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Optical absorption and fluorescence line shapes of molecular aggregates are calculated using a 
variational method and the dynamical coherent potential approximation (DCPA) which 
account for strong exciton-phonon coupling. The formation and the quantum size effects of 
excitonic polarons are studied. 

1. INTRODUCTION 

The study of the interaction of an electron or an exciton 
with lattice vibrations has a long history.‘,* Self-trapping of 
an electron (electronic polaron3-5) in deformable lattice and 
of a phonon-dressed exciton6 (excitonic polaron) has been 
studied in various classes of materials, including quasi-one- 
dimensional molecular crystals and conducting polymers. 
The current understanding of these phenomena have been 
reviewed in Refs. 7-13. Theoretical modeling of polarons 
requires a nonperturbative treatment of the interaction 
between electrons or excitons with optical and acoustic 
phonons. Over the years, both static and dynamical aspects 
of the problem have been studied extensively. The static 
studies involve the ground state wave function and energy of 
the coupled exciton-phonon system. These studies led to the 
distinction between large and small polarons.3v5*6*‘“22 Dy- 
namical studies involve electron, exciton, or energy trans- 
port, resulting in the concept of phonon-assisted hopping for 
small polarons4*23 and Davydov’s’ soliton solution of a cubic 
nonlinear SchrGdinger equation for a quasi-one-dimensional 
molecular chain. The exciton transport and the soliton dy- 
namics in one-dimensional molecular chains were studied 
extensively.2”30 Turkevich and Holstein3’ have studied the 
excited-state spectrum of the coupled electron-phonon sys- 
tem using the Born-Oppenheimer adiabatic approximation 
for the molecular vibrational energy levels. The properties of 
the coupled exciton-phonon system can be probed optically, 
using absorption and emission spectroscopy. Sumi3* and 
Abe33 have calculated the absorption and emission spectra of 
excitonic polarons using a self-consistent Green’s function 
technique, the dynamical coherent potential approximation 
(DCPA). 

The main difficulty of the polaron problem is in the re- 
gion of strong exciton-phonon coupling in which the lattice 
relaxation energy is comparable with the exciton bandwidth. 
In this region, the polaron problem cannot be treated pertur- 
batively. Variational techniques are commonly used for cal- 
culating the polaron ground state. In a typical coupled exci- 
ton-phonon system, the total number of excitons and the 
total (exciton +- phonon) momentum are conserved, as 
pointed out by Merrifield” and Fischer et uZ.*‘**’ However, 
most authors did not utilize the momentum conservation in 
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the trial wave functions used for the polaron ground state 
and soliton dynamics. Most studies for the energy states and 
the optical spectra of excitonic polarons were carried out 
either for infinite molecular crystals,20~2’ or for very small 
aggregates, say, dimers3”36 and trimers.36’37 

In this paper we study the exciton-phonon interactions 
in large molecular aggregates, and examine the effects of the 
aggregates size38 on their energies and optical spectra. We 
calculate the energy levels and oscillator strengths for linear 
molecular aggregates of size N varying from N= 2 to 
N = 80. Our study is carried out using two methods: a vari- 
ational method which utilizes the total (exciton + phonon) 
momentum conservation, and the DCPA.‘7*“2.33 The conser- 
vation of the total momentum implies that all eigenstates of 
the coupled exciton-phonon system are electronically delo- 
calized. We specialize to the Einstein (i.e., dispersionless) 
phonon model. We find that the energy of the lowest polaron 
state increases with the size N of the molecular aggregates. 
We also find that the zero-momentum phonon mode is de- 
coupled from the rest of the phonon modes and exciton 
states. For large polarons this decoupling leads to a Poisson 
distribution of shift -S/N for both absorption and fluores- 
cence spectra; i.e., the Stokes shift between the absorption 
and fluorescence spectra is inversely proportional to the size 
N of the molecular aggregates. Here S is the ratio of the 
lattice relaxation energy to the phonon energy. This result 
implies that, by reducing the size of a given molecular aggre- 
gate, one can observe a larger Stokes shift. For small polar- 
ons the Stokes shift is independent of the size N. The vari- 
ational and the DCPA calculations are in qualitative 
agreement. 

The organization of the paper is as follows. In Sec. II we 
demonstrate that the Hilbert space of the one-exciton states 
of an N-molecule aggregate can be partitioned into N sub- 
spaces, differing by the total (exciton + phonon) momen- 
tum. This decomposition is applied in Sec. III to the Einstein 
phonon model. We also show in Sec. III the separation of the 
zero-momentum phonon mode from the rest of the phonon 
modes and exciton states. In Sec. IV we develop a variational 
method for calculating the lowest state in each of the IV mo- 
mentum subspaces. In Sec. V we show how the DCPA can be 
used to calculate the absorption and emission spectra of mo- 
lecular aggregates. In Sec. VI we calculate the fluorescence 
spectrum originating from the lowest one-exciton state by 
using the variational method and the DCPA. For small ag- 
gregates the calculations are also compared with an exact 
(matrix diagonalization) calculation. Using the N lowest 
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states for the N momentum subspaces obtained in Sec. IV, 
we construct in Sec. VII a complete basis set, which approxi- 
mately diagonalizes the Hamiltonian for one-exciton states. 
In Sec. VIII we calculate the absorption spectrum for optical 
transitions between zero- and one-exciton states using the 
variational method and the DCPA. The calculations are also 
compared with an exact calculation. Finally, we summarize 
our results in Sec. IX. 

II. THE EXCITON-PHONON HAMILTONIAN 

We consider a cyclic, one-dimensional aggregate of N 
coupled molecules. Each molecule is assumed to have two 
electronic levels and a single intramolecular vibration. The 
exciton-phonon interaction is taken to be linear in the 
phonon coordinate. We adopt the Friihlich Hamiltonian’ 
for the coupled exciton-phonon system, 

H = Hex + Hph + Hint 9 (2.la) 

with 
N-l 

H,, = 2 E(k)a:a,, 
k=O 

(2.lb) 

H,,,, = N&+;b, ++), 
q=o 

N-l 

(2.lc) 

H,,, = - c h, [&kq)b;&,& + H.c.]. 
k.o = 0 

(2.ld) 

Here He, is the Hamiltonian for a single Frenkel exciton 
band in a perfect rigid chain, and ak (a: ) is the Pauli anni- 
hilation (creation) operator ofan exciton with momentum k 
and energy E(k), which satisfy the commutation relation 
akaLe + a:‘ak =6,,, + hkate (1 -akks) ; HP,, is the 
phonon Hamiltonian, b, (bl) is the boson annihilation 
(creation) operator of a phonon with momentum q and fre- 
quency w9, with the commutation relation [b4, b $ ] 
= s,, ; Hi,, is the phonon-exciton interaction, and H.c. 

stands for Hermitian conjugate. al is related to the Pauli 
creation operator a: at site n by the relation 

eR”k”‘NuL, k = 0,1,2 ,..., N- 1. (2.2) 

The eigenstates of Hph will be denoted lm) G  Im,, 
m ,,..., mN- , ) with the eigenvalues Zyzdtiq (m, + t), 
where m, is the occupation number of the qth phonon mode. 

The total exciton-number operator commutes with the 
total Hamiltonian H 

t akak, H =o, 
I 

(2.3) 

and so does the total momentum operator of the exciton- 
phonon system 

N- I 

C k&z, +:, H =O. 
k=O 1 

Here 

ri;= Ni’ qb lb, 

(2.4) 

(2.5) 
9=0 

is the phonon-momentum operator. Thus the Hamiltonian 

Hconserves the total number of excitons and the total (exci- 
ton + phonon) momentum. We can therefore study the ex- 
citon-phonon interaction for a fixed number of excitons and 
a given total momentum. In this paper we study the optical 
spectra corresponding to transitions between the zero- and 
the one-exciton states. 

There is only one independent zero-exciton state; the 
exciton-vacuum state IO,, ), uk IO,, ) = a, IO,, ) = 0 for all k 
and n values. Since (O,, ]H IO,,) = Hph, the zero-exciton 
Hamiltonian is simply given by 

H, = PeMph (Rx I. (2.6) 

The eigenstates for Hg are given by the direct product of the 
exciton and phonon states, i.e., lO,,;m) = IO,,) Im). The 
ground state of Hg , and consequently that of the entire exci- 
ton-phonon system, is IO,, ) IO) with the zero-point energy 
@8: 1 A w, , where IO) is the phonon vacuum state, b, IO) = 0 
for all q. 

There are N independent one-exciton states. They can 
be chosen to be either N localized one-exciton states In) 
(n = 1,2,...,N), where In) represents the state with a single 
excitation at site n, or N delocalized one-exciton states 

Rffkn’Nln), k=O,l,..., N- 1. (2.7) 

A delocalized state Ik ) has the periodicity of N, 
Ik ) = Ik + 1N) for any integer I; we therefore restrict k in 
the range of O<k<N - 1. Different delocalized states are 
orthogonal, (k ’ 1 k ) = Sk ‘k . In thedelocalized basis, theexci- 
ton operators can be written as uk = IO,, ) (k 1 and 
ui = Ik ) (O,, I. Thus the one-exciton Hamiltonian is ob- 
tained from Eqs. (2.1) as 

He = ;z;E(k)lk)(k/ + ;z;h9(b:b9 +3) 

N-l 

- k.gO 
h, [A(k,q)b ; Ik - q) (k I + H.c.1, 

(2.8) 
where we have used the closure .relation 8::: I k ) (k I = 1 
for the one-exciton states. 

