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A theory of optical echo spectroscopies of large polyatomic molecules in condensed phases is 
developed. Using phase space correlation functions, we examine the interrelationships among 
the following optical measurements: ordinary photon echo, stimulated photon echo, 
accumulated photon echo, incoherent accumulated photon echo, and pump-probe absorption. 
Conditions for the elimination of inhomogeneous broadening in these experiments are 
specified. A multimode Brownian oscillator model is used to account for high frequency 
molecular vibrations, as well as solvent modes, and electronic dephasing processes. The effects 
of quantum beats, spectral diffusion, and homogeneous dephasing on the echo signals are 
studied and compared in detail with pump-probe and hole burning spectroscopy. 

1. INTRODUCTION 

Ordinary optical line shapes of molecular systems in 
condensed phases are usually dominated by electronic inho- 
mogeneous broadening resulting from the variation of local 
environments of different nlolecules.“2 As a result, the use- 
ful structural and dynamical information is hidden under- 
neath a broad inhomogeneous envelope, which makes it im- 
possible to extract this information using linear optical 
measurements. This state of affairs is typical for spectra in 
solution, liquids, glasses, polymers, proteins, and molecular 
crystals. However, nonlinear optical techniques provide the 
possibility of eliminating inhomogeneous broadening and 
extracting valuable dynamical information, even when lin- 
ear optical measurements fail. 

The most common spectroscopic techniques used to 
probe molecular dynamics and optical dephasing processes 
by selectively eliminating inhomogeneous broadening are 
fluorescence line narrowing,“-’ hole burning7-9 pump- 
probe absorption,‘W” and photon echoes [two-pulse pho- 
ton echo (PE),‘6-‘8 three-pulse stimulated photon echo 
( SPE),‘9-2’ and accumulated photon echo (APE) 2’-23 1. In 
fluorescence line narrowing experiments, the molecular dy- 
namics in the excited electronic state are resolved, whereas 
in pump-probe absorption, the molecular dynamics in the 
ground electronic state are resolved as well. Photon echoes 
are the optical analogs of the-corresponding magnetic reso- 
nance spin echoes.‘4*25 In the accumulated photon echo ex- 
periment, two trains of laser pulses with equal spacings are 
successively applied. This technique is usually applied to sys- 
tems with a long absorption recovery time. The optical echo 
signal in this case is then accumulated and detected through 
an interference with the second pulse train (homodyne de- 
tection). The accumulated photon echo signal is identical to 
the stimulated photon echo signal, provided a homodyne 

- 
‘I Camille and Henry Dreyfus Teacher/Scholar. 

detection scheme is used.“-23 The echo experiments are time 
resolved, while the fluorescence and pump-probe absorp- 
tion can be both frequency and time resolved. 

The cw hole-burning spectral line shape of solvated 
chromophores shows Franck-Condon progressions related 
to the chromophore vibronic structures, broadened by the 
width 2z-/T,, with T, being the homogeneous dephasing 
time. In this case, only a small fraction of the solute mole- 
cules within the broad inhomogeneous distribution are selec- 
tively investigated,‘,’ resulting in the elimination of inhomo- 
geneous broadening. The elimination of inhomogeneous 
broadening in photon echo spectroscopy is of very different 
origin. In this case the pulsed excitation process is nonselec- 
tive and the entire inhomogeneous distribution could be ex- 
cited. However, the signal results from two propagation per- 
iods in which inhomogeneous broadening has an opposite 
effect which exactly cancels. The dephasing in the first peri- 
od is followed by rephasing in the second.‘6*26 The simplest 
theory for photon echo spectroscopy assumes a line shape 
with two broadening mechanisms: homogeneous broaden- 
ing which originates from very fast motions of the surround- 
ing medium and results in a Lorentzian line shape and inho- 
mogeneous broadening. A more general theory is based on 
the stochastic model, in which the electronic transition fre- 
quency of the solvated chromophore is taken to be a Gaus- 
Sian-Markovian stochastic variable, characterized by two 
parameters: the modulation strength A and the solvent cor- 
relation time A - 1.2.27 This model accounts properly for the 
finite time scale of solvent fluctuations and interpolates con- 
tinuously from the homogeneous limit (h/A% 1) to the in- 
homogeneous limit (A/A 4 1) .” However, solvent relaxa- 
tion processes associated with solvent fluctuations are 
completely neglected. Therefore, this simple stochastic 
model does not account for the dynamical Stokes shift,‘*6,28 
which results from the solvent reorganization processes oc- 
curring after the chromophore excitation. Various micro- 
scopic solvation theories have been successfully proposed to 
interpret the spectral diffusion processes in Stokes shift mea- 
surements,5T6*29-33 such as time-dependent hole burning and 
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fluorescence spectra. In these theories, however, the solva- 
tion dynamics &ring the-optical excitation are neglected by 
assuming an instantaneous optical transition of the chromo- 
phore. This approximation should be relaxed in photon echo 
measurements, in which the solvation dynamics coupled to 
the optical excitation is monitored directly when the chro- 
mophore is in an electronic coherence. 

Nanosecond and picosecond echo experiments have 
been widely used to probe homogeneons line broadening. 
The development of light sources with impulsively short 
(femtosecond) time scales has made it possible to’probe co- 
herent chromophore motions in real time. 1~‘5*34-36 The re- 
suiting quantum beats are the signatures of the nuclear fno- 
tions of the chromophore either in the ground electronic 
state (e.g., impulsive or pulse-shaped stimulated Raman 
scattering) ‘O or in the electronically excited state (e.g., the 
impulsive fluorescence),35 or in both states.“-‘5 Most re- 
cently, femtosecond echo experiments36 have shown quan- 
tum beats which reflect nuclear motions coupled to the elec- 
tronic coherence between two electronic states. 

We have recently,developed a Liouville-space theory for 
molecular nonlinear optical spectroscopy and calculated the 
pump-probe3’ and stimulated Raman signals3’ of solvated 
chromophores with arbitrary temporal envelopes of the laser 
fields. In this paper, we apply this theory to photon echo 
spectroscopy and incorporate molecular nuclear motions of 
the chromophore and the solvent. We assume that’only two 
electronic states, lg>- and le), participate in the optical exci- 
tation via the dipole interaction. The Hamiltonian is .~. 

HT = H - VE(r,r), (ia) 

H= Ig)H,kl+ le>UC fw,) <el, (lb) 

~==Ml4kl +.ld(el). (ICI 
Here, H, and H, are the adiabatic Hamiltonians character: 
izing the nuclear degrees of freedom of the entire molecular 
system (solute and the solvent9 in electronic states [g) and 
je) , respectively. oeg is the O-0 1 e ec t ronic transition frequen- 
cy, Yis the electronic transition dipole operator, and E(ti,t) 
is the classical external electric field consisting of a sequence 
of the applied laser pulses, which will be further specified for 
the various echo measurements. The ‘electronic transition 
dipole matrix element p in general depends weakly on the 
solute nuclear coordinates. For simplicity we hereafter ne- 
glect that dependence (the Condon approximation) and set 
y= 1. 

