
PHYSICSREPORTS(Review Sectionof PhysicsLetters)205, No. 1(1991) 1-58. North-Holland

TRANSIENT GRATINGS, FOUR-WAVE MIXING AND POLARITON EFFECTS
IN NONLINEAR OPTICS

JasperKNOESTER
Universityof Groningen, Departmentof Chemistry.Nijenborgh 16, 9747AG Groningen.The Netherlands

and

Shaul MUKAMEL
University of Rochester,Departmentof Chemistry,River Campus, Rochester,New York 14627. USA

Editor: DL. Mills ReceivedDecember1990

Contents

1. Introduction 3 4.1. Canonicaltransformationand operatorequations 31
2. Model, Hamiltonian, and equationsof motion 6 4.2. The polaritonhierarchyin thetwo-particledescription 36
3. Nonlinearoptical responseof excitons 10 4.3. Polariton dynamicsprobedby transientgrating spec-

3.1. Operatorequationsand linear optics 10 troscopy 37
3.2. The single-particle description: frequency-domain 4.4. Polariton effects in frequency-domain four-wave

four-wavemixing 13 mixing 42
3.3. The two-particle description: degeneratefour-wave 5. Concluding remarks 44

mixing 16 Appendix A. Elimination of phonon degreesof freedom 47
3.4. Time-domainfour-wavemixing: transientgrating and AppendixB. The two-particle Greenfunction 51

exciton dynamics 22 Appendix C. The diffusive limit of the D4WM intensity 52
3.5. The Boltzmann and the diffusion equationsfor cx- Appendix D. Effective polariton group velocity in the re-

citon transport 28 stricted 1-laken—Stroblmodel 53
4. Nonlinearoptical responseof polaritons 31 References 55

Abstract:
Nonlinearoptical susceptibilitiesprovide a convenientmeans of relating macroscopicoptical measurementsto microscopic models. The

susceptibilitiesaremostuseful whentheradiationfield and thematerialdegreesof freedomareweaklycoupled. In theoppositecase,thedynamics
is interpreted in terms of combinedradiation—mattermodes(polaritons)and susceptibilitiesareusually not used.In this review we analyzeboth
situationsfrom a unified dynamical frameworkbasedon equationsof motion.The presentformalismis alsoparticularlysuitablefor thecalculation
of optical nonlinearities in nanostructureswith restricted geometries.The transient grating and its frequency-domainanalogue(degenerate
four-wave mixing) are usedto illustrate theformalism in both thestrong and theweak radiation—mattercoupling limit.

0 370-l573/91/$20.30© 1991 — Elsevier SciencePublishers B.V. (North-Holland)



TRANSIENT GRATINGS, FOUR-WAVE
MIXING AND POLARITON EFFECTS

IN NONLINEAR OPTICS

Jasper KNOESTER

Universityof Groningen,Departmentof Chemistry,Nijenborgh 16, 9747AG Groningen,
The Netherlands

and

Shaul MUKAMEL

University of Rochester,Departmentof Chemistry,River Campus,Rochester,
New York 14627, USA

NORTH-HOLLAND



J. Knoesterand S. Mukamel,Transientgratings,four-wavemixingand polariton effectsin nonlinear optics 3

1. Introduction

The transientgrating (TG) techniqueis one of the most powerful meansfor the direct probe of
dynamicalprocessesin condensedphases[1—181.It has been used to probe relaxation rates and
transportphenomenain molecularcrystals[2], ionic crystals [3—6],solutionsof dye molecules[7, 8],
conjugatedpolymers[91,semiconductors[10—14],surfaces[15] and proteins[16]. Laser gratingsare
importantfor holographyandthe eliminationof beamdistortionsin randommedia(phaseconjugation)
[17, 18]. A simplephenomenologicaldescriptionof the TG can be obtainedas follows: When two laser
fields with wave vectorsk1 and k2 simultaneouslyinteract with the material system,they form an
interferencepattern with wave vector k1 — k2. Consequentlysomematerial property (e.g. excitons,
electron—holepairs, spacecharge, temperature,density, etc.) is createdand modulatedby the same
wavevector. If the optical dielectric function dependson this property, it will be spatiallymodulated:

= A cos[(k1 — k2) r~.When a thirdbeamwith wave vectork3 is now scatteredby the sample,it
will undergo diffraction resulting in a signal at wave vectork5 = k3 ± (k1 — k2). By varying the delay
between the initial and the probe beamswe can follow the decay of the grating amplitude and,
consequently,the underlying motions of the elementaryexcitations, on a controlled lengthscale
determinedby the gratingwavevectorkg k1 — k2 (fig. 1). For off-resonanceconditions~r is purely
real (phasegrating) whereasfor resonantexcitation it has an imaginary part (populationgrating).
Phenomenologicaltreatmentsof grating experimentshavebeendevelopedand widely usedfor the
interpretation of numerousexperiments.These consist of identifying the nature of the relevant
dynamicalvariablesproducedby thelasergrating (excitationdensity,free chargecarriers,temperature,
massdensity, etc.) and using macroscopictransport equationsto describetheir time evolution. An
excellentreview of this level of descriptionis found in Eichler ct al. [11.

signal

k5= k1- k2+ k3

sample F 11111 I— -f — — grating

k/\k2
excitation excitation

t=O probe t=O
t=t

Fig. 1. Typical transientgratingsetup.Two excitation beamscrossedunderangle�1createa gratingin thesamplewith wavevectork~— k,. Aftera
variable delay r, thegratingis probedby a third pulse k1, resulting in a nonlinear (“diffracted”) signal at k, = k — k,+ k~.
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Alternatively, TG spectroscopycan be viewed as a particular techniqueof nonlinearoptics which
belongsto a broaderfamily of processesknownasfour-wavemixing [1, 19—231. Four-wavemixing is a
techniquein which threeincomingbeamswith wave vectorsk~,k2, k3 interactwith a nonlinearmedium
and generatea coherentsignal at a wave vector which is any combination of the wave vectors
±k1,±k2,±k3.The four-wave mixing signal is usually calculated using the standardand well
establishedsystematicmachineryof nonlinearoptics. In this picturewe expandthe opticalpolarization
in powersof the averageelectric field (the Maxwell field)