The exciton-phonon interaction Hi”, couples a state 
Ik;m)=Ik;m,,m,,m, ,..., mN- ,) to the states Ik - q; 
m,,m,,m,, . . . . m9 -I- 11-+N-, ) and Ik + 4;mo,mI,m2,..., 
m, - l,..., mN _ , ). That is to say, when the phonon number 
in mode q is increased (decreased) by 1, the exciton momen- 
tum k is decreased (increased) by q, from k to k - q 
(k + q) . Starting from a phonon-vacuum state (k;O), Hi”t 
will couple it only to states which conserve the total (exci- 
ton + phonon) momentum, i.e., to the states 
Ik - 2rz;qm9;m). We denote kzk - By:;qm9. All the 
states I k - Z$‘z,‘qm,;m) = Ik;m) therefore form a closed 
subspace, where k is the total (exciton + phonon) momen- 
tum. There are Nsuch momentum subspaces, correspond- 
ing to k = 0,1,2,...,N - 1. It should be pointed out that the N 
momentum subspaces are complete for the one-exciton 
states, and any one-exciton state belongs to one of N sub- 
spaces. Moreover, for a given choice of mr{m,, 
ml,m2,-9mN- 1 , } there are N one-exciton states Ik;m) 
(k = 0,1,2 ,..., N - 1). No two of them belong to the same 
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momentum subspace. Consequently, the matrix expression 
of H, is block diagonal with N blocks. This leads to the de- 
composition, H, = Xf:dH,, with the Hamiltonian in the 
k th block 

Hk =E(k-$1 + Nf’tiw, 
q=o [ 

bfb, ++(k-?,q)b: 

-A*(k-?,q)b, . 1 (2.9) 

Any state within the k th subspace, including the eigenstates 
of the Hamiltonian Hk , is of the form 

When the exciton-phonon coupling parameter il (k,O) 
is independent of the exciton momentum k, the zeroth 
phonon mode is decoupled from the other phonon modes 
and exciton states in the one-exciton case, as can be seen 
from Eqs. (2.8) and (2.9). As this is indeed the case for the 
Einstein phonons [see Bq. (3.4b) 1, we can partition H, as 

H,=H’+H”, (3.5) 
with 

H’= NTIE(k)Ik)(kI+hwo Nf’(b:bq++) 
k=O q=l 

N-l N-I 

IWk)) = CA k’)]k;rn). (2.10) 
m 

If a state ]Yk)) is an eigenstate of a Hamiltonian 
Hk, Hk ]Yk)) = E’k’lY’k’), then it is also an eigenstate of 
one-exciton Hamiltonian H, with the same eigenvalue E (k). 
We note that the aggregate eigenstates represent a deloca- 
lized excitonic state, since the probability of electronic exci- 
tation at site n is 

-+h)‘N c c (bf,lk-q)(kl +H.c.), 
q=, k=O 

(3.6) 

(n Wphonon [IY’k’)(Y(k)l]ln> =+x pg’12=$ 
m 

n = 1,2 ,..., N, (2.11) 

where the second equality in Eq. (2.11) follows from the use 
of the normalization condition for the state ]Yck) ). Equa- 
tion (2.11) implies that the distribution of excitons is deloca- 
lized. This result is different from the localized electronic 
states obtained by Holstein for both large and small polar- 
ons. 

H” =fiw, b;b,++,(b& +bo)], 
[ 

(3.7) 

where b, stands for 6, = o. Since it is independent of 6, and 
b A, H ’ commutes with H “, 

[H’, H”] =O. (3.8) 
Similarly, we can partition the k th subspace Hamiltonian 
Hk as 

Hk =H; +H”, 
with 

H; =Ilw, 
I 
Go-Bcos[2n(k-2)/N] 

(3.9) 

+ ;z: [b;bq ++,(b: +b,)]). (3.10) 

III. EINSTEIN PHONON MODEL 
We now specialize to the Einstein optical phonon mod- 

el, in which all phonon modes have the same frequency. The 
total Hamiltonian in the localized basis is 

H; differs from Hk of Eq. (2.9) only by the exclusion of 
q = 0 phonon mode. 

The eigenvalues and eigenstates of the Hamiltonian H R 
can be found easily by making a canonical transformation6 

Bo=Do(~,)hPo( -;l,) =6,--N, (3.11) 
where 

H =+h, 5 
n=L [ 

E&I, +B(at,+,a, +a:a,+,) 

+ b’b,+3)-~(b~+b,)o:a,], 
( 

(3.1) 

where woe0 is the O-O transition frequency of a free mon- 
omer, and the exciton-phonon coupling constant ;2 is real. 
Making use of Eq. (2.2) and the relations 

b, - ’ Nz * eWn/.+‘bq, 
$v q=o 

n = 1,2 ,...) N, (3.2) 

we can transform the Hamiltonian H in Eq. (3.1) into the 
form of Eqs. (2.1) with 

D,(a)= exp(abl -a*b,) (3.12) 
is the displacement operator for the qth phonon mode, which 
has the properties D:(a) = D,( -a> = D,‘(a). The 
displaced phonon operator B, and its adjoint BJ are also 
Boson operators, since they obey the commutation relation 

[B,, B;] = [b,, b$] = 1. (3.13) 
It follows from Eqs. (3.7) and (3.11) that H” now takes the 
form of a simple harmonic oscillator 

H” =tio(B~Bo++YN), (3.14) 
where 

S, =A ‘N ES/N, S-A 2. (3.15) 

E(k) =+h,[e,-Bcos(2n-k/N)], (3.3) 

aq = 4J, (3.4a) 

A(k,q) = R /m=/l,. (3.4b) 

The exciton bandwidth is 2Bciw,. The quantities wq and 
A(k,q) do not depend on the momenta k and q for the pres- 
ent model. 

S is the lattice relaxation energy (in the units of tiw, ). We 
denote the number states of the displaced Boson operator B, 
as ]j )o, B$B,Ij ). =i ]j )o. We thus have 

H”lj),,=~,,(j+~-S,)lj),, j=o,1,2 )..., (3.16) 

where ho ( i + 4 - SN) are the eigenvalues and I j ). are 
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the eigenstates. The lowest eigenstate of H ’ is the vacuum 
state IO), of the displaced phonon operator B. with the 
eigenvalue ti, ( f - S, ) . All I j ). states constitute another 
set of complete basis for the zeroth phonon mode. 

Since the state IO), is an eigenstate of the phonon anni- 
hilation operator b,, 

bole), = (Bo + AN) lo), = AN lo),, 
(3.17) 

we conclude that the vacuum state IO), of the displaced op- 
erator B, is a coherent state of the undisplaced phonon oper- 
ator b,, 

lo)0 = IAN)0 = DO(AN) lo)0 

= =z, [Pm(SN)]1’21m)0, 

where 

p,(8) 42. (3.19) 

The Poisson distribution pm (8) peaks at m z 8. Similar to 
Eq. (3.18), other phonon number states I j ). of the dis- 
placed operator B, can also be expanded in terms of the 
phonon number states Im)o of the undisplaced operator b,. 
The relation between the displaced and undisplaced number 
states is given in Appendix A. 

Ifastate lack)) isaneigenstateofH;, 

H;IWk’) =(Wk)+tiO[~o+~(N- 1)]}I@‘k’), 
(3.20) 

it then follows from Eqs. (3.9), (3.16), and (3.20) that the 
Hamiltonian HA for the k th subspace has eigenstates 
lack)) I j ). with eigenvalues Eck) = g(k) + &so (.so + SN 
+j - S,), i.e., 

H, lack)) I j 10 
= [~“k’+~o(~o+tN+i--~)]l~‘k’)Ij)o, 

j= 0,1,2 ,... . (3.21) 

It is easy to see that the state IQck)) I j ). is also an eigenstate 
of the one-exciton Hamiltonian He. 

Equation (3.20) may be solved numerically using a fi- 
nite basis set. Diagonalizing the Hamiltonian Hi is consid- 
erably easier than diagonalizing the one-exciton Hamilto- 
nian He. The basis size needed for the matrix diagonalization 
reduces from NMN to MN - ’ if we take the first M phonon- 
number states for each phonon mode b,, or to an even 
smaller basis size if we choose phonon-number states ac- 
cording to the restriction Zf:,‘m, <I. As the size N of the 
molecular aggregates increases, the necessary basis size in- 
creases dramatically, making it impossible to diagonalize the 
huge matrix for the Hamiltonian H ;. Thus an alternative 
way must be sought. In the next two sections we outline two 
techniques. A variational procedure and a self-consistent 
Green’s function procedure based on the dynamical coher- 
ent potential approximation (DCPA). We next apply these 
techniques to calculate the absorption and the fluorescence 
l ineshapes of molecular aggregates. 