The rest of the paper is organized as follows. In Sec. II, 
we present a unified theory’for various photon echo tech- 
niques, which include ordinary, stimulated, accumulated, 
and incoherent photon echoes. These echo signals can be 
expressed as a convolution of a same molecular correlation 
function with the proper*sequence of excitation fields. In Sec. 
III, we consider ideal impulsive echo-experiments which use 
ultrashort pulses, in which the echo signals are directly relat- 
ed to the molecular correlation function. We then in Sec. IV 
compare the echo signal with, the pump-probe absorption, 
which is its frequency-domain analog. General transform 
relations among the pump-probe absorption and. various 
echoes are established without alluding to, any..particular 
molecular model. The.precise conditidns for the existence of 

such transform relationships are specified. The linear and 
nonlinear molecular correlation functions relevant for cal- 
culating the echo signal are evaluated in Sec. V using the 
second-order cumulant expansion. These correlation func- 
tions are then studied for a multimode Brownian oscillator 
model. The solvent fluctuations and dissipation are account- 
ed for consistently by using the detailed balance condition. 
Finally our results are summarized in Sec. VI.. 

II. CORRELATION FUNCTIONS FOR PHOTON ECHO 
SPECTROSCOPY 
A. Two- and three-pulse photon echoes: Dephasing and 
rephasing processes 

Let us consider first the stimulated photon echo mea- 
surement in which three short laser pulses with wave vectors 
k, ,k2, and k3 are sequentially applied to the system. The 
external field in Eq. (‘la) for the stimulated photon echo is 
given by 

E(r,t) = E,(t+~‘+~)exp(ik,r-X&t) 

+ E2 (t + T)exp(zk,r - X&t) 

+ E3 (t)exp(k,r - iSL,t) + C.C. *. (2) 
Here, E, (t) denotes the temporal envelope of thejth incident 
pulse, while sl, derlotes its mean frequency. The three inci- 
dent pulses are delayed by the time intervals 7’ aild 7. The 
stimulated echo pulse, which centers around t = 7’ after the 
third pulse, is then generated in the direction 
k, = k, + k, _ k, (cf. Fig. 1) .39 The stitiulated echo sig- 
nal ha is given by the total generated echo energy, or the 
integrated area, as a function of the pulse delay times 7’ and 
7, I.e., 

s 
m ss,, (7’,‘-) = dt IP;;)E (k,,r) 12. (39 

0 

Here PspE (k,,t) is the macroscopic polarizati:on of the me- 
dium with wave vector k, induced by the external fields. The 

SPE kl kz k3 k3+k2- kl 

APE 
kl k2 kl kz 

*.’ :. 
. -t -A’ T’ ‘w- z -2 2’ ‘r- 

FIG. 1. Pulse sequences for ordinary, stimulated, and accumulated photon 
echoes, (PE, SPE, and APE, respectively). Shown are the incident pulses 
(solid curves) and the echo signal (dashed curves), The PE and SPE, sig- 
nals are detected directly, whereas the APE signal coincides spatially and 
temporally with the second pulse train withwavevector k,, and the signal is 
homodyne detected. 
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integrand in Eq. (3) represents the temporal profile of the 
echo signal, 39 which is analyzed in Appendix A. In the weak 
field limit, we need only consider the polarization to third 

order in the incident fields. Invoking the rotating wave ap- 
proximation (RWA) and assuming that the excitation 
pulses are well separated, we have4”F41 

PA% (k,,t) = i3im dt31m dtll “& ~Pt,,t,,t,)X(t,,-tt,)E,(t-t3)E,(t+~-t3 --t2)ET(t+d+~-tf3-t2 -t,) 

Xexp[i(fl, +a,--Q, --d,)t3 +i(Q --sz,)t2 -icn, -~,)t,]. (4) 

Here, we have factorized the total molecular response into 
two parts, 2 and .y, denoting the dynamical contribution 
and the static (inhomogeneous dephasing) contribution, re- 
spectively. In the following we shall show precisely under 
what conditions the inhomogeneous contribution ,x(t), 
whose Fourier transform gives the inhomogeneous broaden- 
ing [cf. Eq. (A4) 1, is eliminated completely in an echo ex- 
periment. The dynamical information is contained in the 
molecular correlation function 

.~(r,,t2,tl)~:R2(t.7,t2,t,) +&tf3,fzA) 
with 

(5a) 

R2(t3,tZ,tl)~Tr[Y,g(t3)~~ee(t2)~sSc(tl)pgg], (5b) 

R3(t3,f2,tl)~Tr[Y,(t3)~9,(tz)~*~(t, )p,]. (SC) 

The general nonlinear response function” is a sum of four 
independent molecular correlation functions, 
R,;a = 1,...,4. The echo experiment selects only two of 
them, R2 and R,, which are multiplied by the inhomogen- 
eous dephasing term ,x ( t3 -- t, ). In the following, we shall 
show how these two correlation functions account for the 
rephasing processes which generate the echo. The other two 
terms, R, and R,, which are multiplied by the inhomogen- 
eous factor ,y( t3 + t, ), exhibit no rephasing processes and 
do not contribute to the echo. In Eq. (5)) we assume that the 
system is initially in thermal equilibrium in the ground elec- 
tronic manifold with density matrix pBg. Tr denotes a trace 
over all the nuclear degrees of freedom, which includes both 
the solvent and the chromophore. The Green function 
$9 ,~,n (t) is defined by its action on an arbitrary operator A: 

Y,,,,(t)A=exp( - iH;,t/fi)A exp(iH,t/fi). (6) 
The diagonal Green function 3 mm (t, ), describes the 

time evolution of the molecular nuclear degrees of freedom 
in the eIectronic state m and has a well-defined classical ana- 
log. However, the off-diagonal Green function, Y mn (t) 
with m #n;describes the molecular dynamics in an optical 
coherence (during the t, and t, periods) which is quantum 
in nature.‘7*49 The diagrammatic representatiorrof stimulat- 
ed photon echo is given in Fig. 2. The calculation of the 
correlation functions [ Eqs. (5) ] for a specific model of nu- 
clear dynamics will be carried out in Sec. V. 

The ordinary (two-pulse) photon echo is a special limit- 
ing case of the stimulated photon echo in which the third 
pulse coincides with the second pulse. Its signal, therefore, 
can be obtained from Eqs. (3) and (4) by simply setting 
E,(t) =E2(t),k3 =k,,a, =C12, andr=O: (cf.Fig. 1) 

&J,(d) =ss,,(+J=o). (7) 

We shall now discuss how the present formalism de- 

scribes the echo generation by monitoring the rephasing pro- 
cesses of the individual dipoles.26 This physical picture is 
simplified if we consider an ideal experiment with infinitely 
short pulses, Ej (t) = S(t) . In this case, the echo amplitude 
[Eq.4)].isgivenby (PSPE(kS,t)I = l~(t,7,7’)1IX(t--‘)1. 
The stimulated echo can now be described as follows. At 
time t = - (7 + r’), the initial, ground state, equilibrium 
density matrixp, is excited by the first impulsive pulse to an 
optical coherencep,, which then evolves freely as described 
by the Green function YgP (7’). At the time t = - r the 
system interacts with the second impulsive pulse and is 
transferred to either the electronic ground populationp, or 
excited state population pEC. These nonequilibrium popula- 
tion states then evolve freely as described by the Green func- 
tions 9g8 (7) and 9 ee (r), respectively, until t = 0 when the 
system interacts with the third impulsive pulse. The third 
pulse prepares the system in the optical coherence again and 
the stimulated echo arises from the free rephasing processes 
described by the Green function Yeg (t). At t = r’, the re- 
phasing Green function, 3 eg (r’) = [ 9, (r’) ] t, is the Her- 

+ k> 921 kP -4 

GegW 
----r 

k geew 
kl 

R2 

le> Ag(t-3 
---- 

k3 

Ggg(Q 

l----i:. k2 _--- 

GgeO d 4 

kl 

Is= 4 
KS 

FIG. 2. Feynmann diagrams for stimulated photon echo in the rotating 
wave approximation. The left [right) diagrams represent the molecular 
correlation functions R, (t3,t2,t, ) and R, (t,,&,t, ), respectively [cf. Eqs. 
( 5) 1. In a Feynmann diagram (Refs. 39 and 48), the two vertical lines rep- 
resent the ket and the bra of the density matrix. The wavy arrows denote 
interactions with the external fields. Time increases from bottom to top. 
The system is initially at thermal equilibrium in the electronic ground state. 
At times t - t, .- tz ,- t, , t - tr - t, and t - t,, the system interacts with 
the excitation fields with wave vectors k, , k,, and k,, respectively. The 
echo field with wave vector k, = k, + k, - k, is then generated at time t. 