P=XWE+~
12~EE+~13~EEE~

Four-wavemixing is relatedto the nonlinearsusceptibility~~31• The four-wave mixing point of view
allows us to put the TG techniquein a broadercontext, and to explore its relationship to other
spectroscopies(photon echo,pump-probe,CARS, etc.) [19—271.For example,it hasbeenshown that
the informationobtainedfrom the TG experimentcan in principle also be obtainedusinga frequency-
domain technique,degeneratefour-wave mixing (D4WM) [28—35].In this variant, threestationary
incident waves with wave vectors k

1, k5 and k3 interact in the systemand the scatteredwave at
= k3 ±(k1 — k2) is detected.It hasbeenshownthat resonancesin the signal as a function of w~—

are, under somevery generalconditions,equalto the Fourier transformof the TG signal [361.The
possibilityof exciton localization [37—39],which is the analogueof the Andersonelectronlocalization,
could also be probed ideally by the grating technique[401.

In this review we developa fully microscopicframework for the calculation of four-wave mixing
processesin condensedphases,anduse it to analyzeTG spectroscopyin molecularcrystals.Molecular
crystalsat low temperaturesseemideal systemsfor the applicationof the grating techniques.In these
systems,optical excitationcreateselementaryexcitations,Frenkelexcitons[41—491or chargetransfer
excitons [50J,which are well understood.Such systemsseem sufficiently simple to allow a rigorous
microscopictreatment[50—561.It was anticipatedthat the grating techniquewould directly probethe
excitonmotion.That motion is expectedto be incoherentat hightemperaturesandto graduallybecome
coherentas the temperatureis lowered. Experimentsperformedon anthracenecrystals[2b,cJshowed
howeverno evidenceof coherent(nondiffusive)excitonmotion.Insteadtheyshowedincoherentmotion
with a very largediffusion coefficient. Theseobservationswere interpretedby Agranovichet al. [51,52]
in terms of diffusion of polaritons [57—621,which are quasiparticlesrepresentingthe correlated
polarizationand radiation field degreesof freedom. Other evidencerelated to polariton dynamics in
organiccrystalswas obtainedby Small and coworkers[60]who measuredsecondharmonicgeneration
and two-photonfluorescencein naphthalene.Their measurementsstrongly suggestthe importanceof
polariton (ratherthan exciton) scattering,and cannot be accountedfor using standard(nonretarded)
expressionsfor the nonlinearsusceptibilities.Polariton effectshavealsobeenmeasuredby a variety of
othernonlinearoptical techniques[63—651.

The incorporationof polaritoneffects in the theory of nonlinearsusceptibilitiesis not straightforward
[51, 52, 66—691. Traditionally the optical susceptibilitiesare viewed as purely material quantities,and
calculatedusingsummationsovereigenstatesof the molecular(unretarded)Hamiltonian.Consequently
x~dependson exciton resonancesand dipole matrix elementsand does not dependon retarded
interactions[211.The calculationof anynonlinearopticalsignal is thenconvenientlydivided into two
steps: we first calculate susceptibilitiesin the absenceof the radiation field and next, we use the
susceptibilitiesin the Maxwell equations,therebyintroducing the retardedinteractionson a macro-
scopic level. This is the conventional formulation of nonlinear optics developedby Bloembergen
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[19—231,which holds as long as the radiationandmatterdegreesof freedomare weaklycoupled(e.g.,
for off-resonantprocessesor whenexciton dephasingis large). Undertheseconditionsthe elementary
excitationsare excitonsand photons,and it is possible to neglect correlationsbetweenthe radiation
field andthe materialpolarizationand to definesusceptibilities.When the radiationand mattermodes
are stronglycoupled,then retardedinteractionsneedto be incorporatedmoremicroscopicallyandthe
optical responsereflects the dynamicsof polaritons [57—60].It is then difficult to calculatesuscep-
tibilities. Instead,the signal is expandeddirectly in termsof the external field ratherthan the Maxwell
field E. It shouldbe stressedthat the linear susceptibility[68,801 ~ (and the dielectricfunctionr) can
alwaysbe unambiguouslydefined,whetheror not polariton effectsare important.Optical nonlinearities
require,however,a different approachin both situations.

One of the primary goals of the presentreview is to developa systematicformulation in which
polariton and exciton dynamicscan be accountedfor in a unified framework. In addition,we discuss
several approximateschemesfor the calculation of nonlinear optical response.The simplest is the
anharmonicoscillator model for the polarization,proposedby Bloembergen[191.Moreover, many-
body effects areoften handledusing a mean-fieldtheory (the local-field approximation)[70, 711. Our
generalformalism reducesto thesecommonprocedureswhen specific approximationsare madeand
thereforeprovidesuseful insight into their limitations.

The outline of this reviewis as follows. In section2 we introducethe generalmodelHamiltonian for
a molecularcrystal which includesexcitons,phonons,andphotonsandtheir coupling. The multipolar
(~D) form of the exciton—photoncoupling is adopted.The entire review is devotedto developing
approximateschemesfor calculatingthe dynamicsdescribedby this Hamiltonian and the Heisenberg
equations(eqs. 2.9) for various limiting cases.In section3 we focus on the material evolution alone
(excitonsandphonons)by factorizingout the electromagneticfield, treatingit effectively as aclassicalc
number.This is the usualframework in which linear andnonlinearoptical susceptibilitiesare defined
andcalculated.In section3.1we presentthe operatorequationsandtheir solutionto linearorder in the
electric field ~ The material equationsform a hierarchywherebysingle-particleoperators,such as
the polarization,arecoupledto operatorsinvolving successivelymore particles.To lowestorder in the
hierarchy we retain only single-particleoperatorsand describefour-wave mixing and the nonlinear
susceptibilityx (3) within the local-field approximation(section 3.2). The incorporationof transport
requiresthe next (two-particle)level of the hierarchy,which is addressedin section3.3. Thedegenerate
four-wave mixing signal, which is absentin the single-particlelevel, now shows up, anddephasing-
induced resonancesare obtained. In section 3.4 we discuss the transientgrating, which is the
time-domain analogueof degeneratefour-wave mixing. This is only done within the two-particle
description, as no transport exists on the single-particle level. In section 3.5 we show how the
two-particle equationsof the matter can be relatedto the Boltzmannandthe diffusion equations.We
further introducethe strong-collisionandthe Haken—Stroblmodelsfor exciton—phononscattering.This
concludesour discussionof exciton transportand dynamics.