IV. VARIATIONAL METHOD: THE LOWEST STATE OF 
EACH MOMENTUM SUBSPACE 

A possible state of collective excitations is given by a 
multimode coherent state. We denote I {c,k 1) as the N-mode 
coherent state, produced by the action of a set of displace- 
ment operators on the phonon vacuum state, 

N-l 

I&k)) = ,uo D, (cqkAN) 1’) 

= mso ;g; [pm, #ksN) ] “*lm)* (4.1) 

In Eq. (4.1) c&N and cqk are, respectively, the total and 
relative displacements of the qth phonon mode for the k th 
subspace. Equation (4.1) does not have a well defined mo- 
mentum and therefore does not exploit the full symmetry of 
the system as shown in Eq. (2.4). To correct this we postu- 
late a variational trial state I Yi”‘) of the form of Eq. (2.10) 
with the coefficients 

N-l 
A (k’ - 

m  - qgo [Pmq &%‘) ] “** (4.2) 

Equation (4.2) uses the coherent-state expansion coeffi- 
cients of Eq. (4.1) to construct a state with a well defined 
total (exciton + phonon) momentum. Using Eqs. (2.8), 
(2.9), (3.3), (3.4), and (4.2), we find that the expectation 
value of the Hamiltonian He with respect to the trial state 
IYAk’) is 

EAk’ = (Y~k’IH,IY~k’) 

= (Yhk)lHk IY;“‘) 
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-c:k) ++] 

N-l 

-S, qzl Icqk I*( 1 - e-“ffq’N) + c.c. . 1 I (4.3) 

The energy E Ak) in Eq. (4.3) is a function of N relative dis- 
placements cqk, q = 0,1,2 ,..., N - 1. The values of cqk which 
minimize E ik) are determined by the following equations: 

aE ;k’ 
-=0, 

ac:k 

q=O,1,2 ,..., N- 1. (4.4) 

Since SN is real, it follows from Eqs. (4.4) that all relative 
displacements cqk are real, and they satisfy a set of N nonlin- 
ear algebraic equations 

L = 1 + i B (1 - e-“ffq’N)exp i2?rk/N 
%k i 

N-l 

-sN c dk(l-e- 
I= 1 

ny] + C.C.) , 

q=O,1,2 ,..., N- 1. (4.5) 
Thus for the k th subspace, we obtain a set of Nequations for 
N relative displacements co, tcik ,c2k ,...,cN _ l,k. Equations 
(4.5) need to be solved numerically. Since the factor 
( 1 _ e - l2w/N ) on the right-hand side of Eq. (4.5) vanishes 
for q = 0, we find from Eq. (4.5) that 
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C -1 Ok- 9 (4.6) 
which implies that the zeroth phonon mode is always in a 
coherent state lil,),, independent of the values of the pa- 
rameters B, S, and N. This reduces both the number of un- 
known cqk for each momentum subspace and the number of 
the coupled equations to N - 1. The result (4.6) is in agree- 
ment with our previous result in Sec. III. 

For B > 0 (e.g., in molecular Jaggregates-*), the bot- 
tom of the exciton band is at k = 0 in the absence of the 
exciton-phonon coupling (/2 = 0). In the presence of the 
exciton-phonon coupling (/2 #O), the lowest state among all 
HA is that of Hk = o .’ Making use of Eqs. (4.4), we can show 
that, if cqk = a4 (q=O,1,2 ,..., N- 1) areaset ofsolutions 
for a given k value, then cN _ q, _  k = a, are also a set of 
solutions for - k. Namely we have the relations 

Cq,k = CN-q,-k, q = 1,2,... . (4.7) 
Substituting Eqs. (4.7) into Eq. (4.3) we find that the lowest 
energies for the momentum subspaces k and - k are identi- 
cal, 

E’k’=E:,-k’. 
0 (4.8) 

Thus the lowest energy E hk), as a function of k, is symmetric 
about k = 0. This result is in agreement with the fact that the 
Hamiltonian of the entire exciton-phonon system is invar- 
iant with respect to the change k-+ - k, as can be seen in 
Eqs. (3.3) and (3.4). As a special case of Eq. (4.7) we have 
[ (N - I)/21 relations 

C q.0 = C N- q,Ot q= 1,2,...,[(N- 1)/2] (4.9) 
for the k = 0 momentum subspace. Here [ (N - 1)/2] 
stands for the integer part of (N - 1)/2. Note that for any 
other subspaces, Eqs. (4.4) do not lead to such relations. 
This is in contrast to the assumptions made by Fischer and 
co-workers.20*2’ 

In the remainder of this section we shall focus on the 
zero-momentum subspace (k = 0), since I YA”)) is the low- 
est one-exciton state. Substitution of Eqs. (4.9) into Eqs. 
(4.3) and (4.5) leads to 

E~“=~o(t,+~N)+fw,SN~~~ (c&-~c@) 
c9 
0 

r 
N-l 

- +im,B exp - 2SN c c$ sin* T  , 
( > 

(4.10) d; 
q=l 0 

1 -=l+2Bsin2~exp 
n-l sin* - , 

%  N > “! 
0 

q = 1,2 ,..., [N/2]. (4.11) 

Thus the number of equations to be solved is reduced from N 
to -N/2. It is easy to see that, when B> 0, the possible 

0 

values for ego are bound between 0 and 1, i.e., 0  < c+, < 1. 
In the infinite aggregate limit (N- 03 ), we treat the rel- 

ative displacements c+,‘s as a continuous function of phonon 
momentum q and thus replace the summation in Eq. (4.11) 
by an integral. Solving the resulting simple integral equation, 
we obtain 

FIG. 1. Graphical solution of Eq. (4.13). The straight line (y = 7) repre- 
sents the left-hand side of Eq. (4.13), whereas the curves represent the 
right-hand side. The solid curve is for B = 2 and S = 2, for which there is 
one root for Eq. (4.13); The dashed curve is for B = 4 and S = 6, for which 
there are three roots for Eq. (4.13). A closed (open) circle represents a 
min imum (maximum) value of the energy E,‘,‘“. 

1 
C@ = 

1 + 2B77 sin2 (n-q/N) ’ 
q = 0,1,2 ,..., (4.12) 
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where 77 needs to be determined self-consistently from a non- 
linear equation 

S 
I (1 + ~Bv)~‘* * 

Even without solving Eq. (4.13 ) numerically, we can deter- 
mine the range of the parameter 7. First, it is easy to see that 
0 < r] < 1. Then, since the right-hand side of Eq. (4.13) in- 
creases monotonically for increasing ~7 as illustrated in Fig. 
1, we find that 

exp( -S) <v-c exp 
S 

I (1 +2B)3’2 ’ 
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(4.14) 

The energy of the lowest one-exciton state is found after sub- 
stituting Eqs. (4.12) into Eq. (4. IO), 

1-t 3B7j 
(1 + 2B~,7)~‘* 

--7 , 
I 
(4.15) 

which tends to the value ti, ( l 0  + jN - S) when r] ap- 
proaches zero. Equation (4.13 ) may have one solution with- 
in the range of Eq. (4.14)) which gives the minimum value of 
the energy E A”. Equation (4.13) may also have three solu- 
tions ~7, < v2 < v3 for larger values of S and B. In this case, 
the smallest (7,) and the largest (TV) solutions lead to two 
minima of the total energy, whereas the intermediate solu- 
tion v2 gives a maximum value of the total energy. For suffi- 
ciently large S and B, we have approximately or = e - ’ < 1 
and Q = exp [ - S/( 1  + 2B) 3’2]. Corresponding to 7, all 

03 
d 

0 0.2 0.4 0.6 0.8 1  

r) 
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- c+ are close to 1, and this situation is usually denoted a 
small-polaron ( localized2’) state. Note that the state is elec- 
tronically delocalized and all sites have the same probability 
( l/N) of electronic excitation, as shown in Eq. (2.11). We 
therefore denote this state a large-phonon-displacement 
(LPD) state. Corresponding to r],, most of the cti (except a 
few c @  with q close to 0 and to N) are C~ < 1 when B) 1 and 
~7s - 1. This is usually denoted a large-polaron (deloca- 
lized”) state. We shall denote it a small-phonon-displace- 
ment (SPD) state. Whether we should choose vi or v3 de- 
pends on which one of them gives lower energy ,JZhop’ when 
substituted in Eq. (4.15). We found that, when B>S, 73 
leads to a lower energy than 7, does, and the lowest one- 
exciton state is an SPD state. When B < S, the situation is 
reversed; i.e., the lowest one-exciton state is an LPD state. 

a3 
d 

u! 
0 

0 
w 

0, 
d 

h! 
0 

For finite-size aggregates, we need to solve Eqs. (4.11) 
numerically to find the minimum value of EA”’ [see Eq. 
(4.10)]. The situation is similar to that discussed above; 
Namely we may find several sets of solutions for the relative 
displacements c+,-, and we need to choose one set of cpo which 
gives the global minimum of E $“. We plot such a set of cfl in 
Fig. 2 for the case of B = 10 and S = 10 with N = 2, 3, 10, 
and 40. The resulting values of c+, show that, for each of N 
values, the polaron state is an SPD state (i.e., a large -PO- 
laron state), since, except a few c @  with q/Nclose to 0 or to 
1, most c& are small so that c$ Q  1. We note that all C~‘S for 
different aggregate sizes, including those for dimer and 
ttimer, fall on a single smooth curve. This implies that the 
expression (4.12) for large Ngives a very good estimate even 
for aggregate size as small as N = 2. We plot Eq. (4.12) for 
several sets of B and S values in Fig. 3, which shows the 
dramatic difference between an SPD (large-polaron) state 

0 I I I I I 
6 6.2 0.4 6.6 0.8 i 

4/N 
FIG. 3. Relative phonon displacement cd vs the phonon momentum q for 
an infinite aggregate, as given by Eq. (4.12) for the following sets of param- 
eters: B = 20, S= 10 (solid line); B = 10, S= 10 (dashed line); B = 20, 
S=20 (dottedline);andB= 5,S= 10 (dash-dotline). 

and an LPD (small-polaron) state. For the LPD states, all 
cfl z 1; For the SPD states, c$ < 1 for most phonon modes 
except those with q/N close to 0 or to 1. 