Between interactions, the system evolves freely as indicated by the Green 
function [cf. Rq. (6) 1. The t, , t2, and t3 time intervals are restricted to 
jr’ f rP I, I+ f ~~1, and jr’ +_ rP 1, respectively, with rP being the time scale 
of the external pulses. 
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mitian conjugate of dephasing Green function between the 
fust and the second pulses, and the echo reaches its maxi- 
mum with ,y(t - 7’ = 0) and the effect of the inhomogen- 
eous dephasing is eliminated. For t> r’, dephasing takes 
place and the echo decays. The selective elimination of inho- 
mogeneous dephasing by rephasing processes is the key 
characteristic of echo experiments.26 As indicated earlier, 
there are two additional correlation functions, R, and R, 
associated with the inhomogeneous dephasing x( t3 + t, ), 
which contribute to a general four-wave-mixing signal (see 
Appendix B). However, these additional correlation func- 
tions do not contribute to the echo signal. 

B. Accumulated photon echoes with coherent light 
sources 

We now turn to consider the accumulated photon echo, 
in which the sample is irradiated with two noncollinear 
trains of coherent laser pulses. We shall denote the first train 
as the pump train and the second as the probe train. The 
latter is delayed with respect to the former by time 7’. The 
pulse spacing in both trains is r + 7’. Each pulse in the pump 

(probe) train has the wave vector k, (k2 ), frequency 
fi2, ( fi2, ) , and a temporal envelope E, (t) [ E2 ( t) ] A The ech- 
oes stimulated by the pump train appear at the probe train 
wave vector kS = k, + k, - k, = k,, are coincident tem- 
porally, and oscillate in phase with the probe train. The ao 
cumulated echo corresponds therefore to a homodyne detec- 
tion mode whereby the signal is combined with a carrier 
beam with the same frequency. The multipulse accumula- 
tion and the homodyne detection make this technique par- 
ticularly sensitive and it has been widely used to probe inter- 
system crossing, vibronic dephasing and relaxation 
dynamics.22S23 In this section we shall focus on the accumu- 
lated echo measurement of our model system [ Eq. ( 1) ] with 
long excited state lifetime. Consider a complete cycle of four 
successive pulses; two from the pump train and two from the 
probe train. The echo field is in this case the same as the 
stimulated echo generated from the first three (pump- 
probe-pump) pulses. The relevant polarization is therefore 
the same as P& (k, = k, + k, - k, ,t) [Eq. (4)] with 
E3 =S E, and fi, = 0,. However, the echo field, in this case, 
interferes in phase with the fourth (probe) pulse, and the 
signal is given bySZ (cf. Fig. 1) 

S,,, (T’,T) = - 2 Im 
J 

dtE;(t - T’,P$;; (k, = k, + k2 - k, ,t) 
--m 

.= 2 ReJI,dtiwdt31mdt2 Ia dt&‘:(t,,t,,t, )x(t3 - t, 1 

XE,X(t--')E,(t-t3)E2(t+~-t3 -t2)E~(t+-r++-t3 Mt2 Ft,> 

Xexp[i(& -%g)t3 + i(R, -%)t, -ii(& --We*)tl]. (8) 

In most applications of the technique, the train repeti- 
tion of the four-pulse sequence simply amplifies the echo 
signal which is given by Eq. ( 8 ) . Complications may occur 
when the system is characterized by a broad distribution of 
relaxation time scales including very long time scales as is 
the case, e.g., in glasses. 43 In this case slow spectral dzxision 
processes can take place, and their incorporation requires a 
more elaborate theory which depends on higher order re- 
sponse functions. This extension is beyond the scope of the 
present article. As a rule, the four-pulse description of the 
accumulated photon echo is valid provided the time scale V- 
can be made longer than any other relaxation time scale of 
the system. 

C. Accumulated photon echoes with incoherent light 
sources 

Equation (8) is valid when a mode-locked laser source 
is used to generate the coherent pump and probe pulse trains. 
The accumulated photon echo with the same beam configu- 
ration can also be performed using incoherent broad band 
light sources43-46 to generate the pump with wave vector k, 
and the delayed probe with kz . The electric field which en- 
ters in Eq. ( la), in this case, is given by 

E(r,t) =E(t+ r’)exp(zk,r - iat) 

+ E(t)exp(z&r - iat) + C.C. (9) 

I 
The temporal envelope of the incoherent light is assumed to 
be a complex stochastic stationary Gaussian process with 

(E*(t + T)E(t)) = O(T) = B*( -T), (1W 

(E(t + T>E(t)) = (E(t)) = (E*(t)) = 0. (lob) 

Here (...> denotes an average over the stochastic tluctu- 
ations and s(t) denotes the correlation function of the inco- 
herent laser field with typical time scale T=. The echo signal is 
obtained when ~~ is short compared with the dephasing time 
of the optical medium and the delay time 7’ of the probe field 
with respect to the pump field. We shall be interested in the 
accumulated echo signal generated along the kz direction 
and detected as a homodyne beat with the probe field. It is 
given by (cf. Appendix B) : 

SIAPE(d) =2Re~mdt,bmdt2~w~t,{exp~iO(t~ -t,)] 

x[e*(T’-t3)e(#-ttl) 

f e(t, + t2 - T’S8 “(t, + t* - 7’)~I 

x@(t,,t,,t, l/-&3 - t, 11. (11) 

The temporal resolution of this technique is determined by 
the light correlation time r,, rather than by the pulse dura- 
tions as in a coherent experiment [Eq. (8) 1. 
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III. IMPULSIVE PHOTON ECHOES 

In the previous section we presented general expressions 
for photon echo spectroscopy which account for arbitrary 
molecular dynamical time scales and pulse durations. We 
shall now consider ideal ultrafast echo experiments for 
which the calculations are greatly simplified. 