In section 4 we turn to the more general and complexproblem when the photonvariablesare
strongly correlatedwith the material andcannotbe factorized. In this case,we formulate nonlinear
opticsvery differently, by usingpolaritonsandavoidingthe calculationof susceptibilities.In section4.1
we introduce the polariton transformationwhich exactly solvesthe linear optics. In section 4.2 we
developequationsof motion at the two-particlelevel (analogousto section3.3). In sections4.3 and4.4
we apply theseequationsto the transient grating and its frequency-domainanalogue(degenerate
four-wave mixing), respectively.A detaileddiscussionof various limiting casesis given. Finally, in
section5 we presentconcludingremarksandsummarizeour results.
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2. Model, Hamiltonian, and equations of motion

In this sectionwe presentour modelsystem,the Hamiltonian,andthe basicequationsof motion that
are used in sections3 and 4 to calculate optical signals. We are interestedin the nonlinear optical
responseof molecularcrystals and restrict the model to a lattice of polarizable(nonpolar) two-level
moleculeswith transitionfrequency12 (one moleculeper unit cell). The total numberof moleculesin
the crystal is denotedby N. Even though optical experimentsare usually carried out on thin crystal
slabs,wewill assumethat the sampleis still thick enoughto invoketranslationalinvariancein all lattice
directions. For example,we will assumethat the elementaryexcitationsof the crystal (excitons or
polaritons)arewell-approximatedby thosefor an infinite crystal. Refinementsrelatedto the treatment
of multilevel molecules, the occurrenceof more than one molecule per unit cell, or the explicit
treatmentof finite geometries,are possible,but not essentialfor the main objective of this paperand
would obscurethe physicsby addingnotational and algebraiccomplexity.

Any microscopictheory of (nonlinear)optical responseshouldstartwith the choiceof a Hamiltonian
coupling the material system to the radiation field. The two best-knownchoicesare the multipolar
~ . D) Hamiltonian and the minimal coupling (p• A) Hamiltonian,which are relatedby a canonical

transformation[72,73]. Here, we will not elaborateon the controversialissueof the exactequivalence
of both choices;an extensiveliteratureexistswhich dealswith this problem[74]. Suffice it to say that
discrepanciesbetweenthe resultsof both picturesare ultimately due to the fact that approximations
(which are unavoidablein a practical calculation) affect them in a different way. We will use the
multipolar Hamiltonian for the two following reasons: (i) This choice allows for a straightforward
connectionto the literatureof the Bloch equations,which areused to describenonlinearexcited-state
dynamicsof isolatedmolecules[22, 751. (ii) An easyconnectionto the popularlocal-field approachin
condensedsystemsis possiblewithin this Hamiltonian[76]. A drawbackof the multipolarHamiltonian
is that it doesnot explicitly containintermolecularinteractions;theseareinsteadcarriedby exchangeof
photonsbetweenthe molecules[77]. The interactionscan be recoveredby elimination of the radiation
field [781or by a procedurepresentedpreviously by us, that keepsthe radiation field as a degreeof
freedom[761.The latter procedurewill be used below.

In the dipole approximation,the explicit form of the multipolar Hamiltonian for our system reads

[731:

H= ~ + ~ad _f~(r).~~(r)dr+2~ f P~(r)~2dr+~ (2.1)
m m

[throughoutthis paper, operatorsare indicatedby a caret(O); the samesymbol without caretdenotes
the expectationvalue O(t)~(O(t))]. In eq. (2.1) 1-1~~is the Hamiltonianof the isolatedmoleculem
andHrad is the contributionfrom the free radiationfield. In secondquantization,both can be expressed
using creationand annihilationoperators,

Jim = hDQ&, (2.2)

J~I~J= II ~ kcâ~AâkA. (2.3)

Here, B~(Bm) denotesthe creation(annihilation) operatorfor an excitation on moleculem. These
operatorscommutefor different molecules,whereasfor any single molecule theyobey

[A , Em]~ E,
0 + EmQ = I , (2 .4a)
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[EL, Em] ELEm — AmEL —f + Wm. (2.4b)

The last equality definesthe molecularpopulationoperator,which, combiningeqs. (2.4a)and (2.4b),
can also be written as

= 2ELE~. (2.4c)

Evidently, this operatorhaseigenvaluezero in thegroundstateand2 in the excitedstate.For harmonic
oscillators (bosons),eq. (2.4a)does not hold and Wm as definedin eq. (2.4b) vanishesidentically.
Therefore,neglectingthis operatorfor two-level moleculesis referredto as the Bose approximation
[42,58, 61]. In eq. (2.3), the operatorsâ~5and~kA createand annihilatea photonwith wavevectork
and transversepolarizationA (A = 1, 2), respectively.They obey Bose commutationrelations,

[âkA, â~A] = ~kk’~AA’’ [âkA, ak,A.] = 0, (2.5)

and they commutewith all material operators.Furthermore,k k~and c is the velocity of light in
vacuum.