In the LPD state with Br] < 1, we have from Eq. (4.12)) 
c& = 1 - 4B7 sin’( rq/N), which is only weakly dependent 
on the phonon momentum q. By neglecting the dependence 
of the relative displacements c& on q, we can obtain, from 
Eq. (4.3), the effective mass m* of the phonon-dressed exci- 
ton (polaron) at the bottom (k = 0) of the exciton band 
formed by all Ehk’, 

03 
0 

c9 
0 

0 
w 

0, 
d 

h! 
0 

0 

x x  

x  x  

x x 

x x  
x  x  

# 
xxx 

i3 
xx 

“bxxmxx XlXXXrnX~ ?ax 

I I I I b I 

0 0.2 0.4 0.6 0.8 

q/N 

FIG. 2. Relative phonon displacement c+) vs the phonon momentum q in 
thecaseofB=10,S=10forN=4O(X),N=lO(O),N=3(A),and 
N = 2 (v). Notice the overlap of three symbols x , 0, and v  at q/N = 0.5, 
and the overlap of 0 with X at other places. 

m*=(J$C-,‘($)~~,=---&. (4.16) 

The effective mass m* increases with the lattice relaxation 
energy S as es for large enough S value, since 7 = 77, z e - ‘. 
For such a LPD state, we have a very large effective mass for 
the phonon-dressed exciton, resulting in a very small elec- 
tron mobility. 

Assuming that for a given k value, all cqk are identical 
(‘,k = C, ) , then the energy expression (4.3) reduces to 

- Bcos(2rk/N) exp( -SC2k)]. (4.17) 
Equation (4.17) is identical with the expectation value of the 
energy found by Toyozawa, who postulated a trial state in 
the localized basis, I9 

e”~k”‘Nln)D,(CkR)I{O}). (4.18) 

In Eq. (4.18) D, (a) is the displacement operator for the 
localized phonon mode at site n, 

D,(a)- exp(abT -a*b,), (4.19) 

whichisanalogoustoD,(a) [seeEq. (3.12)].Also){O))i.s 
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the phonon vacuum state in the localized basis, 6, 1 {O}) = 0 
for all n. 

Solving Eqs. (3.2) we can express a phonon operator 6, 
in the delocalized basis as a linear combination of all phonon 
operators b,‘s in the localized basis, 

6, = & ng, e - ‘2rrqn’Nbn, q=o,1,2 ,..., N- 1. 

(4.20) 

DCPA; recently, Abe33 has extended the DCPA to two-par- 
ticle Green’s function by applying Velicky’s44 formula for 
the two-particle Green’s function in the static CPA. The 
Green’s function technique allows us to calculate directly 
the experimental observables such as optical lineshapes 
without calculating the eigenvalues and eigenstates of the 
system. We review the DCPA in this section. 

At zero temperature ( T = 0), the absorption spectrum 
of the molecular aggregates can be expressed in terms of the 
Green’s function for the one-exciton Hamiltonian H, [cf. 
Eq. (8.111, 

s  
co 

I,,,(w) = 2NRe & eiCa + m,,N/Z)r 

0 

Thus we have 6, I{O>) = 0 for any q. This implies that the 
localized phonon vacuum state is also the delocalized 
phonon vacuum state, I{O}) = IO). It follows from Eqs. 
(4.19), (3.2), (3.4b),and (3.12) that 

N-l 

D,(C,J) = n D4(Ck;lNf?-““q’N). 
q=o 

(4.21) 

Substituting Eq. (4.2 1) into Eq. (4.18)) it is easy to see that 
the state I Y ‘,“‘) postulated by Toyozawa is a special case of 
the state prescribed in Eqs. (2. IO) and (4.2) with cqk = C, 
for q = 0,1,2 ,..., N - 1. 

The optimal choice for the relative displacement C, is 
found by setting t3E Ak’/dCk = 0. This yields the self-consis- 
tent equation of Toyozawa, 

1 - = I + Bcos(2?rk/N) exp( -SC: > . 
ck 

(4.22) 

Similar to determining 7 in Eq. (4.13), we find that the 
range of Co is 

1 1 
l+B 

<co< 
1 +BeeS ’ 

Comparing Eq. (4.22) with Eqs. (4.5)) we find that one can 
obtain Eq. (4.22) alternatively by letting cqk = C, in Eqs. 
(4.5 ) and summing over q on both sides of Eqs. (4.5 ) . This 
shows that the self-consistent equation (4.22) is a special 
case of Eqs. (4.5). The energy of the lowest one-exciton state 

(‘) is given by E o . Two conclusions can now be drawn. First, it 
is clear that the displacement Co determined by Eq. (4.22) is 
independent of the size Nof the aggregate. Thus Toyozawa’s 
method does not predict any size dependence for the lowest 
one-exciton state of molecular aggregates. Second, minimiz- 
ing the energy E Ak) in Eq. (4.3) does not lead to equal values 
of Cqk f as illustrated in Figs. 2 and 3. Consequently, the ener- 
gy of the lowest one-exciton state given by Toyozawa, deter- 
mined by Eqs. (4.17) and (4.22), is higher than that given 
by Eqs. (4.10) and (4.11) . Our numerical calculations for 
EAoP’ have confirmed this conclusion. Recall that we have 
c+ =: 1 for all q in the case of a LPD state. Thus the trial state 
proposed by Toyozawa is adequate for the LPD states, but 
not for the SPD states. 

V. THE DYNAMICAL COHERENT POTENTIAL 
APPROXIMATION 

The optical spectra of molecular aggregates can be cal- 
culated by using the DCPA, which is an extension of the 
static coherent potential approximation (static CPA) for 
disordered electronic systems. Sumi’7*32 extended the static 
CPA to calculate the one-particle Green’s function43 in the 

where 

)((k= O;Ole’-iHCn-r’tlk = f&O) 

= - 2NIm(k = O;OjG,(z)lk = O;O), (5.1) 

G,(z) E 
1 

z - [HJfi - (1/2)Nw,] 
(5.2) 

is the Green’s function for the Hamiltonian 
H, - ;Nti,, z = w + ir, and y is the relaxation rate of the 
one-exciton states. At any finite temperature ( T #O), the 
absorption spectrum cannot be expressed in terms of a single 
Green’s function for the one-exciton Hamiltonian; rather it 
can only be expressed as an infinite summation of Green’s 
functions involving H,. 

The DCPA of Sumi replaces the phonon-state averaged 
Green’s function (01 G, (z) IO) by an effective Green’s func- 
tion G,, (z) which neglects correlated scatterings among dif- 
ferent sites (molecules), 

(We(z) IO> zz 1 
z - [H,,/fi - (1/2)Nw,] 

N-l 

= kzo z - [E;;;;;; u(z) ] =Geff(z)* 

(5.3) 

Here 

N-l 
He,= c [E(k) +fi~lIk)(kI ++Wiao (5.4) 

k=O 

is the effective exciton Hamiltonian, and u(z) is the coherent 
potential which depends on the (complex) energy z but not 
on the exciton momentum k. The coherent potential u is 
chosen in such a way that the multiple scattering at each 
single molecule vanishes on the average. At zero tempera- 
ture T = 0, v(z) is calculated from the following self-consis- 
tent equation: 

u(z) = 
W&S 

F(z-~o)-’ - 
2&s 

3&&S 
F(z-22w,)-‘-- 

-. . 
(5.5) 
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Here Qj (Z,JF) = N(‘(z18) 
F(z) - ’ = G(z) - ’ + v(z), (5.6) 

whereas 

G(z) = blG,a (z)ln) 

T * =Nk=o z-E(k)/fi-v(z) 
(5.7) 

is a diagonal element of the effective Green’s function in the 
localized electronic basis and is independent of the chosen 
site n. One sees from Eq. (5.5) that in the DCPA the coher- 
ent potential v(z) should be determined self-consistently 
with the coherent potentials v(z -JIPW,) (p = 1,2,...) at low- 
er energiesz - pa,. In actual numerical calculations, we can 
first set v(z) =0 for w<[E~- (lOS+5)]w,, and then 
evaluate v(z) for w> [e,, - (lOS+ 5)]w,, (recall that 
z = w + jr). Substitution of Eq. (5.3) into Eq. (5.1) gives 
the absorption spectrum expressed in terms of the coherent 
potential, 

X [1 -R (Z,Jf)A(Z1,z:)] -‘)jfJ* (5*11) 
Here the ( j ,I) elements ( j ,I>O) of matrices x and A are 
defined as Xj,(z,,z:) = Aj-l(z, - l~,,z,* - I@,) and 
Rj,(z,,zf) = S,,R (z, - iw,,,.$’ - la-,). Aj (z,,zF) is the 
averaged product of the two t-matrix operators on the same 
site, and is given by 

tj (z,;o)fj (z:;o), j >O 
j ~0. 