In the impulsive limit, the laser time scale (the pulse 
duration for coherent light or the correlation time for inco- 
herent light) is short compared with the molecular vibra- 
tional periods and the time scales of homogeneous dephasing 
and solvent reorganization processes. This is the case for the 
recent echo experiment performed by Shank and co-workers 
using 6 fs laser pulses.36 A second simplifying condition is 
the large inhomogeneous broadening limit whereby the inho- 
mogeneous dephasing time, or the inverse linewidth of inho- 
mogeneous broadening, is short compared to all the dynami- 
cal time scales of the system. This is usually the case in 
condensed phase spectroscopies. Neglecting some trivial 
prefactors, the echo signals when both limits hold are given 
by 

sp, (7’) = pf(7’,O,T’) 12, (124 

A!&,, (-I-‘,?-) = JA?(d,T,T’) (2. (12b) 

The homodyne echo techniques require only the first condi- 
tion (impulsive excitation) and regardless of the magnitude 
of inhomogeneous broadening yield 

SAP, (T’,T) = Re[9(T’,T,T’) I, (12c) 

s,,,, (7’) = J -dGc,p~ (+,r) 
0 

s 
ti -t dr s.o, (7-‘,T’ - 7). (12d) 

0 

In Eqs. ( 12)) the inhomogeneous dephasing x is completely 
eliminated. If we neglect the second term in Eq. (12d) 
(which results from the overlap of the pump and the probe 
fields in the incoherent configuration) we recover the result 
of Bai and Fayer.46 

It should be noted that Eqs. (12) may also hold when 
the excitation pulses are short compared with the solvation 
dynamics but long compared with the chromophore time 
scales. This is typically the case in picosecond experiments 
where the chromophore is excited to a particular excited 
vibronic state and only the solvation dynamics are probed in 
the real time. In this case, $ contains only the solvent con- 
tributionsh7 [cf. Eq. (A7) 1. 

IV. THE FREQUENCY DOMAIN ANALOG: PUMP- 
PROBE SPECTROSCOPY 

In the Sec. III, we expressed the various echo signals in 
terms of same molecular correlation function 9 ( t3, t2, 1, ) . It 
should be noted that, in general, there is no direct relation- 
ship between the stimulated echo and accumulated echo sig- 
nals, since the former depends on both the real and imagi- 
nary parts of the correlation function whereas the latter 
depends only on the real part. [cf. Eqs. ( 12b) and ( 12~) 1. 
We shall turn now to consider the possibility of a direct 
Fourier transform relation between the optical echoes and a 

X exp[iCfl, - R, )t ]9‘(tJ,t). (13) 
In this case the inhomogeneous contribution is completely 
eliminated. Equation ( 13) is also valid when the excitation 
pulses are short compared to the solvation dynamics but 
long compared to~the chromophore time scales. In this case, 
9? in Eq. ( 13) contains only the solvent dynamics and the 
pump-probe absorption is then referred to as hole burn- 
ing. 37.47 

Equations (12b), (12c), and (13) constitute our theo- 
retical basis for analyzing the intrinsic relations among the 
stimulated photon echo ,I&,, , the accumulated photon echo 
S APE and the pump-probe absorption S,, of a system with 
large inhomogeneous broadening. All three optical signals 
depend on the same molecular correlation function 9?. In 
general, this correlation function is complex and has two 
independent (real and imaginary) components. Equations 
(12b), (12~) and (13) can, therefore, be used to obtain a 
general transform relation among the three optical signals, 
s WE, SAPE, and %r, w hich is not restricted to any specific 
molecular model. Especially, when the delay time is long 
compared with the time scales of the molecular nuclear re- 
laxation processes, i.e., r> rR, we can factorize R, and R, 
as49 

R,(t,i>~~,t) =J,(t)exp( -v-V,*(t), 

R, (6-v TR,f) = J,(t)exp( - y'dJ,*(t) 

=Jg(t)J;(tl 

with 

J,(t) = Tr[ ycg(t),ou]; u = e or g. 

J. Chem. Phys., Vol. 94, No. 1,l January 1991 

frequency-domain experiment, i.e., pump-probe absorp- 
tion. By measuring the total energy loss in the probe field, 
the pump-probe absorption signal S,, is obtained as a func- 
tion of 7, the delay time of the probe with respect to the 
pump, Q , the pump frequency, and O,, the probe frequen- 
cy. The formal expression for S,, is similar to the first equal- 
ity in Eq. (8 ), the accumulated photon echo signal. How- 
ever, the configuration of the excitation fields in pump- 
probe experiment is different from that in accumulated echo. 

In general, the polarization relevant for pump-probe 
spectroscopy contains both the terms 9 (t, ,t2 ,t, )x( t3 - t, ) 
and Z? (t, ,t2 ,t, )x( t, + t, ) [cf. Eq. (B 1) 1. This constitutes 
the doorway/window picture for transient absorp- 
tion.37,4X Therefore, there is no general transform relation- 
ship between echo signal and probe absorption measure- 
ment. However, in a medium with large inhomogeneous 
broadening, we may approximate the inhomogeneous de- 
phasing functionX( t) by a delta function. In this case the 3 
term in the Condon approximation becomes independent of 
t2 and does not contribute to the transient absorption (it 
simply provides a dc background). If we further assume that 
both pump and probe pulses are long compared to the elec- 
tronic dephasing time but short compared to the molecular 
nuclear dynamics, the probe absorption signal is insensitive 
to the temporal characteristics of the incoming fields.37.48 In 
this case, the pump-probe signal, up to a trivial prefactor, is 
given by 

S,, (7;CL2 - Cl, ) = Re 
I 

m 
dt 

0 

(14c) 
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Here, my and f ( ~0) represent the inverse lifetimes of the 
electronic excited and ground states, respectively. J, (t) is 
the molecular linear response function with respect to the 
thermal equilibrium distribution in the 1 U) electronic states. 
The Fourier transforms of J, (t) andJ, (t) give, respectively, 
the stationary absorption and fluorescence line shapes.49 
These functions satisfy the symmetry relations: J, (, - t) =J$(t) and R,( - t,r>rR, -t) =R,*(t,rk-rR,t). In 
this case, Eq. ( 13) can be expressed as a Fourier transform, 
resulting in 

~(t,r>rR,t) 
1 - =- 

s 
4% --f&IL 

-7r -m 
Xexp[ - i(C& - Cl, )t IS,, (r>r,;& - ,R, >. (15) 

Here, r, represents the molecular nuclear relaxation time. 
The stimulated photon echo signal [ Eq. ( 12b) ] is-therefore 
related to the amplitude square of the Fourier .transform of 
the pump-probe absorption line shape; whereas;the accu- 
mulated photon echo [ Eq. ( 12~) ] is related to its cosine 
transform. We have 

S,,, (+,r> rR > = IL 
s 

m &f& --a, > 
27 -co 

+. Xexp[ - i(C4, - R, )r’] 

XS,, (r> rR;& - 0, ) 12; ( 16aj 

SAPE(r’,r>rR) =-!- 
s 

- 4% -a 1 
T -m 

Xcos[ (& - ii, )r’] 

XS,, (0 rR;& - fi2, I. (16b) 
The inverse transform does not exist since S’,, depends on 
the two-sided Fourier transform of the-correlation function 
9’. However, if the delay time is longer than the electronic 
excited lifetime, i.e., r> y- ‘, Eq. (14a) reduces to 
R, (t ‘,r-r CO ,t ‘) = 0. This is the case in persistent hole burn-- 
ing experiments.’ In this case, we have [cf. Eqs. ( 12c), 
(Qbl,md (13)l 

S,,, (r’,rL CO ) = [ J, (F’) [ *,. (17a) 

SspE (+7--r co 1 = [SAP, (r’,r-r. CO > ] ‘, (17b) 

S,, (r+ co;s1, ~-- Cl, 1 = 
I 

m 
dr’cos[ (f-l, - i-2, )r’] 

0 

.XSApE (r’,r-+ co 1. (17c) 
Equation ( 17~) is consistent with the previous result of Sai- 
kan et aLso 

V. APPLICATION TO THE MULTiMODE BROWNIAN 
OSCILLATOR MODEL 

In the previous sections we formulated the various opti- 
cal echo signals in terms of the molecular four-time correla- 
tion functions, R, and R, [ Eqs. (5) 1. These functions carry 
not only the dynamical information when the chromophore 
is in the excited (Y, ) or in the ground ( YSgg) electronic 
population state, but also the dynamics when it is in an elec- 
tronic coherence ( Y cg and Y ge ) . We have recently devel- 
oped a generalized Langevin equation which allows to prop- 
agate explicitly these Green functions, Y ,,,,, with m, n = e or 

g, for harmonic and anharmonic chromophores in solu- 
tion.41 The correlation function R, is then obtained by trac- 
ing over all the final states (or phase space points) and aver- 
aging over the initial distribution. 

