse 
evolution is governed from the left and from the right by timescales of the pulse duration, and the nuclear dynamics. 
different adiabatic Hamiltonians. The equation of motion In this case, the optical phase contributions to the integrand 
for Ym,, which is exact for the harmonic system or for the in the rhs of Eq. (A6) are fast varying quantities and we can 
short time propagation of the anharmonic system, has been consider the slowly varying amplitude of the integrand only 
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at T = t. We thus can make use of 

-wwp(~~~pwt)~2 (AlOa) 
and 

p,nm (w) zp,, WL m = e or g, (AlOb) 
in evaluating the last two terms of Eq. (A6). Furthermore, 
for off resonant optical processes, we may neglect also the 
molecular nuclear dynamics in the optical coherence 
Green’s function 3, (t - 7) or Y,, (t - 7) and consider 
only the asymptotic behavior of the electronic dephasing 
processes by assuming ( m # n ) : 

-i m drexp[i(R, k~w,)r]9m,(r.) 

1 
= .R,-to,--h(~n,fw,)+iy(n,fw,) . 

(AlOc) 
Here, A(w) = - A( - w) and y(w) = y( - w) represents 
a frequency-dependent level shift and dephasing rate, re- 
spectively. For extreme off resonant detunings we have 
1% f ocg 1 S 4% + ties 1 and y(fb f oeg 1. Finally, the 
second term in Eq. (A9) and its complex conjugate make a 
negligibly small contribution when we make an optical cycle 
average and integrate Eq. (A6) in the off resonant configu- 
ration, since they contain the optical phase factor 
exp( * &2d2,t).- Making use of Eqs. (AlO), we find in Eq. 
(A91 that term with the kernel 
X’ is negligibly small with the order of 

J 
[peg WI + pge W) ] kS 

s 

f 
= i exp(zlt,r - i&t) &Ey-(?---7D) 

-03 

In the off resonant probe configuration, where 1 a, + weg 1 is 
large compared with the inverse time scales of probe pulse 
and molecular dynamics, Eq. (B2) assumes the form: 

[~~~(r,t) +P,W)]~~ 

>({exp[i(n,--w,)(t--)]Y,(t-7)~~~,,gg +exp[i(Q,+w,)(t--~)]~e,,(t--)~Ygc,,}pgg(ry7). 032) 
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APPENDIX B: THE PROBE SCATTERING: DERIVATION 
OF EQ. (9) 

In this appendix, we present the optical polarization for 
a weak probe field following the off resonant pump process. 
Let us consider the optical polarization at time t: 

P(r,t) = TrCVp,(r,t)} 

= Tdp [peg W) +pge (V) ] 1. 031) 

Here we have made use of Eqs. ( lc) and (3 ) . By assuming 
the separation of the pump and the probe fields, the optical 
coherence peg (r,r) with weak probe is similar to Eq. (A5 ), 
with replacing the pump field Ep by the probe ET, and 
pgg (r,T) and pee (r,T) being the doorway state prepared by 
pump field. As shown in Appendix A, in the off resonant 
pump configuration pet (r,r) r0 and pgg (r,r) is given by 
Eqs. (4) and (5). The relevant optical coherence related to 
the polarization at k, = k, + k, - k, is therefore given by 
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