(5.12) 

Thus the matrix x is a lower triangular matrix, and so is 
1 - Rx. In Eq. (5.12) the t matrices are given by 

q)(z;O) = 0, 

tj (z;O) = 
Dj (z$) 

G(z-jw,)G(z) ' 
j = 1,2,..., (5.13b) 

with 

I,,(w) = -2N Im (k=OIG,,(z)Ik=O) 
D,,(z;O) = G(z) 

4W-N = [ 1 - D,(z;O)F (z) - ‘I/$? 
-2N Im 

1 = 
z - E(O)/fi - v(z) - 

(5.8) 

The energy of the lowest one-exciton state can also be deter- 
mined by using the DCPA; it is the energy of the absorption 
peak with the lowest energy. 

At zero temperature ( T = 0), the steady-state fluores- 
cence spectrum may be expressed in terms of a two-particle 
Green’s function for the exciton-phonon system,45*46 

I,, (w) = (k = O;OlG, (zr) 

ylk = O)(k = 01 
‘f + (wi - [If,,,, - (1/2)Nw,] -w}’ 

XG,(zi)lk=O; O), (5.9a) 

where wi is the frequency of the exciting electromagnetic 
field, z, = w, + iy, and w is the emission frequency. The 
averaged two-particle Green’s function (i.e., the average of a 
product of two Green’s functions) can be calculated by using 
Velicky’s method,44 which is based on neglecting correla- 
tions between different sites. The result is 

L(@)=: 2 
YKj (Wi,Wi 1 

j=O y + (Oi -jwO -w)’ * 
(5.9b) 

In Eq. (5.9b) Kj is the two-particle Green’s function, 
< 

K, b,,d 

=g(zl)g(z:)sj,O + 
g(z, -j%) g(z? -j%) 

m m 

xQ, (z,,e) g(zl) g(z') 
TF' 

(5.10) 

where g(z) = (k = OIGer (z) Ik = 0) = [z - E(O)/ 
fi - v(z) ] -I, z, = w, + jr, z, = w2 + iy, the factors l/n 
originate from the overlap (k = Oln) between the Ik = 0) 
state and the state localized on a single site, and the vertex 
part Qj is given by the ( j ,0) element of a matrix product, 
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(5.13a) 

(5.14a) 

=- G(z)v(zV~, (5.14b) 

Dj (z;O) = - Dj-1 (z;O)F (z - jw, + w. ) - ’ 

m 

J j-l - - Dj --z (z;O), 
i 

j = 2,3 ,... . 

(5.14c) 

The quantity R (z,,zT) is a restricted propagator, 

R (zG:) = G(z,) - G (z;) 
v(z,) -z1- [u(e) ---if?] 
- G(z,)G (z:). (5.15) 

The coherent potential has the property v(z* ) = v*(z), 
which leads to a similar property for several other quantities, 
G,,(Z), G(Z), g(z), F(Z), Dj (z;(J) 0’ =O,*,W,...),and 
t j (z;O) (j = 0,1,2,...). These properties are helpful in calcu- 
lating the fluorescence spectrum. In the fluorescence calcu- 
lations presented below, we found it sufficient to take the size 
of the matrices x and R to be -3s. 

VI. THE FLUORESCENCE SPECTRUM 

The energy and wave function of the lowest one-exciton 
state, analyzed in Sec. IV, can be probed experimentally by 
the fluorescence spectrum from the one-exciton to the zero- 
exciton states. The fluorescence spectrum of a system driven 
by a weak, monochromatic electromagnetic field is given 
by4’ 

I,,(w) = 2 Re 
s 

m dteim’(a+(0)a(t)) 
0 

=2Re 
s 

- dt eimt 
0 

x Tr[p,,at(0)eiH8"~~(O)e-i(H~'-i~)t]. 

(6.1) 
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Here 

ff= ni, a, = makzo, (6.2) 

where use has been made of Eq. (2.2). Also in Eq. (6.1) ,peq 
is the steady-state density operator of the system driven by 
the electromagnetic field, and we have added an imaginary 
part - ifiy to the one-exciton Hamiltonian H, to represent 
the relaxation of the exciton from the one-exciton states to 
the zero-exciton states. Using Eqs. (3.5) and (3.8) we have 

e- =e ‘H,,’ /fi - iH’t/iie--iH”r/fi (6.3) 
At zero temperature ( T = 0), we have 

pq = 6 I%“‘> 10)0owY0(01 
+ (1 -!3l%;0>(0,,;01, (6.4) 

where I @A”) is the lowest eigenstate of Hamiltonian H 6 in 
the zero-momentum subspace [cf. Eq. (3.20)] and g< 1. 
Note that the fluorescence is determined solely by the popu- 
lation in the upper states of the fluorescence transitions. Us- 
ing the separation of the q = 0 phonon mode as illustrated by 
Eq. (6.3), the trace in Eq. (6.1) can be factorized into a 
product of two factors. The first involves the zeroth phonon 
mode only, 

(o+um(t>), = 2 m,, = o p,, (S, ) eicsN + m”)““f, (6.5) 

which shows a red shift ofS,w,. In the undisplaced phonon- 
number-state basis, we write the state ]@hop’) as 

I@;“)) = 2 A $)lij;m’), 
m’ = 0 

(6.6) 

where the prime ’ on a boldface letter indicates the exclusion 
oftheq=Ophononmode,i.e.,m’={m,,m, ,..., m,-,}and 

ImY = Im,,m, ,..., mN- , ). The second factor which repre- 
sents the contribution from the rest of the exciton-phonon 
system is given by 

(~+(Obw),, = jJ 
I=0 

exp(j[w,U- eo) - ~~“)/fi]r} 

X _,+,~~+mN-,=II(k=o;m’l~~o’)12 c 

= ,~oexp{i[oo(Z-~o) - 8A”)/fi]t3 

(6.7) 

Here ?!?A” is defined in Eq. (3.20) with g(O) = % ‘A”; i.e., the 
energy of the lowest one-exciton state is 

E”’ = 8(O) +ti 0 (E + ‘N-S 0 0 2 N ) (6.8) 
[cf. Ei. (3.21) 1. In addition, the prime ’ on the summation 
symbol indicates two restrictions in performing summation 
over m’, 

N-1 

c 
mq = I, 

q=l 
(6.9a) 

qm, = integer. (6.9b) 

Equation (6.9b) implies that the k = 0 selection rule for op- 
tical transitions selects only those components of the lowest 
one-exciton state ]@A’“‘) IO), which are accompanied by the 
I k = 0) one-exciton state. Using Eqs. (6.2), (6.5), and 
(6.7) in Eq. (6.1), we obtain the steady-state fluorescence 
spectrum 

c ‘JA,$?‘12 
-m,-I) -w12d=o 

(6.10a) 

=2e$‘N 2 Ywj 

j=O y+ [?ThO)/+i+ a0 (co -S, -j ) - ml2 ’ 
(6. lob) 

where the second equality is obtained by letting j = m, + I.’ 
The emission spectrum I,, (w ) consists of a progression of 
equally spaced lines with frequencies E h”/fi - (1N +j )a, 
= gh”)/fi + wo(eo -S, -j)(j= 0,1,2,...) and weights 

W, = i p,,,(S,) ‘2” ‘IA,$‘12. (6.11) 
m,, = 0 m’ = 0 

In Eqs. (6.10) w. (e. - S, ) + ZCA”/fi is the frequency dif- 
ference between the lowest one-exciton state I@h”) IO), and 
the ground state ]O,,;O) of the whole exciton-phonon sys- 
tem. Because of the selection rules (6.9), there is no contri- 
bution from I = 1 term in Eq. (6.10a). We see from Eq. 
(6.10a) that, for each I value, the peaks of the fluorescence 
spectrum constitute a Poisson distribution with a redshift 
(S, + I )wo and a weight 2,, IA ,$‘I’. The envelope of the 
total fluorescence spectrum is the sum of all individual Pois- 
son envelopes, thus the total (red) Stokes shift is larger than 

I 
S,w,. If only the sum for I = 0 gives a larger weight, which 
is indeed the case for the SPD (large polaron) states, then 
the fluorescence spectrum has a Poisson profile with a red 
shift S,w,. 

As discussed in Sec. IV, the variational method gives the 
probability amplitude 

N-l 
A (0’ - 

m’ - qJ [Pmq (‘$‘N) ] 1’2* (6.12) 

After substituting Eq. (6.12) into Eq. (6.11), we find an 
explicit expression for the weight of thejth emission compo- 
nent, 

Wj = ~” N~*Pm,(C~SN), 
Ill=0 q=o 

(6.13) 

In Eq. (6.13 ) the double prime ” implies two restrictions; 
Eq. (6.9b) and 
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N-l 

c mq= j. (6.14) 
and diagonalized a banded 1081 x 1081 matrix. For B = 5, 
S = 10 [Fig. 4(d) 1, we chose I = 30 and solved the eigenval- 
ue problem of a banded 496 X 496 matrix. 