We shall now present an alternative approach for calcu- 
lating these correlation functions. This approach is based on 
a cumulant expansion used to express these four-time corre- 
lation functions in terms of a single two-time correlation 
function. We then evaluate the two-time correlation func- 
tion using a Brownian oscillator model. 

A. The second-orde; cumulant expansion 
The optical response of the system depends directly on 

the difference of the excited state and the ground state Ham- 
iltonian 

U=H, - H,. (18) 
It is clear that if U = 0 the nuclear degrees of freedom do not 
couple to the optical transition. Performing the cumulant 
expansion of Eqs. (5) and (14~) around the molecular 
ground state Hamiltonian H,, to second order in U, we ob- 
tain2 J,(t) =exp[ -g(t)], (19a) 
J,(t) =exp[ -g*(t)l, (1%) 
R,(t&,t,) =exp[ -g*(t,) --g*(tl) 

+gtt21 -g(t2 + t3> 
-g*u, .+t,> +g*ct, +t* +t31], (19c) 

R, (tj,tztt, 1 
=exp[ -s(t3) -g*(t,) +g*(t,> -g*& +&I 

-g*o, +c?1 +g*ct, +tz +t,>], (19d) 
where 

g(t) = ik + h7, 
s I 

T’dr2 g(r2), (20) 
0~ 0 

and - 
il= (W, (21a) 
g(t) = (U(t>U) - (U)‘. (21b) 

In Eqs. (19), we include also the molecular linear correla- 
tionfunctionsf,(t) [Eq. (14cj]. InEqs. (21), (...) denotes 
an average over the initial equilibrium distribution within 
the ground electronic state manifolds. U(t) is the operator 
[Eq. (18)] in the Heisenberg picture with respect to the 
ground state dynamics: 

U(t)zexp(iW,tjUexp( - iH,tj. (22) 
Equations ( 19) are exact for a linearly displaced harmonic 
oscillation system.2’41 The key quantity here is g(t) [Eq. 
( 2 1 b ) I, the two-time correlation function of the operator U. 
In general, g(t) is a complex function of time. We shall now 
separate it into its real and imaginary parts: 

g(t) s&j(‘)(t) - igc2)(t), (23) 
with 

i?“(t) =giuct,w + (uu(t))l - (U)‘, Wa) 

g”‘(t)+(u(t)u) --(VU(t))]. (24b) 
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Both g”‘(t) and gc2)( t) are real, since they represent the 
expectation values of Hermitian operators. Also g’“(t) 
= jj”‘( - 5) is symmetric whereas gc2) (t) = g(‘) ( - t) is 

antisymmetric. The fluctuation-dissipation theorem pro- 
vides a general connection bet.ween 2”) and gc2, so that they 
are not independent. To show that, we introduce the spectral 
density functions: 

C(O) 2 2n 
s 

: dtexp(iot)g(t) 
m 

= -$e 
s 

-dt exp(iot)g(t), 
0 

I!+‘&- 2n 
s 

: dt exp(iwt)$‘)(t) 
m 

Wa) 

=’ mdtcoswt$l)(t), 
s 7TO 

(25b) 

dt exp(iwt)~~“(t) 
cw 

= d- 
s 

mdt sin wtgc2)(t). 
TO 

(254 

Here, the second identities are obtained using the symmetry 
properties. C’+‘(o) = C’+)( -w) is symmetric and 
C’-‘(o) 5 -CC-)( -w) is antisymmetric. 
C(w) = c ( + ) (w) + C ( - ) (w) satisfies the detailed bal- 
ance relation: C( w > = exp (h/k, T) C( - w ), which can be 
directly proven from Eqs. (21b) and (25a) by expressing 
g(t) in terms of the eigenstates of Hg . These properties result 
in 

C(m)=[l+tanh(--$$-)]C’+)(w) 

= [l +coth($)]C’- ‘(w). 

Equation (26) is the fluctuation-dissipation theorem which 
connects the response function with the correlation func- 
tion.51 It can be shown that C(w),C(+‘(w), and 
WC ( - ) (w) are non-negative. Performing a Fourier trans- 
form on Eqs. (26) followed by a double temporal integra- 
tion, we obtain 

s 

m 
g(t) = i/II + dwm-‘[l -iiot-exp( -iwt)] 

-m 

(26) 

X[ 1 + tanh(>-~)]C’+‘(w) Wa) 

or 

s 

m 
g(t) = i/2t + dww “[I -iiwt-exp( -iot)] 

--m 

x[I +coth(>c)]C’-‘bib (27b) 

Here, k, is the Boltzmann constant and T is the tempera- 
ture. Equations (27a) and (27b) are useful in the calcula- 
tion of molecular line shapes in condensed phases, since 
C ( + ) (w ) and C ( - ) (0) have simple classical analogs. This 
will be used in the next subsection. 

B. The Brownian oscillator model 

The linearly displaced Brownian harmonic oscillator 
mode141V’2 provided a general and very convenient way for 
incorporating the coupling of nuclear motions (whether in- 
tramolecular or solvent) to the optical transition. In this 
model, the molecular and solvent nuclear motions are repre- 
sented by N modes with U=H, - ,Jlg = Xj~jDj(qj 
+ D/2). qj denotes the dimensionless coordinate and w, is 

its harmonic frequency, while Dj is its dimensionless dis- 
placement between the potential surfaces of electronic excit- 
ed and ground states. In addition we assume that each vibra- 
tion undergoes a Brownian motion satisfying the generalized 
Langevin equation: 

G,(t) = -a$qj(t) - 
s 

‘drp,(t-r)gj(r) +wjh(t>. 
0 

(28) 
Here, pj (t) is a non-Markovian friction kernel andfi (t) is a 
Gaussian stochastic random force due to the effect of solvent 
environment on thejth mode. The friction and the random 
force satisfy the fluctuation-dissipation relation 
(&(t)f,(r)) =Sjk(Zj + $)pj(t- r). Here (...> denotesan 
average over the stochastic variables. Sj, is the Kronecker 
delta, and 

Ftj = [exp(+b,/k,T) - l] - ’ (29) 
is the thermally averaged occupation number of the jth 
mode. For this model we have 

g(t) =zgjw. (30) 
i 

The expression for g,(t) is similar to Eqs. (27a) or (27b) 
with replacing il, C ! + ), and C ( - ) by Aj,Cj + ) and Cj - ), 
respectively and where 

C;+‘(w) = (A+)~mdtcoswtMj(t), = (31aj 

C:-‘(o) = (A/P-) mdtsinwtZ,(t) (31b) 

with 

A;=wjD;(iij + ;), 
I _ 

(3ia) 