Thethird termin eq. (2.1) givesthe interactionbetweenthe radiationfield andthe molecules.P(r) is
the polarizationfield in the medium,which in the dipole approximationmaybe written as

i’(r) = ~ Iim6(r — Tm). (2.6a)

Here i’~mdenotesthe total dipole operatorof moleculem (position rm), which can be written as

I~m= i~m[Am+ EL), (2.6b)

with p~the transitiondipole matrix elementof moleculem. Ii~(r)denotesthe transversepart of the
electricdisplacementfield at position r and is relatedto the transversepart of the Maxwell electric-field
operatorE(r) by

b’(r) = E’(r) + 4ir~(r). (2.7)

We stressthat in the multipolarHamiltonian,the displacementfield bL(r) (and not the Maxwell field
E~)is the conjugatemomentumof the vector potentialA(r), so that in secondquantizationD’(r) is
totally expressedin termsof radiation creationandannihilationoperatorsonly. Explicitly, we have[731

A~(r)= ~ (2~c) [âkA exp(ik. r) + â~exp(—ik. r)]ekA, (2.8a)

1/2

= ~ (2~rhkc) [âkA exp(ik. r) — a~5exp(—ik. r)]ekA, (2.8b)

with V the quantizationvolume,takenequalto the crystal volume in all calculations,ande~5(A = 1, 2)
the transverseunit polarizationvectorsbelongingto the wave vectork. We work in the Coulombgauge,
so that the longitudinal part of the vectorpotential vanishes.Of course,the longitudinal part of the
displacementfield also vanishes,becausethere are no free chargesin our system. The transverse
electric field in secondquantizationis now definedby eq. (2.7), in combinationwith eqs. (2.6) and
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(2.8b). In general,the longitudinal part of the electricfield, E11, doesnot vanish,but is fully determined
by the polarizationfield through the relationEH

The fourth termin eq. (2.1) is aself-energy,in whichP~(r)is the transversepolarizationfield caused
by moleculem only. For two-level moleculesthis term is aninfinite constantwhich doesnot contribute
to the evolution, so that it is often omittedcompletelyfrom the Hamiltonian.Finally, the last term in
eq. (2.1), T, representsthe kinetic energyrelatedto the nuclearmotion (phonons).

To calculate optical response,coupled equationsof motion for the expectationvaluesof dynamical
variables(e.g., the polarizationfield) are ideal. Suchequationscan be obtainedfrom the expectation
values of Heisenbergequationsof motion, supplementedwith some factorization approximation to
truncatethe coupling to increasinglymorecomplicatedvariables(sections3 and 4). A greatadvantage
of an equation-of-motionapproachis that, unlike the density-matrix approachin the Schrödinger
picture [19—23],it does not involve the tedious calculation of the eigenstatesof the total system.
Instead,we focusdirectly on therelevantdynamicalvariableswhich carry the informationnecessaryfor
a given measurement.The completedynamicalinformation as given by the eigenstatesis usually too
complexand not requiredfor most applicationsinvolving complexsystemsin condensedphases.

We have shownearlier [76] that the Heisenbergequationsof motion for material operatorswithin
the multipolar Hamiltonian, can be written in a form which explicitly contains the instantaneous
Coulombinteractionsbetweenthe molecules,and the interactionsbetweenthe moleculardipolesand
the transverseMaxwell field E (insteadof Di). It is essentialthat in the derivationof theseequations,
we split the (transverse)displacementfield accordingto eq. (2.7), i.e., in termsof the transverseelectric
and polarizationfields. An alternativeapproachthat usesD’ = D = E + 4ir~, leadsto equationsof a
very different form, in which the instantaneousinteractionsare not readily recognized.It is straightfor-
wardto extendthe derivationof ref. [76]to the presentsituationwherealsonuclearmotion is possible.
For an arbitraryoperatorQ (material, radiation, or mixed), we find (all operatorstakenat time t)

(1/i) d~/dt= LQ , (2.9a)

hL~= [&at + &(l~ ~]- - ~ {[~m’ ~] E’(r~
7)+ E’(r,~).[am’ ~1~}

- ~ {~ [ii’(T~), ~] + [b’(r~~), ~] ~}. (2.9b)

Here, Hmai denotesa material Hamiltonian which consistsof threewell-known parts,

‘mai = + + k~. (2.10)

~~exis the usual Frenkelexciton Hamiltonian [42]

= h[2 ~ ELEm + ~ ~‘ J(T~~)(Q + E~)(E~ + En), (2.11)
m m.n

wherethe secondterm accountsfor the instantaneousdipole—dipoleinteractionsbetweenthemolecules
in their equilibrium positions and orientations(the prime excludes terms with m = n from the
summation).We havedefinedTm,, Tm — r,,, where,from now on, rm denotesthe equilibrium position
of moleculem. The explicit form of the interactionreads

3 5hJ(r)=p~.(1!r—3rr!r ~ (2.12)
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with .t the moleculartransitiondipole in the equilibrium configuration(equalfor all moleculeson the
lattice). Of course, short-rangeinteractions (e.g., exchange),which have been omitted from the
Hamiltonianfrom the very start (eq. 2.1), can be addedheuristically to J(r). The secondterm in eq.
(2.10) is the energyof the phonons,which are treatedwithin the harmonicapproximation[42, 79],

Hph = hE 12qsbqs17qs. (2.13)

Here, b~(eqs) is the creation(annihilation)operatorfor a phononwith wavevectorq in branchs and
1~12qsis its energy.~ and bq

5 obey Bose commutationrelations[cf. eq. (2.5)].
Finally, the last contribution to Hmai is the exciton—phononinteraction, which arises from the

dependenceof the intermolecularinteractionsand theVan der Waalsshiftson the displacementsof the
nuclearcoordinatesfrom their equilibrium values.To lowest (linear) order in thesedisplacements,we
can write [42, 60a]

Hep = ~ [F~(k,q) + x~(q)]E~+qEk(~qs+ ~qs)’ (2.14)
k,q.s

where Ek and E~ are the exciton annihilation and creationoperatorsin momentumrepresentation,
respectively,

Ek~~rrr~.Emexp(_ikTm), E~—J==~ELexp(ikTm). (2.15a,b)
vNm vN m

Of course,theseoperatorsareperiodic on the reciprocallattice and the inversetransformationsread

Em = ~ Ek exp(ik Tm), EL = ~ E~exp(—ik Tm), (2.15c,d)
1BZ IBZ

where the k summationsextendover the first Brillouin zone only. Fç(k, q) and x~(~)are complex
coupling constantsthat can be expressedin the first derivativesof the intermolecularinteractionsand
the Van der Waals shifts, respectively,with respectto the nucleardisplacements[42]. They obeythe
symmetry relationsF~(k,q) = F~(k + q, — q) and x~(q) = x~(— q) (the asteriskdenotesthe complex
conjugate),which guaranteesthat ‘~epis Hermitian.It is noteworthythat in the delocalizedrepresenta-
tion of eq. (2.14),F~(k,q) andx5(q) multiply the sameoperators,sothat their summaybe replacedby
a single total couplingconstant,which we will write i~,(k,q). In the standardreference[42]for Hep, this
is not the case,as a resultof improperuseof translationalsymmetry.This completesthe discussionof
Hmai in eq. (2.9b).