Equation (6.14) is somewhat different from Eq. (6.9a). For 
each j value, there always exists one set of m  satisfying the 
constraints (6.9b) and (6.14), m,=j and 
m,=m,=+*+ =mN-, - - 0. For the first two emission 
components j = 0 andj = 1, they are the only set of m  satis- 
fying the conditions (6.9b) and (6.14)) and consequently 
the weights of the emission peaks are 

q=o 

w. =~,(s,)~A~?‘~~ = exp( -S, 18: CL), (6.15a) 

W , =pl(SN)IA;?‘12=SNW0. (6.15b) 

The intensity ratio W ,: W , of the first two emission compo- 
nents is simply S,. Forj = 2 there are additional [N /2 ] sets 
of m  satisfying Eqs. (6.9b) and (6.14), such as 
m/=%-I- - 1  and all other mq = 0 (I= 1,2,..., 
[(N - 1)/2]) as well as, if N is even, mN,2 = 2 and all the 
rest of m, = 0. For both even- and odd-N cases the weight 
W , can be put into a simple form 

w2=+ W J :, Nglc;. 
q=o 

(6.15~) 

The intensity ratios of the first three peaks, predicted by the 
variational method, are 

w,:w,:w,: = l:s,:+sf N$> 
q=o 

= 1 :s, :s, S(5B 373 + 9B 272 + 6B?7 + 2) 
* 4( 1 + ~Bv)“~ 

(6.16b) 

Equation (6.16b) is valid in the N- CO limit, since we have 
used Eq. (4.12). As the number N of the molecules in the 
aggregate increases to infinity, the intensity ratio W ,: W , ap- 
proaches a constant value [given by (6.16b) 1, whereas the 
ratio W ,,: W , increases linearly with N. 

We  display in Fig. 4  the f luorescence spectra of dimers 
(N = 2) and trimers (N = 3) using the variational method 
and the DCPA. The results are compared with an exact (ma- 
trix diagonalization) calculation. We  choose the same four 
sets of parameters B and S as in Fig. 3. For a dimer, the 
Hamiltonian HA appears in the form of a banded, symmetric 
matrix with only one codiagonal.“4 Thus the matrix diagona- 
lization for the dimer is very simple. We  took the size of the 
matrix to be 75 X 75 for the dimer. For a trimer, by arranging 
the basis set in order of increasing sum phonon number 
(m, + m2), the matrix expression of Hk is a banded, sym- 
metric matrix with I codiagonals if we choose all bases satis- 
fying m, + m,<l. The size of such a matrix is 
(I+ l)(l+2)/2x(f+ l)(Z+2)/2.Inordertoobtainthe 
correct j th emission component, one has to have I> j at 
least. To obtain an accurate f luorescence spectrum, one 
needs to take I > 2S. In the small-polaron region in which the 
Stokes shift is large, it is better to take a larger 1 value. For the 
calculations presented in this paper, we chose I = 25 for 
B=20, S<lO [Fig. 4(a)] and for B= 10, S= 10 [Fig. 
4(b) 1, and the size of the corresponding matrices was 
35lx35l.ForB=20,S=20[Fig.4(c)],wechosef=45 
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Figure 4(a) is for B = 20 and S = 10, for which the 
lowest one-exciton state I@;“) is a SPD (large-polaron) 
state for both dimer and trimer. The f luorescence spectrum 
predicted by the variational method is indistinguishable 
from that predicted by the exact method (the two differ by 
only - 1% at j = 5 and j = 4 for the dimer and at j = 3 for 
the trimer); each of them has the highest emission peaks at 
both j = 5 and j = 4 components for the dimer and at j = 3 
for the trimer. Thus the f luorescence spectra satisfy the Pois- 
son distribution pj (S, ), which peaks at j = SN and 
j=S,-lifS,isaninteger,oratj=[S,]ifS,isnotan 
integer. The f luorescence spectra given by the DCPA peak at 
j = 2 for the dimer and at j = 1 for the trimer, and thus have 
smaller Stokes redshifts compared with the exact; Also, the 
energies of the lowest one-exciton states given by the DCPA 
are obviously higher than the exact ones. Figures 4(b) and 
4(c) use two sets of equal Band S, for which the lowest one- 
exciton states are SPD states for both the dimer and the 
trimer. As in Fig. 4(a), the variational method gives better 
f luorescence spectra than the DCPA. Unlike Fig. 4(a), we 
notice a small difference between the spectra predicted by 
the variational method and theexact spectra; for example, in 
the case of dimer, while the variational method still predicts 
two equal highest peaks at j = S, and j = S, - 1, the exact 
spectrum has a single highest peak at j = S,, indicating a 
small deviation from the Poisson distribution p, (S, ) . Fig- 
ure 4(d) is for B = 5 and S = 10, for which the lowest one- 
exciton state for a given aggregate size N should be a LPD 
(small-polaron) state. However, in the case of dimer, the 
variational method incorrectly predicts that the lowest one- 
exciton state is a SPD state, whose fluorescence spectrum 
peaks at j = S, = 5 and j = S, - 1  = 4. This is quite differ- 
ent from the exact f luorescence spectrum, which peaks at 
j = 8. The SPD (large-polaron) state given by the variation- 
al method has a higher energy, but its f luorescence spectrum 
is closer to the exact one (peaked at j = 10) than the SPD 
state with a lower energy. In the case of trimer, the lowest 
one-exciton state is a LPD (small-polaron) state as expect- 
ed, and the f luorescence spectrum peaks at j = 10 and j = 9 
(the exact spectrum peaks at j = 8). The f luorescence spec- 
tra given by the DCPA exhibit the Stokes shift only if we 
drop the first two emission components at j = 0 and j = 1. 
Proceeding from Fig. 4(a) to Fig. 4(d), we note that the 
energies of the lowest one-exciton states and the f luorescence 
spectra given by the variational method become less accu- 
rate compared with those given by the exact method. This 
implies that the variational method works better in the large- 
polaron region. 

In Figs. 5-8 we display the variational and DCPA flu- 
orescence spectra for different aggregate sizes (up to 
N = 80). We  observe the following features for a given set of 
parameters B and S. ( 1) As the size N of the molecular ag- 
gregate increases, the energy of the lowest one-exciton state 
first increases and then reaches a constant value at N=:20; 
both the variational method and the DCPA predict this fea- 
ture. (2) In the large-polaron region (Figs. 5-7) the enve- 
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FIG. 5. Steady-state f luorescence spectrum of molecular aggregates of dif- 
ferent sizes with E = 20, and S = 10. (a) The variational method and (b) f. .-. 
the dynamlcal coherent potential approximation (DCPA). y  = 0.050,. FIG. 6. Same as in Fig. 5 but for B = 10 and S = 10. 
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FIG. 8. Same as in Fig. 7 but for B = 5 and S = 10 

lopes of the fluorescence spectra from both methods show a 
Stokes shift, which decreases as N increases; the magnitude 
of the Stokes shift is approximately S,,,w,, from the variation- 
al method. When N exceeds S (i.e., S, < 1 ), the relative in- 
tensity ratios of all inelastic emission components (i.e., 

j = 1,2,3,...) become constants, whereas the Rayleigh com- 
ponent (j = 0) becomes stronger compared with the remain- 
ing components. (3) In the small-polaron region (Fig. 8), 
the envelope of the spectrum also exhibits a redshift; but it is 
independent of the aggregate size N (for the DCPA, this can 
only be seen if we exclude the emission components with 
j=Oandj= 1). 

VII. THE COMPLETE ONE-EXCITON SPECTRUM 
FIG. 7. Same as in Fig. 6 but for B = 20 and S = 20. When the zeroth 
phonon emission component is too weak to be seen in the figures, we use an In Sec. IV we formulated a variational method for the 
arrow to indicate its position. lowest eigenstate IYA”‘) of the Hamiltonian Hk for each of 
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theNsubspaces (k = 0,1,2,...,N - 1). In thissection we cal- 
culate the complete eigenstates of the Hamiltonian Hk. 
These are necessary to calculate the absorption line shapes. 

Making use of the phonon displacements cqL obtained in 
Sec. IV using the variational method, we now introduce the 
canonical transformations 

B,, = D (cqd,v)bqD ( - cq,d,) = b, - ~~div, 

k,q = 0,1,2,...,N- 1, (7.1) 
similar to Eq. (3.11). The displaced phonon operators B,, 
are also Boson operators, since they satisfy the commutation 
relation 

[Bq&] = [b,,b;] = 1. (7.2) 
Note that the displaced phonon operator BqA for the qth 
phonon mode depends on the total momentum k, with the 
exception of the zeroth phonon mode. Since cgA = 1, BOA 
are simply B,, introduced in Sec. IV. For each momentum 
subspace (i.e., for each total momentum k), we denote the 
direct product of the number states of the displaced Boson 
operators BqA’s as ] j)‘“‘, Bi,Bqk 1 j)‘“’ =jq[ j)(‘), 
q = O,l,...,N- 1. Similar to the situation of the zeroth 
phonon mode as discussed in Sec. III [see Eq. (3.18) 1, the 
displaced vacuum state 10) (‘) ofthe operators B,,‘s is simply 
the coherent state ] {cqn 1) [ see Eq. (4.1) ] of the undisplaced 
operators by’s, IO) (‘) = ]{c,~}). Consequently, foreachofN 
momentum subspaces, the displaced vacuum state IO)““ 
corresponds to the lowest energy state IYA”‘) obtained varia- 
tionally in Sec. IV. 