/2/ =ajDf/2, 132b) 
and 

Ly(t)- 
h[(4jCt)qj) + (qj4j(t))] - (ijj2 

(4;) - (qj)’ ’ 
(32~) 

zj(t>Gi~j[(qji(f)qj) - (qjqjCt))] = Atij(t)- 

(32d) 

By definition, both Mi (t) and Zj (t) are real with Iwj (0) = 1 
and Zj (0) = 0. Furthermore, Mj ( 03 > = 2, ( 03 ) = 0 for a 
dissipative medium. Solving for Mj (t) or ZYj (t) from the 
Langevin equation [ Eq. (28) ] and then substituting for Eq. 
(31), we obtain 

C!+‘(w) = (AT/ Jr )Re -jm++j(W) 

J 

or 

- co2 - iwyj (w) + oj I (33a) 
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Cj( -‘(cd) = &/r)Im 
u; 

-02-iiuy,(w) +c$ 1 ’ 
(33b) 

with 

yj(W)E m 
s 

dtexp(iwt)pi(t). 
0 

(33c) 

It can be shown thatg] (O~obtained via Eqs. (27a) and (33a) 
is not identical to that obtained using Eqs. (27b) and (33b). 
This arises since the Langevin equation with a classical ran- 
dom force does not satisfy the detailed balance condition.s3 
Equations (27) and (33) constitute the main results of this 
section. Using these results, we may perform the model cal- 
culations for the pump-probe signal [Eq. ( 13) ] as well as 
the various impulsive echo experiments [ Eqs. ( 12) ] or for 
the more general echo measurements (cf. Sec. II). 

We shall now calculate the impulsive ordinary photon 
echo signal [ Eq. ( 12a) ] using the present Brownian oscilla- 
tor model. Making use of Eqs. (28) and (19), we may re- 
write Eq. (12a) as 

s,, (70 = ASPS (7’1, 
i 

OW 

with 

Sag =exp{-2Re[gj(r’) +3gj(r’) -gj(2r’)]}. 

This signal depends only on the real part of gi. 
(34b) 

In Eqs. (34)) the product runs over all the system modes 
which are considered explicitly in the Langevin equation [cf. 
(Eq. (28) 1. In the calculation of molecular optical line 
shapes in condensed phases, the system modes can be divid- 
ed into two groups. The first group consists of all the optical- 
ly active modes of the chromophore or some particular mi- 
croscopic solvent modes which are strongly coupled to the 
electronic transition. These modes contribute to the quan- 
tum beats in the time domain and to the Franck-Condon 
progressions in the frequency domain. The second group 
consists of the macroscopic solvent coordinates representing 
the intra- or intermolecular solvation shells, such as the elec-. 
tronic solvation coordinate”’ and the intramolecular bath. 
These motions describe dephasing and spectral diffusion 
processes, and therefore contribute to the echo decay and the 
spectral line broadening in the frequency domain. 

The optically active modes usually have high vibration- 
al frequencies compared with the solvent friction. Their mo- 

t 

tions are characterized by the parameters Dj, frequency w, 
and friction yj. In the extreme case where the relevant fric- 
tion is much smaller than the vibrational frequency, 
3; (wj ) <wj, we have the exact solutions Mj (t) = cos wj (t)~ 
and Zj (t) = sin oj t, yielding C,! + ) (w) = @‘Dj2 (Ej + 4) 
X[s(w-wj) +s(w+Oj)] and Cj - ‘(cd) = $m*D,f 
X [6(w--mj) -6(w+wj)]. In thiscase, Eqs. (27a) and 
(27b) are equivalent, resulting in the well-known expres- 
sion:497s4 

gj(t) = - (Df/2){(Ej + 1) [exp( - iwit) - l] 

+ Zj [exp(iojt) - I]}. (3W 
[Once the friction is included and Mj and Zj are evaluated 
approximately, Eqs. (27a) and (27b) are no longer the 
same.] The contribution from the coherent motion with 
fi = 0 can now be obtained by substituting Eq. (33) for 
(32b). We obtain 

S$,~(#) =exp[ -4(Zj +$)D;(l -coswj#)‘]. 
(35b) 

Equation (35b) shows that in the impulsive limit the 
ordinary echo signal results in quantum beats for the coher- 
ent motions of the underdamped chromophore modes. This 
is the case in the recent experiment of Shank and co- 
workers.* It should be emphasized that the coherent motion 
in an echo experiment is coupled to the electronic transition, 
and the vibrational frequency of modej in the electronically 
excited state may be very different from that in the ground 
electronic state. The echo beats contain therefore all the pos- 
sible combinations of these two different frequencies and are 
modulated by the fast electronic dephasing processes.36 This 
is in contrast with the impulsive absorption and stimulated 
Raman signals where the beats, which reflect the coherent 
motion in either the excited electronic state or in the ground 
electronic state, are modulated by the much slower vibra- 
tional dephasing processes. 1o-15*37*38 

Let us turn now to the second group or the macroscopic 
solvation coordinates which have usually very low charac- 
teristic frequencies compared with the friction, and are over- 
damped. Their dynamics can then be described using Eq. 
(26) with $j (t) = 0. 41~52 We shall further invoke the Marko- 
vian approximation and set y(w) = y. We then have 
M,(t) - exp( ,A/) and C; + ‘(a) = (AjAj/7r)/ 
(w’ + A:). Using contour integration,ss Eq. (27a) then re- 
sults in 

+ i(fiAj/rkB T)’ %m 
4fiAj/ks T 

n=n (2n + l)“[ (2n + l)%? - (fiAj/k,T)“] 

X{exp[ -r(2n+l)(k,T/fi)t] +n-(2n+ l)(k,T/fi)t- 1). (36a) 
Alternatively, we can calculate gj (t) using Eq. (27b). In this case we have zj (t) zz Aj exp( - A,t) and C; - ) (@) 
= (wljAj/rr)/(02 + A;> and therefore 

g,(t) =i(Aj/Aj)[l -exp( -Ajt)] + (/2//Aj)cot(fiAl/2k,T)[exp( - Ajt) -/-Ait- 11 

+ 
4+‘i2,$Aj 0 

c 
exp[ - (2mk,T/fi)t] + (2mk,T/fi)t - 1 

* v-(kgT)2n= 1 2n[4n2ti - (+iAj/k,T)2] 
(36b) 
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Here, we characterize the solvation mode by the parameters 
/zd, A,, and A,, representing, respectively, the solvent reor- 
ganization frequency, solvent fluctuation amplitude, and the 
inverse time scale of solvent relaxation. In the high tempera- 
ture limit k, T)Sq41 we have fiAj = 2k, TAj, and both of 
Eq. (36a) and (36b) reduce to 

g,(t) = (A,/A,)‘[exp(-- Ajt) + Ajt - l] 

+ i(,Z,/Aj) [ 1 - exp( - Ait)]. (37) 
This is consistent with the result obtained directly from the 
generalized Langevin equation for the off-diagonal Green 
function 3 ~* (t). 4’ If we further neglect the solvent relaxa- 
tion processes associated with the fluctuation by setting the 
reorganization parameter ;lj = 0, we recover the celebrated 
stochastic model of line broadening.” 