All other contributionsto this equationspeak for themselves.In the last two r.h.s. terms, the
equilibrium positionsand orientationsfor the moleculesare implied, in agreementwith the common
neglectof direct photon—phononinteractions[60, 80]. Clearly, for a purely material operatorQ, eq.
(2.9) reducesto eq. (12) of ref. [76], with additionalcontributionsdue to exciton—phononinteractions.
Equation(2.9) is the basis for all equationsof motion that areusedin this paper.In general,eq. (2.9)
will result in an infinite hierarchyof coupled dynamicalequationswherebysingle-bodyoperatorsare
successivelycoupledto more complexquantities.Fortunately,the optical responseto electromagnetic
fields that arenot too strong,requiresthe explicit introductionof only few-particlestates.Thisallows us
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to truncatethe hierarchyat a very early stage.We shall demonstratein the coming sectionshow a
truncationat the two-particleor eventhe single-particlelevel is adequatefor the calculationof a variety
of optical measurements.This situation is formally very similar to the zero-temperaturemany-body
theorywherea few quasiparticlesdominatethe dynamicalbehavior [44, 81].

We concludethis sectionby giving the definition for the spatial andtemporalFourier transformsof
an arbitrary function f(T, t).

f(k, w) = f dr f dt f(T, t) exp(—ik.T + iwt). (2.16a)

The inversetransform then reads

ffr, t) = ~ J dw f(k. w) exp(ik. r — iwt), (2.16b)

where the k summationextendsover all Brillouin zones.

3. Nonlinear optical responseof excitons

3.1. Operatorequationsand linear optics

In this section,we considerthe excitontheory of nonlinearoptical response.This is the conventional
approach,in which the electric field E’ is treatedas an externalc-number.Equivalently,in equations
of motion, the expectationvalue (QE’), with Q an arbitrarymaterialoperator,is alwaysfactored into

(Q)(E ). All materialvariablescan then be expandedin powersof (E’). For the polarizationfield,
the expansioncoefficientsdefinethe susceptibilitiesor responsefunctions[19—22].In combinationwith
the Maxwell equations,the susceptibilitiessuffice to calculatethe opticalsignal. In this approach,the
susceptibilities are completely determinedby the evolution of the isolated material system with
instantaneousintermolecular interactions, i.e., by the eigenstatesof Hmai, which are the Coulomb
excitons. This approachdoes not, therefore,account for the fact that in low-temperaturecrystals
strongly mixed coherentcombinationsof photonsand excitons (polaritons [57, 58]) occur as eigen-
modes;polariton effectswill be studiedin section 4.

The first stepin the excitontheoryconsistsof deriving equationsof motion for the excitonoperators
Bk and B~k(with k in the first Brillouin zone) from eq. (2.9). Throughoutthis paper, we neglect
Umklapp contributionsto E’, i.e., we neglect Fourier componentsE’(k, t) with k outsidethe first
Brillouin zone. This approximation is customary(see, e.g., ref. [57]) and has in the context of the
multipolar Hamiltonian been discussedin ref. [76]. Using the commutation relation (2.4b), the
following compactform for the equationsof motion can now be obtained(all operatorstakenat time t):

I d Ak — —12 — J(k) — .~(k) — J(k) ~ Ek
i dt ~ J(k) 12+J(k)+,~*(k)) E~

-k + 2Q~ [2Qph .E’(k)+~i1(k)](’) -k (3.1)
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Here, J(k) is the latticeFourier transformof the intermolecularinteraction

~ J(rm)exp(—ikTm). (3.2)
m+O

Becausethe lattice model describedin section2 is centrosymmetric,we haveJ(k) = J(—k). Further-
more, 1(k) [= 1(—k)] is the complex exciton self-energywhich accountsfor the effect of phonon
scatteringon the electronic evolution. In appendixA we discussa procedureto calculate.�~(k)and
obtain, to secondorder in the exciton—phononinteraction, the well-known expressions[42]

(3.3a)

~(k)-~P~F(k q)~2( (~qs)T - + ~ ), (3.3b)
h

2N ~ 12k+q— 12k — 12qs 12k+q — 11k +

F(k) = ~ E IF~(k,q)~2[(nq~~T8(Qk+q— Ilk — hlqs) + (nqs+ l~T8(Qk+q— Ilk — 12~qs)] (3.3c)

Here, 11k is the frequencyof the Coulombexciton with wave vector k (eq. 3.6), (nqs ) T denotesthe
thermal (Bose—Einstein)occupationnumberof phononswith wavevectorq in branchs, andP stands
for the principal part. 1(k) is the dampingrate of the exciton inducedby the phononbath;z~(k)is the
phonon induced frequencyshift, which will henceforthbe neglected.1(k) plays a crucial role in the
occurrenceof polarit’on effects (section4.1).