Other energy states of the Hamiltonian H, (i.e., in the 
k th subspace) can be constructed based on the lowest energy 
state ]Yb”‘) of HA. We take the modified displaced phonon 
number states 

Ikj)= mz, ‘Igi G,,q(jq~cqdN)Ikd (7.3) 

as approximate eigenstates of the Hamiltonian HA, where 

G, ( ,H,e) = e - (>‘,‘,,33 “‘“g’“’ (--j! ‘: ;)‘;;+:;;’ . 
I=0 

‘( 7.4) 

The energy of such a state is found by taking the expectation 
value of the one-exciton Hamiltonian He, 

EiK’ = (I;; jlHclk; j) 

= (k; jlHkI&; j) 
N- 1 

=%” qzo jq +sN(c$ 
[ 

-k,,) ++ 1 +R,(j,j L 

(7.5) 

which is simply a diagonal matrix element of H, on the dis- 
placed basis set. The complete expression of H,: in the dis- 
placed basis set is presented in Appendix B. In Eq. (7.5) 

R,Cj,j 1 =fiw,q,--+%B 

q!I, z(e- 
““q’N, j,, c$SN ) + C-C. , 

I 
(7.6) 
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where 

Z(r,j,u)= 5 J”[Gj (m,-fi)12 
m=O 

eu(r- 1) j 
=jl [Z, ( - l)‘+“(j) 

* , 

x(i) mxT (f)(~)#““‘uj --. (7.7) 

Some of the properties of the Z function is given in Appendix 
B. When j = 0, we recover the wave function and energy of 
the lowest state of the Hamiltonian HL, 

p;o, = pp), (7.8) 
as can be seen by comparing Eqs. (7.3) and (A4a) with Eqs. 
(2.10) and (4.2); and 

Eli”’ = E’“’ 0 9 (7.9) 
as is evident by contrasting Eqs. (7.5), (7.6), and (B8a) 
with Eq. (4.3) [Rh(O,O) gives exactly the first and last 
terms ofEq. (4.3)]. 

When there is only one phonon in the displaced phonon 
modes so that mq = 1 and all other m, = 0 (denoted by 
cl,}), the energy of the state in the k = 0 subspace is ap- 
proximately 

E {:<;) = ti, 
( 

E() + 3 N + 1) + h,s, “2’ (c;, - 2c,, ) 
I=0 

N--l 

- 2S, C c:. sin’ $ 
I= I > 

+c& . 

(7.10) 

Using Eqs. (4.9), it is easy to see that E i::) = E rT,L J . 
When q#O or q# N/2 for even N, the degeneracy of such 
states is two, provided N>3. The functionf(x) = - cos x 
- u( 1 - 2 cos x + cos 2x) has its minimum value - 1 at 

x=Oifu<&oritsminimumvalue 1 -4uatx=nifu>$ 
Since the zeroth phonon mode does not enter into R, ( j , j ), 
we have c&S, < 4 for most SPD states. When N is large such 
that c:,S, < 4 and cos(2n/N) is close to 1, the second lowest 
states in the k = 0 subspace are those two states for which 
m,=lorm,-, = 1 but all other m, = 0. In general, we 
can show that the energy E \“’ for the zero-momentum sub- 
space is invariant under the interchange of all the pairs mq 
and mN _ q (q#O). Thus most of the energy levels in the 
zero-momentum subspace have twofold degeneracy when 
N>3. When we solve H, exactly by matrix diagonalization 
as we have done for a trimer (N = 3)) we find no degeneracy 
in the zero-momentum subspace. This indicates that the in- 
clusion of the off-diagonal matrix elements of H,: in the dis- 
placed phonon number basis will remove the degeneracy 
between energies, e.g., E @ and EiyL -qj. 

Equations (7.3) and (7.5) provide a complete basis and 
corresponding energies, which approximately diagonalize 
the one-exciton Hamiltonian H,. Using this basis set, we can 
calculate the optical spectra. The steady-state fluorescence 
spectrum has been studied in Sec. VI. In Sec. VIII we investi- 
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gate another optical spectrum, the absorption spectrum, 
which shows the properties of various one-exciton states. 

case for the SPD (large-polaron) states, then the absorption 
spectrum consists mainly of a single set of equally spaced 
peaks which form a blueshifted Poisson distribution. 

VIII. ABSORPTION LINE SHAPES 

The energies and oscillator strengths of one-exciton 
states, studied in Sec. VII, can be probed experimentally by 
the optical absorption from zero-exciton to one-exciton 
states. The absorption spectrum of a system under the exci- 
tation of a weak, cw electromagnetic field is given by4’ 

Recall that we have obtained in Eq. (7.3) the eigenfunc- 
tions of the one-exciton Hamiltonian H, by using the vari- 
ational method. By noting that Il;m) = Ik;m’)lm,,),, and 
(k = 0;O’l = (O;O’I, we obtain by using Eqs. (7.3) and 
(A4b) 

N-i 

Iab(u) = 2 Re 
s 

- dtP([a(t), a+(o)]) 
0 

(k=O;O’l+‘j9’) = J-J (- 1,‘q[pi,(c&!3N)]“2. (8.6) 
q= I 

= 2 Re 
s 

cc 
dt e”” Tr [ pes ei’fX”fia( 0) 

0 

The absorption spectrum predicted by the variational meth- 
od is obtained after substituting Eq. (8.6) into Eq. (8.5), 

Xe ( - if’,/* - y”a+(o) 1, (8.1) 

where the second equality follows from the assumption that 
the equilibrium density operator pcq does not contain any 
population of one-exciton states. This is certainly true at 
zero temperature T = 0, at which the equilibrium density 
operator is simply 

peq = IO,, $9 a, $1. (8.2) 
Similar to the case of fluorescence spectrum discussed in 

Sec. VI, the trace in Eq. (8.1) can be factorized into a pro- 
duce of two factors. The first is related to the zeroth phonon 
mode, 

I..,(w) = 2N 2 Ywj 

j =o?+ [E\“/fi- (1/2)N~o -01” 
(8.7) 

where 
N-l 

wj = n PJ~<~c$~N) 
q=o 

(a(t)a = z j,, -,p,,, (SN)eicsN- i”)‘4i’, 
- (8.3) 

which now gives a blue shift of S,w,. The second results 
from the rest of the exciton-phonon system, 

is the oscillator strength and Ej”’ is the energy given in Eq. 
(7.5). Note that the summation in Eq. (8.8) is an N-fold 
summation, since j = { j [I, j ,,..., j N _ , }. The oscillator 
strength W,, of the lowest one-exciton state lul~op’), which is 
in the phonon vacuum state of the displaced phonon modes, 
is equal to W,, in Eq. (6.15a), W,, = W,,. The oscillator 
strength of a one-phonon state which has the energy E [$ 
[see Eq. (7.10) ] is c$SN w,. For a two-phonon state (in the 
displaced phonon modes), the oscillator strength is 
c$c$~S~, W,, when one phonon is in the qth mode and the 
other in the q’th mode, and is &,S k W,, when both phonons 
are in the same (qth) phonon mode. 

(a(tWuv),, = WI enp[io,t~~~ (b:bq +i)] 

X(k=Ole- ‘“h”*lk = 0) lo’) 

= j’jo I(k = 0; O’IQ:?‘)l’ 

X exp[ - i(w,q, + $r’/fi)t 1. (8.4) 
Here the last equality is obtained by inserting the closure 
relation for the Hamiltonian H;, and l@,‘js)) is an eigenstate 
of H ; with the eigenvalue g \?’ + ti, [ 4, + 4 (N - 1) ] [cf. 
Eq. (3.20) 1. We see that the k = 0 selection rule selects only 
the eigenstates of the zero-momentum subspace for the ab- 
sorption spectrum at zero temperature. Substituting Eqs. 
(8.3) and (8.4) into Eq. (8.1), we arrive at the explicit 
expression for the absorption spectrum 

Ia,, =2N 2 l(k=O;O’I@;‘?)l’ 
j '=O 

ypj,, ( ‘N ) 

In Fig. 9 we display the absorption spectra of dimer 
(N = 2) and trimer (N = 3) using the variational method 
and the DCPA. We compare these results with the results of 
the exact matrix diagonalization. The actual matrix diagon- 
alization for calculating the absorption spectrum is the same 
as that for calculating the fluorescence spectrum: i.e., we 
choose the same basis set as for the fluorescence spectrum. 
We use the same four sets of parameters B and S as in Fig. 4 
for the fluorescence spectrum. Absorption spectrum also 
gives the information about the energy of the lowest one- 
exciton state, which we have described in Sec. VI. Figure 
9(a) is plotted for B = 20 and S = 10, for which the lowest 
one-exciton state lulh’:‘) is a SPD (large-polaron) state for 
both dimer and trimer. The absorption spectrum predicted 
by the variational method is very close to the exact; each of 
them has the highest emission peaks at both j,, = 5 and 

j o = 4 in the case of dimer and at j o = 3 in the case of trimer 
[see Eq. (8.5) 1. Consequently, the absorption spectra also 
obey the Poisson distribution p,,, (S,), which peaks at 
j o = S,v andj o = S, - 1 ifs, is an integer, or atj o = [S, ] 
ifs, is not an integer. However, the absorption spectra given 
by the DCPA are quite different from the exact. Figures 
9(b) and 9(c) are for B = S = 10 and B = S = 20, respec- 
tively, for each of which the lowest one-exciton states are 
SPD states for both the dimer and trimer. As in Fig. 9(a), 
the variational method gives better absorption spectra than 
the DCPA, as can be seen by comparing with the exact ab- 