The solvation dynamics probed by the echo measure- 
ment can now be obtained by substituting Eq. (36a) or 
(36b) in (34b). In the high temperature limit (k, T%“w/ > 
we get 

sgL(r’) ===exp( - (4A;\A/)L’dt [l -exp( - Ajt)]‘) 

(38) 
In the fast modulation (homogeneous) limit where the sol- 
vent correlation time Aj- ’ 47’ is negligibly small, Eq. (38) 
reduces to 

So& = exp( - 4+/T,). (39) 
This is the well-known relation between the echo signal and 
the homogeneous dephasing time T2 5 hi/AT. In this limit, 
the FWHM of the hole-burning spectrum [ Eq. ( 13) ] is 
equal to 4/T2. In the slow modulation limit where A,i- ’ $6, 
Eq. (38) reduces to 

S$(T’) =exp[ - (6/ro)3], (40) 

where r, z ($A,2A, ) - 1’3 . A detailed analysis of the echo de- 
cay time and the hole-burning spectral width in the presence 
of the spectral diffusion was given elsewhere.46,55 

VI. SUMMARY 

In this paper we presented general expressions for the 
stimulated echo [Eq. (3) with (4) 1, the ordinary echo [ Eq. 
(7)], the coherent accumulated echo [Eq. (8) 1, and the 
incoherent accumulated echo [Eq. ( 11) ] of solvated chro- 
mophore molecules, generated using weak laser fields. We 
considered also the temporal behavior of the echo profile 
[ Eq. (A6) 1, and expressed it in terms of the excitation fields 
and the medium inhomogeneity [ Eq. (A33 1. Wethen con- 
sidered the impulsive limit where the excitation field is short 
compared with the molecular dynamical time scales (ex- 
cluding inhomogeneous dephasing) . The relevant time scale 
of the incoherent laser field is the field correlation time, rath- 
er than the pulse duration. In the impulsive limit, all the echo 
signals [ Eqs. ( 12) ] are directly related to the molecular cor- 
relation function 2. We may refer to Eqs. ( 12) as the bare 
echo signals. ” Inhomogeneous broadening is eliminated by 
the rephasing processes which completely reverse the inho- 
mogeneous dephasing. The bare echo signals are closely re- 
lated to the bare pump-probe absorption [ Eq. ( 13) 1, which 

is obtained when the excitation fields are short compared 
with the nuclear dynamics but long compared with elec- 
tronic dephasing.37*48 Equations (12) and (13) also hold 
when the field time scale is long compared with the nuclear 
dynamics of the optically active chromophore motions, but 
short compared with the solvent relaxation and homoge- 
neous dephasing processes. In this case, only the solvation 
dynamics are probed; i.e., the molecular correlation func- 
tions contain only the solvent contributions [cf. Eq. (A7) 1. 

The pump-probe absorption is the frequency-domain 
analog of the photon echo, since it is the one-sided-Fourier 
transform of the echo correlation function [ Eq. ( I3 ) 1. This 
correlation function is complex, in general. Therefore, there 
is no completely general relationship between the pump- 
probe absorption signal to any single echo measurement. 
However, such transform relations do exist for long delay 
times [Eqs. (16) and (17)]. 

We further developed a Brownian oscillator model, 
which accounts for quantum beats as well as homogeneous 
dephasing, inhomogeneous dephasing and the spectral diffu- 
sion in a unified fashion (Sec. V). The echo beats result from 
the underdamped Brownian oscillation coupled to the opti- 
cal coherence [cf. Eq. (34) 1. As a result, the echo signal may 
resolve only the quantum beats of high frequency vibra- 
tions, ‘O since it is modulated by the fast electronic dephasing 
processes in condensed phases. Detailed balance is built in 
through Eq. (27a) or (27b). Therefore, the relationship 
between the solvent reorganization and fluctuation was es- 
tablished and is consistent with the fluctuation-dissipation 
theorem. The resulting stationary absorption and emission 
profiles [the Fourier transform of Eq. ( 19a) and (19b), re- 
spectively] vary continuously from a Lorentzian to a Gaus- 
sian form. We presented also the echo decay profile which is 
exponential exp( - a#) in the fast modulation limit [Eq. 
(39)] and exp( - CT’~ ) in the slow modulation limit [Eq. 
(40) 1. In a real solvent, there is a multitude of solvent time 
scales which represent the contributions from different sol- 
vation shells. These are easily incorporated using the present 
theory. 

It should also be noted that the stationary absorption 
and emission profiles obtained from the Fourier transform of 
Eqs. (19a) and ( 19b) have a mirror symmetry. This is the 
result of the second-order cumulant expansion in which we 
expand all the Green functions, 3crt (t3 ), 9 UU ( t2 ) with 
u = e or g, and ygc (t, ), in Eqs. (5) around the molecular 
ground state Hamiltonian H,. An improved cumulant ex- 
pansion may be obtained by expanding 3’rrr (t3 ) 3 UU (t2 ) 
around H,, while expanding ygc (t, ) around Hg. Another 
simple approach is to expand the optically active modes of 
the chromophore in terms of their vibronic eigenstates,” 
while keeping the cumulant expansion for the overdamped 
solvent coordinates. 
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APPENDIX A: THE TEMPORAL PROFILE OF PHOTON 
ECHOES ._ i 

-: The evaluation of the echo signal [Eq. (3) ] involves a 
nontrivial triple integration [ Eq. (4) 1. In practice, we can 
partition all the system modes into fast and slow groups with 
respect to the time scales of the excitation pulses. This was 
recently applied to calculate the time-resolved pump probe 
absorption signa1.37 The fast modes are usually the high fre- 
quency optically active modes of the chromophore, while the 
slow modes consist of collective solvent motions as well as 

some low frequency chromophore modes. In the case of im- 
pulsive excitation, all the molecular modes are considered 
slow. To lowest order, we may factorize the molecular corre- 
lation function Rj (t3,t2,t, ) into the fast and slow contribu- 
tions. In the evaluation of the optical signal, it is more con- 
venient to express the fast modes in terms of their vibronic 
levels since only a few of these levels are excited appreciative- 
ly. In the following, we shall denote tiw,, =t+; - I+ as the 
energy difference between two vibronic levels of fast modes. 
With-this notation, the echo polarization [ Eq. (4) ] may be 
expressed as 

I 
Pi& (I&) 7;i3 exp[i(a, + fl? - a, - Oeg9t + i(& - R, )r-- i(R, - weg9~‘] 

. . .- 
x [“?p ( - iwdbT- Ydbrigt - 7’; ~bc~~d&&, )R ; (f,7,7’) 

+e~p(-iw,,r--y,,r)l(t-rd;Wd,,Wbc,Wba)R;(t,r,r’)] 
with ,, F... -- .*: 

-ia.,wKd) +:;&J-; dt2JI+ 12, r( t - biw, ,W &x(t--‘-t3 -t2 +r,)~~(t~)~~(t~)~r(t*) 

Xexp[i(a, d-w, ---a3 94 + i(wa,i. +-mpg - Cn29t2 - i(w, +-CO, - Sz, )tl 1. 

(Al) 

(A29 
‘. .  ,j *  

. , .  