Returning to eq. (3.1), p N/V denotesthe averagemoleculardensity in the crystal and, finally,

tiE [J(k’)VN(Ek, + E11k,) — ph1,~E’(k’), I~i7(k— k’)]~. (3.4)

Here, the k’ summation(as from now on all wave vector sumsin this paper) extendsover the first
Brillouin zoneonly, and 1~u/(k— k’) is the latticeFourier transformof the populationoperator,

Vi7(k — k’) ~ i~i/,,,exp[—i(k— k’) Tm] = E E~+kAk+k~. (3.5)

Let us first considereq. (3.1) without the inhomogeneoussourcetermsmultiplying the vector(2k).
This defines an eigenvalueproblemwhose solutions are the annihilationoperatorfor the Coulomb
excitonat wave vectork andthe creationoperatorfor the Coulombexciton at —k, in termsof Bk and
B11k [42]. The Coulombexciton frequencyis determinedby the secularequationof the problemand
easilyfound to be Ilk — iF(k), with

ulk={Il[12+2J(k)]}”2. (3.6)

For J(k)~~ 11, which is almost by definition the case in molecularcrystals [42, 48], this yields
11 + J(k). This is knownas the Heitler—Londonapproximationandis obtaineddirectly if onedoes

not usesecondquantization.In this approximation,the Coulombexcitonsaresimply created(annihi-
lated) by B~(Bk) [42]. The excitonsrespondto the sourceterm in eq. (3.1),which containsa linear
(—E’) and a nonlinear(‘—.A~)contribution.The latter is the sourceof nonlinearoptical responseand
vanishesidentically for harmonicoscillators [W(k) 0]. We notethat in the presentpaper17(k) is the
only sourceof nonlinearities.In systemswith multilevel (andpolar two-level) molecules,othersources
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arisefrom intermolecularinteraction termsthat arecubicandquartic in the molecularexcitoncreation
andannihilationoperators[47,59]. Suchtermsevengive rise to nonlinearitiesif aBoseapproximation
is applied,which is usuallydonein the literatureconsideringthis kind of nonlinearities.In reality, both
types of nonlinearitieswill occur.

It provesuseful to rewrite eq. (3.1) by introducingthe variables

~(k) ~(Ek + Eik), ~(k) \/N(Ek- Atk). (3.7a,b)

P(k) equals,up to a factor ,.t, the material polarizationfield. Adding and subtractingthe temporal

Fourier transformsof the two equationscontainedin eq. (3.1) and eliminating V(k, w), we obtain
{—[w + iF(k)]2 + I2~}i~(k,w) =2Qph~~t.E(k, w) + .ifil(k, w), (3.8a)

iit(k, w) = ~ f dw’ E [J(k’)P(k’, w’) — ph~ E’(k’, w’), l~7(k— k’, w — w’)]~. (3.8b)

Alternatively, we can write

J/((k, w) (2Q~f dw’fdw”~ ~ [12—w”—iF(k”)][Il+ w — w’— w”+iF(k—k’ —
(2irN) k’ k’

x [J(k’)i~(k’, w’) — (p/t1)btt . E’(k’, w’), i~(k”,w”)i~(k— k’ — k”, w — w’ —

(3.8c)

where l~7(k,w) hasbeenreexpressedusing eq. (3.5) andthe exact relations

13k(w) = [12+ w + iF(k)]i~(k,w)/(21l\/7~,~), (3.9a)

Elk(w) = [12— w — iF(k)]i~(k,w)!(212\IN). (3.9b)

Here, Ek(w) denotes the temporal Fourier transform of E~(t),and not the Hermitian conjugate
[Bk(w)]1of Ek(w). Of course,we haveE~(w)= [Ek(—w)]~Relations(3.9) follow easilyfrom eqs. (3.1)
and(3.7).Transformingeq. (3.8a)backto the time domain,it becomesclear thatwe havereplacedtwo
first-order(in time) differentialequationsby a single second-orderequation.

To concludethis subsection,we discussthe simplecaseof linear optics, governedby the first-order
susceptibility. We first note that, in practice, susceptibilities are defined using discrete Fourier
decompositionsfor the expectationvaluesof the fields, insteadof the Fourier transformseq. (2.16) [19,
22, 68, 82]. The electric field is then written in the form

E~(r,t) = ~ [E
1~exp(ik1 T — iw1t) + c.c.] , (3.10)

wherej labels a few modeswhich are essentialin the experiment.w1 (>0) and Ic1 are relatedby the
dispersionrelationof the crystal. The Fourier transformeq. (2.16) for this field reads

E’(k, w) = 2i~V~ [Ef ökk

8(w — w
1) + Ei*

6kk6(W + w
1)]. (3.11)
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Similar decompositionsarepossiblefor, e.g., the polarizationfield P. The coefficientsappearingin
the expansionof the amplitudesP1 in terms of powersof the electric-field amplitudesE~,arenow the
susceptibilities[19, 22, 68, 82]. The first-ordersusceptibilityis easilyobtainedfrom eq. (3.8a).Namely,
the part of the polarizationthat is linear in the electric field is found by neglectingthe nonlinearity
~iU(k).After taking expectation valuesand substituting eq. (3.11) and its analogue for the polarization,
we obtain

= = ~ w1) E~, (3.12a)

with the linear susceptibilitytensor

— E(k, w) — 1 211ptF’~.qL

x (k, w) = 4~T = —[w + iF(k)]
2 + ~ (3.12b)

Here, and throughoutthe paper, superscriptsin parenthesesindicatethe order in the electric field
amplitudes.r(k, w) is the frequencyandwave-vectordependentdielectrictensor.Equation(3.12b) is a
standardresult (see, e.g., ref. [42]); for crystals containing molecules with more than two well-
separatedlevels, eq. (3.12) gives the contribution of each level to the linear susceptibility. In the
remainderof this section,we will addressthe nonlinearoptical responseof the crystalby includingthe
effect of .1i1(k) in various approximateways.

3.2. Thesingle-particledescription:frequency-domainfour-wavemixing

The first nonlinear optical techniquethat we discussis frequency-domainfour-wave mixing. We
considera situationwith threefundamentalfields [j = 1, 2, 3 in eq. (3.10)] and are interestedin the
signal at (ks, w

5) (k1 — k2 + k3, w1 — + w3). To lowest order in the field amplitudesE~,this is
determinedby the third-ordersusceptibility,which is definedthrough

= ~ ns~
3~(—k

5— ~ k1w1,—Ic2 — w2,k3w3)~E~E~*E~, (3.13)

wherep~
3)is the discreteFourier coefficient of the polarizationfield with wavevectork

5 andfrequency
w~to third orderin the electric field amplitudes.We notethat ~ is thelowestnonlinearity allowedby
the presentmodel, since ~ vanishesfor a centrosymmetricmedium [21].