+ [ $t?f:‘/fi + @o (4) - sN +iO) - w 1” 

(8.5) 
For a given set of j ‘, the contribution from the zeroth 
phonon mode gives a Poisson distribution with a blueshift 
S,o,,. If only one state has a large overlap with the undis- 
placed phonon vacuum state Ik = QO’), which is indeed the 

.  I  
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FIG. 9. The absorption spectra of dimers (N = 2) and trimers (N = 3) for four sets of parameters: (a) B = 20, S = 10; (b) B = 10, S = 10; (c) B = 20, 
S = 20; and (d) B = 5, S = 10. y = 0.050,. When the absorption peak for the lowest one-exciton state is too weak to be seen, we use an arrow to indicate its 

sorption spectra. Figure 9 (d) is for B = 5 and S = 10. In the 
case of dimer, it seems that both the energy and the absorp- 
tion spectrum suggest that it is in a SPD state. In the case of 
trimer, the lowest one-exciton state is an LPD (small-po- 
laron) state as expected, but it leads to a less satisfactory 
absorption spectrum than a SPD state with a higher energy. 
This means that the variational method is not very accurate 
for the absorption spectrum in the small-polaron region. 
Comparing Figs. 9 with Figs. 4, we see that the variational 
method is more adequate for the fluorescence spectrum than 
for the absorption spectrum. 

In Figs. 10-13 we display the variational and DCPA 
absorption spectra for different aggregate sizes (up to 
N = 80). We observe the following features for a fixed set of 
parameters B and S. ( 1) In the large-polaron region (Figs. 
10-12) the envelopes of the absorption spectrum from both 
methods show a blueshift, which decreases as N increases; 
The amount of the blueshift is approximately S,o, from the 
variational method. (2) The oscillator strength of the one- 
exciton states shifts towards the lowest one-exciton state 
(zero-displaced-phonon state) as the size Nincreases. Those 
states with one or two displaced phonons carry the rest of the 
oscillator strength of the system. 

IX. CONCLUSIONS 

In this paper we have studied the exciton-phonon inter- 
action in one-dimensional, cyclic molecular aggregates and 

its manifestation in optical spectra. We found that the Hil- 
bert space of the one-exciton states of an N-molecule aggre- 
gate can be decomposed into Nsubspaces. The eigenstates of 
the one-exciton Hamiltonian H, are always delocalized with 
respect to the electronic excitation. This is different from the 
lowest one-exciton state obtained by Holstein. In the case of 
the nearest-neighboring exciton coupling and the Einstein 
phonons, the zero-momentum phonon mode is decoupled 
from the rest of phonon modes and exciton states. This gives 
rise to a Stokes shift o,J/N, where w,J is the lattice relaxa- 
tion energy. Assuming that each phonon mode is in a coher- 
ent state, we find the lowest state in each of N momentum 
subspaces variationally and construct a set of orthonormal 
basis which approximately diagonalizes the Hamiltonian H, 
for the one-exciton case. We find that the energy of the low- 
est one-exciton state increases with the size Nof the molecu- 
lar aggregates. The coherent-state assumption for the 
phonon modes works very well for the SPD (large-polaron) 
states but less so for the LPD (small-polaron) states. The 
lowest one-exciton state postulated by Toyozawa is a special 
case of our trial state, and has a higher energy than our trial 
state. We calculated the absorption and emission spectra of 
molecular aggregates and find an S/N rule of the Stokes 
shifts for both absorption and emission spectra in the case of 
large polaron. For the dimer and the trimer, we also calculat- 
ed the emission and absorption spectra using exact matrix 
diagonalization. We find that the fluorescence and absorp- 
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FIG. 10. Absorption spectrum of molecular aggregates of different sizes 
with B = 20 and S = 10. (a) The variational method and (b) the DCPA. 
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FIG. 12. Same as in Fig. 11 but for parameters B = 20 and S = 20. When 
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we use an arrow to indicate its position. 

FIG. 11. Same as in Fig. 10 but for parameters B = 10 and S = 10. 
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FIG. 13. Similar to Fig. 12 but for parameters B = 5 and S = 10. 

tion spectra using exact matrix diagonalization. We find that 
the fluorescence and absorption spectra obtained variation- 
ally are in good agreement with those obtained exactly in the 
region of S<B (i.e., in the large-polaron region). We also 
calculated the fluorescence and absorption spectra of the ag- 
gregates by using the DCPA, and found that it reproduces 
the qualitative features of the spectrum but is less accurate 
than the variational method for large polarons. 
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APPENDIX A: THE DISPLACED PHONON NUMBER 
STATES 

The displaced phonon number state lj ). is related to 
the displaced vacuum state IO), by the relation 

Wo= h -(Bi)‘lO),. (Al) 
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Similar to Eq. (3.18 ), we can expand each displaced number 
state ( j )a of I& in terms of undisplaced number states ]m)e 
ofb, by substituting Eqs. (3.11) and (3.18) into Eq. (Al). 
After some straightforward algebra, we obtain 

lW&‘Ui, Av)Ido, 

where 

(A21 

G,(j,@ =e- 
min(j,m) ( _ 1)j-/em+ j -22[ 

eI’*m [go 
Z!(m - Z)!(j -I)! 

= Gj (m, - 6) 

= ( - l)“+‘G,(j, - 8). (A3) 
Some of special G,‘s are related to the Poisson distribution 
P t?Z, 

G,(W) = [P, W)] *‘2, (AW 
G,(j,8) = ( - l)‘[Pj (f?)]“? (A4b) 

On the other hand, we can also expand each undisplaced 
phonon number state Im)o in terms of the displaced phonon 
number states 1 j ),,, 

Im>,= J$ Gj (m,-A,)(j),. (A5) 
j =O 

Substituting Eq. (A2) into Eq. (A5) and using Eqs. (A3), 
we find that the G  functions have the orthonormal properties 

c G,(j,@G,(j,@ = 2 Gj (m,B)Gj (n,8) ==a,,. 
j =O j =O 

(‘46) 

APPENDIX B: THE EXPRESSION OF Hk IN THE 
DISPLACED BASIS 

The Hamiltonian Hk ofEq. (3.9) can be rewritten in the 
displaced basis set. Replacing b, by B,, [using Eq. (7.1) ] 
and expanding the undisplaced phonon number states ]m) in 
terms of the displaced phonon number states [ j) (k) [using 
Eq. (A5) 1, we obtain 

+ j z. Ii; j )Rk ( j ,U (k;ll, 
where 

Rk(j,l) =m$oEbe $:qmq) 

N-1 

(B1) 

X n G j,(m,, -cqkil~)G!,(mq,-CqkjlN), 
q=o 

(B2) 
and the G  function has been defined in Eq. (7.4). Note that 
Eqs. (B 1) and (B2) are exact, even if cqk are obtained ap- 
proximately. Because of the nearest-neighbor interaction, 
the matrix elements R, ( j ,l) are given by 

Rk ( j J) = fiwoE&j,,,,,Sj,/, ..*SjN ,I,~ , 
-+fw,B 

I 
N-l 

@77k/N l-I 
q=o 

-‘2TqmJNG,q(mq, - cqJN) 

xG,Jm,, - 

Using the relation 

2 PS *!(;L I)! 
m=0 

= Zd” (&p), 
u’ du” 

(B3) 

m! 
u”( m - n)! 

bn, (B4) 

we can perform the sum over m, analytically and obtain the 
diagonal matrix elements of R, , 

R,( jj) =~W,,E,--~W,B 

N-l 

q!l, z(e- 
‘zrq’N,jq,c$&) + C.C. , 

I 
(B5) 

Z(r,j $4) = e F,io ( - *)l+(;) * , 
X(i,) ml$: i!(~.)(I>r’+n-iuj-i. (B6) 

Equations (B5) and (B6) are Eqs. (7.6) and (7.7), respec- 
tively. 

The function 2 has the properties 

Z( r,j ,O) = rJ, 

Z(l,j,u) = f [Gj(m,-fi)]‘= 1, 
m=O 

Wa) 

(Bm) 

Z*(r,j,u) = Z(r*,j,u), for real u. (B7c) 
Equation (B7b) is a special case of relation (A6) and has 
been used in obtaining Eq. (B5) from Eq. (B3). Written out 
explicitly, the first three Z( r,j ,u)‘s are 

Z(r,O,u) = eucr- ‘I, (BW 
Z(r,l,u) = euCr- ‘) [u+r(m+ 1) -2m1, (B8b) 

Z(r,2,u) = e”(‘- ‘) 
[ 

+u2+2ru(ru+ 1) 

+3(@542+2wl) 

-2ru2+4u2-2?u(ru+2) , I (B8c) 

which indeed satisfy Eqs. (B7). 
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