In deriving these equations,‘we changed the integration vari- 
ables ‘t; =?+r’+r-t3 -t2 -t,l,t;‘=t+r-t3 -tz, 
and t  j =‘t - ti .‘In Eq. (Al 9, R; denotes the contribution of 
the slow motion (excluding inhomogeneous broadening) to 
the molecular~borrelation function, a,c,..., are the vibronic 
quantum numbers of the chromophore in ground electronic 
]g) state, whereas bid,..., are the vibronic quantum numbers 
in excited electron& Ii> statei’P(a9 is the thermal occupa~ 
tion of the chromophore in the vibronic- level la): ydb (or 
yay) represents.the vibrational dephasing rate between I{) 
a&lib) (or]a)‘and]c))levels$&,r(ti]~]v’)istheFranck- 
Condon factor of the chromophore transition dipole’ mar 
ment. In Eq. (A 1 ), we replaced the slow motion contribu- 
tion R;(t, ,&,t, 9 by R;(t,r,t), since the relevant time scales 
I#.-- tll, .I+- t ,  1 and 1. - _ ] t  t3 are &ntrolled by the excita- 
tion pulses. If the pulses are short compared to the inhomo- 
geneous dephasing as well, we may further approximate 
x(t3 - t ,  > by x(t - r’) T r and d are the intervals between 
the excitation pulses, while t  represents the time of the echo 
generated after the third pulse. We shall be interested in the 
experiment in which all the excitation pulses and the echo 
pulse are well separated..In this case, all three upper limits of 
the integrations in Eq. (A2), t ,  r + ti and r’ + t  2, can be 
replaced by infinity, and we have .,,. 

I(t - +J;@ud@aa’f@x~ 9 

s 
m 

55 dw exp [ - iw(t - 7’9 1209 
-m 

xi$ (WJ -+-o)~~ (otir + w)&YoKd + ~9. (A39 
Here, i( w ) represents the inhomogeneous distribution: _j 

. 
,I$> = dw exp( -h&i(b), /A4) 

I 
and 2, (w) is the spectral envelope of thejth excitation field: 

2j(rn, = 
SW 

dtexp[i(w+o, -Cl,)t]Ei(t) 
=-Cc 

j= 1,2,3. (Ai) 

In medium with large inhomogeneous broadening where the 
inhomogeneous dephasing time is short compared to all the 
other molecular dynamics, we.can further replace R ; (t,r,r’) 
in Eq. (A 1) by R ,! (r’,r,r’). Moreover, in the impulsive exci- 
tation limit, all the molecular modes are slow and can be 
incorporated in the correlation functions R ;,R ;, and 1, so 
that the summations in Eq. (Al ) can be eliminated. When 
both the large inhomogeneous broadening and the impulsive 
excitation limits are satisfied, the amplitude square of the 
polarization [ Eq. (A 19 1, or the echo profile [the integrand 
of Eq. (391, is given by 

IP~~~(~s,t)(Z=~1~2(r’,r,r’912~I(t-r’9~2. (A61 
Here, I( f - r’ ) = I( t - rf;w,, = maa I = w,~ = 0) repre- 
sents the temporal profile of the echo. It can be shown that 
this profile centers at t = r’ with the width of 
[W9”+7: -kd +<y2, where T: and rj are the times- 
tales of inhomogeneous dephasing and the jth excitation 
pulse, respectively. When the excitation pulses are short 
compared with the inhomogeneous dephasing, we may ap- 
proximate E, (w) j = 1,2,3, _ by constants. In this case 
I( t - r’9 [ Eq. (3.79 ] reduces to ,y( t - r’), the inhomogen- 
eous dephasing function. If only the impulsive limit is satis- 
iled and the large inhomogeneous broadening does not hold, 
R,(r’,r,r’) in Eq. (A6) should be replaced by Rj (t,r,r’) 
which-also contributes to the temporal profile of the echo 
pulse.‘5 
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Let us consider an ideal stimulated echo experiment for 
solvation dynamics, in which single-color echo pulses are 
used to excite the solvated ch.romophore at low temperature. 
In this case Cn, = & = fl, and the initial Boltzmann distri- 
bution for the P(O) = 1 and P(a) = 0 for a#O. We further 
assume there is a separation of time scales between the coher- 
ent motions of chromophore (fast modes) and the homoge- 
neous dephasing or diffusion motizns of solvent (slow 
modes). The excitation bandwidth Ej (w) is narrow com- 
pared to the vibronic level spacing w,,, , -the field function I 
[ Eq. (A3) ] selects only a single vibronic level (e.g., [b > ) in 
the excited state such that b = d and c = a. In this case the 
amplitude square of the polarization [ Eq. (Al ) ] reduces to 

1 Pi.“d, (kd9 1 = 1,&b 1 81~‘(t,r,T’) I2 

x Ir(t - +;mk9~bn&bm > 12- (-47) 
I 

S(k,;r’) = - 2 Im(E*(t)P’3’(k, = k, + k, -k, ,t)> 

r” f” I-” 

Here the molecular correlation functions kP=R ; + R ; 
contains only the solvent contribution to 9, i.e., homoge- 
neous dephasing and spectral diffusion processes but no con- 
tribution from intramolecular high frequency modes. If the 
inhomogeneous dephasing is fast compared with the solvent 
dynamics, we can further replace %?‘(t,r,r’) in Eq. (A7) by 
.%‘(r’,r,r’). 

APPENDIX B: THE INCOHERENT ACCUMULATED 
PHOTON ECHOES-DERIVATION OF EQ. (11) 

We are interested in calculating the signal generated in 
the probe direction k2 and detected as a homodyne beat with 
the probe field. We have 

4- 2 Relmdt31wdt21n dtlCexp[Wt3 + t, I] [F, +F,]9(t,,t,,t, )x(t3 + t, )I, 031) 

where 

4 =(E*(t)E(t--t3)E*(t+r’-t3 -tt,9E(t+r’-t3 -tz -t,)) 

G = (E*(t)E(t + r’ - t, )E(t - t, - t,)E*(t + r’ - t, - t2 - t, 9) 
F3 = (E*(tMt--t3)E(t+r’- t, - t2)E*(t+r’- t, -t, -t, 1) 

fi=(E*(t)E(t+r’-t3)E*(t+r’-t3 -t,)E(t-t3 -t2 -t,)). U32) 

In Eq. U319, g(t3,t2,tl 1=-R, (t3,t2,t, 9 + R,(t,,t,,t, 1 
where R, and R, are molecular correlation functions, which 
can be obtained from R, [Eq. (5a)] and R, [Eqs. (5b) 1, 
respectively, by changing YSO (t, ) to 9 ~* (t, ) . In the deriva- 
tion of Eq. (B 1) we invoked the rotating wave approxima- 
tion but we did not assume temporal separation of the pump 
and the probe, since it does not hold in the incoherent experi- 
ment [cf. Eq. (8) 1. The four-time-correlation function F, 
[Eqs. ( B2 ) ] can further be evaluated by assuming Gaussian 
statistics for the field and Eqs. ( IO). We then get 

4 = B(f3 + t2 -t t, - r’)&r’ - t2 1 + 8(t3 9&t, 1, 

F,=t)*(r’--t3~FYr’-t,~ +@(t, +t2)B*(t2 t-t,), 
F3 = Nt, -i- tz - 7’)8*(t, + t2 -+I + &t3 )8*(t, 1, 
F4 =B*(r’-- &9&r’+ t, 9 + 8(t3 + t2 + t, )0*(h). 

0339 
Not all of these terms contribute to the echo signal. Firstly, 
all the second terms of F,j= 1,...,4, contribute to the dc 
component of the signal, therefore, can be omitted. Further, 
the echo signal is generated only when r,, the time scale of 
the field correlation 0(t), is short compared with the dephas- 
ing time of the optical medium and the delay time r’ of the 
probe field from the pump field. In this case, both F, and & 
have only negligible contributions to the ac component of 

the signal [ Eq. (B 19 1. We thus obtain the final expression 
for incoherent accumulated photon echo signal [ Eq. ( 11) I. 
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