To evaluate~ we takethe expectationvalue of eq. (3.8a)with (k, w) = (k5, ~~)• The nonlinear
sourceterm for the third-orderpolarizationis (J11(k5, ~ which involves the expectationvaluesof
productsof two andthree“single-particle”operators[(E’ ~(PP~ and (PPP) in eq. (3 .8c)]. For these
products,new equationsof motion must be derived,which will involve yet higher-orderproductsof
operators,etc. In order to truncate the thus generatedhierarchy of equationsof motion [61], a
factorization approximation must be invoked that breaks apart expectationvalues of products of
operatorsinto productsof expectationvalues.It is naturalto startwith the simplestpossibletruncation,
which consistsof factoring (.1U) completelyinto single-particleexpectationvalues.A typical contribu-
tion to .1tt

13~(k~,~ then reads

~ ~ ~ (J(k
1)P~— E~)P~P~.

The first-orderpolarizationsin thisexpressionareobtainedfrom the linear approximationto eq. (3.8a)
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and straightforwardalgebraleadsto

(3) ~L~4L~L [12+ ~2 — iF(k
2)][12 + + iT(k1)]

x (—k~—w~k1w1,—k2—w2,k3w3)=412p h
3 /i(kc,Ws)~(k

1,W1)1i(~k2,~W2)

/ 212.1(k3) \
- — 1) + permutationsof j = 1,2,3, (3.14a)

~fl.3, a)3)

~(k, w) —[a) + iF(k)]
2 + 12~. (3.14b)

The permutationsof (k
1, a)1), (— k2, — a)2), and (k3, w3) accountfor the different time orderingswith

which the electric fields can interactwith the sample [23]. Expression(3.14a)can be simplified if the
three following conditionshold: (i) J(k)~~zg12 for all k, which is generally the case;(ii) w1 — (2k~~

J(k1)~(off-resonancefundamentalwaves);(iii) w~— ~‘ 12, so that therotatingwaveapproximation

(RWA) [75] can be applied to the signal wave. We then obtain

X (~kç — ~ k1 w1, —k2 — a)2, k3w3)

= 2p( ~q.q.qz/h

3)[w~ — Ilk + i1(k~)] ‘ [w~— Ilk + iF(k
1)] ‘ [w~— 12k7 — uT(k2)]

+ permutationsof j = 1,2,3 . (3.15)

We notethat contributionswhich areanti-rotatingwith respectto the fundamentalfrequenciesarestill
containedin this expression.They are hiddenin the permutations;for example,interchanging(k1, w1)
and (—k,, —w2) results in two anti-rotatingdenominators.

It is instructiveat this point to makea connectionto the (damped)anharmonicoscillatorpicture,
which is a popularway to think aboutnonlinearresponse[19, 22]. If we takethe expectationvalue of
eq. (3.8) in the single-particlefactorizationandtransformbackto the timedomain,we find [neglecting
1(k)

2 with respectto 12~]

P(k, t) + 21(k)P(k,t) + 12~P(k,t) = 212ph1j.t . E’(k, t) + .1U(k, t), (3.16a)

~1l(k,t) = — —~ E E [ph’~.t . E’(k’, t) — J(k’)P(k’, t)]{[1l — iT(k”)]P(k”, t) — iP(k”, t)}

x {[12 + iF(k — k’ — k”)]P(k — k’ — k”, t) + iP(k — k’ — k”, t)} . (3.16b)

Equation (3.16a) representsa set of dampedharmonic oscillators,coupled by anharmonicdriving
terms. The oscillator picture can be pushed even further, if we realize that all intermolecular
interactionscan be eliminatedfrom eqs. (3.16) by introducingthe local electric field through

~i EL(k, t)—jt •E~(k,t) — (h/p)J(k)P(k,t) . (3.17a)

For dipolar interactionsin the continuum (k—* 0) limit, this coincideswith the Lorentz local field [19,
22, 83]

EL(k, t) E(k, t) + ~ITP(k, t). (3. 17b)
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Herewe usedJ(k) = 4~ph’~z. (kklk2— 1/3). ~ for the dipole sum[84-86] andE11 = —4irPM as there

are no free chargesin the system(div D = 0). The equationof motion (3.16a)can now be rewritten
P(k, t) + 21(k)P(k, t) + 122P(k, t) = 212ph’~zEL(k, t) + iU(k, t). (3.18)

In T-space,this equationtakesthe compactform

P(T, t) + 21P(T, t) + 122P(r, t) 211p111z EL(r, t) + ./tt(T, t), (3.19a)

with T an arbitrarylattice site and

.At(T, t) = —(p~..t/h12)EL(T, t)[(1l — iF)P(r, t) — iP(T, t)][(12 + iF)P(T, t) + iP(T, t)] . (3.19b)

Here,the k dependenceof thedampingis neglected;otherwise,a local pictureis, of course,impossible.
The polarization at every site behaveslike an oscillator driven by the local electric field and by
anharmonic(nonlinear) “forces”. It is noteworthy that the anharmonicityis a function of both the
“position” (P) and the “velocity” (P) of the oscillator; in heuristicanharmonicoscillatormodels,one
usually assumesan anharmonicityin the position only [19, 22].

The fact that the single-particlefactorization used hereleads to a local-field description,is not
surprising and agreeswith the more general conclusionthat any theory that usesa factorization of
single-moleculevariablesis equivalentto the local-field approximation[76]. Consequently,it must be
possible to write the susceptibility eq. (3.14a) as the third-order molecular polarizability
y(—~~w

1, —w2, w3) multiplied by appropriatelocal-field correctionfactors [19, 22]. We checkthis
explicitly. ~ is easilyobtainedfrom eq. (3.14a) by settingJ(k) = 0 and p = 1. We then find

=(3)x (—ks — ~ k1a)1, —k2 — w2, k3w3)
~1(~) Ai(a)1) ~(—~2) ~(a)3)

= ~ ~(kç, ~) ~(k1,a)1) ~(—k2,—w2) ~(k3,w3) y(’°~a)1, —w2, w3), (3.20a)

L1(a)) —(w + il)
2 + ~ (3.20b)

The first three numeratorsin eq. (3.20a)simplycancel the molecularresonancesin y. Wenow restrict
our treatmentfor simplicity to the casethat all wavevectorsareperpendicularto thedipoles.Then,for
optical wavevectorsand dipolar interactions[84—86],

J(k) = —(4~r/3h)p~t2. (3.21)

Combining this with eq. (3.12b), it is easilyfound that

L1(a))//i(k, w) = ~[r(k, w) + 2], (3.22)

so that eq. (3.20a) is indeedof the familiar local-field form [19, 22]. We finally note that cascading
contributions to ~ which are usually found in a local-field approach [21, 82, 87], are absent here,
becausethe second-orderpolarizability vanishesfor nonpolartwo-level molecules.
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3.3. The two-particle description:degeneratefour-wavemixing

In this section, we extend our study of frequency-domainfour-wave mixing by relaxing the
single-particlefactorization.Insteadof factorizing (.At(k, a))) in the expectationvalueof eq. (3.8a) [or
eq. (3.1)] completely,we only factor the population W(k— k’) from it. We thus do not break up the
population into single-particlevariables,as we did in section3.2. We then obtainfrom eq. (3.1) [with
Bk(t)ns (Ek(t))]

(1/i) dBk(t)/dt = —[12 + J(k) — iF(k)]Bk(t) — J(k)B~k(t)+ ph~t E’(k, t)

+ E [J(k’)P(k’, t) — ph’~t E’(k’, t)]W(k — k’, t), (3.23)

and a similar equation for B~k(t) = (Elk(t)).
W(k— k’, t) now appears as a new variable. However, instead of pursuingthe hierarchyby deriving

an equation for the population itself, it proves more useful to introducethe two-particle variables

Q(k, p, t) (E~k/,(t)EP+k/2(t))

~ (E~(t)En(t))exp[—ik•(Tm+Tn)/2+ip•(Tm~Tn)1, (3.24a)
m. n

which are the diagonalelements(k = 0) and coherences(k � 0) of the exciton density matrix in the
momentumrepresentation.From the last form of eq. (3.24a), it is clear that k is conjugateto the
exciton centerof mass;p is relatedto the classicalexcitonmomentum.The significanceof the k and p
variablesmaybe clarified by switchingto the Wignerrepresentationfor the excitondensitymatrix. This
is donein section3.5, wherewe also makethe connectionto commontransportequationssuch as the
Boltzmannequation.The excitonpopulationcan now be written [ci. eq. (3.5)],

W(k, t) = E Q(k, p, t). (3.24b)

As next step in the hierarchywe now consider the equationof motion for Q(k, p, t). We first
concentrateon the electronic (coherent)part of this equation,i.e., without accountingfor phonons.
This is obtained from (k1 nsp — k12; k., nsp + k12)

(d[E~(t)Ek(t)]!dt) = ([dEk(t) /dt] Ak (t)) + (E~(t)dEk(t)!dt)

and eq. (3.1) without the self-energyterms. In the final result the following approximationsaremade:
(i) (E’) is factored from all other variables (exciton theory!); (ii) we neglect terms coupling to
variablesof the form (A~(t)E1k(t)) and (Bk(t)Bk,(t)), which is equivalent to invoking the
Heitler—Londonapproximationon this level of the hierarchy; (iii) we neglectall variableswhich are
higher thanbilinear in the excitonvariables(suchas (WB)),as they eventuallyresultin contributions
to the polarizationthat areof order four and higher in the electric field amplitudes.The leadingorder
for four-wave mixing processes is three. The phonon (incoherent)contribution to Q(k, p, t) is, to
secondorder in the exciton—phononinteraction,derivedin appendixA. The total equationof motion
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thenreads,

Q(k, p, t) = [J(p — k/2) — J(p + k/2)]Q(k, p, t) — ~ ~(k; p, p’)Q(k, p’, t)

— (~!hV)[BP+k/2(t)~E’(—p + k12,1)— B~k/2(t)~.E’(p + k!2, t)]. (3.25)

The first r.h.s. term describesthe free-exciton motion and the last term representsa source for
two-particlecoherencescreatedby electric fields in a samplein which a polarizationalreadyexists.The
secondr.h.s. term in eq. (3.25) is due to the phononbath,wherethe complexself-energymatrix has
the form

.I(k; p, p’) = [.~(p + k12) — ,~*(p— k/2)]6~~.

~ (3.26)

Here, .~‘.(k)hasbeendefinedin eq. (3.3) and2(k1,k2, k3) is given in eq. (A.13). Note that.~(k;p, p’)
consistsof the independentsumof the self-energiesof the excitonsB~k/2and BP+k/2 that makeup the
coherenceQ(k, p, t) (T1-processes)[22, 75] and additional contributions (I) due to the correlated
dynamics of theseexcitons (T~-or pure dephasingprocesses[22, 75]). Due to the pure dephasing
contributions,the single-particlefactorizationin section3.2 breaksdown; this will be seenexplicitly in
the resulteq. (3.33). It is importantto observethat the phononbathonly inducescoupling(scattering)
betweencoherenceswith different p values. The variable k is conservedin eq. (3.25), which is a
consequenceof the system’s translationalsymmetry and the thennal averageperformedover the
phonon bath in appendixA. We also note from eq. (3.26) that for k = 0 the self-energyis purely
imaginary.The physical explanationfor this is that a diagonaldensitymatrix elementhasno frequency
associatedwith it, andhenceno frequencyshiftseither.Equations(3.23)—(3.25)form a closedsetand
governour two-particledescriptionof excitedstatedynamics.

To study frequency-domainresponse,we apply temporal Fourier transforms and introduce the
variable P definedin eq. (3.7) to obtain

{—[a) + iF(k)]
2 + (1~}P(k,a)) = 2ulpIl’ E’(k, a))

+ ~ fdw’ E [J(k’)P(k’, w’) — ph~z E’(k’, w’)] E Q(k— k’, p, a) — a)’), (3.27a)

and, using eqs. (3.9),

—wQ(k, p, w) = [J(p — k/2) — J(p + k/2)]Q(k, p, a)) — ~ 1~(k;p, p’)Q(k, p’, w)

— (2hQ) Jdw’ {[Q + ~‘ + iF(p + k12)]P(p+ k/2, a)’)~ E’(—p + k12,w — a)’)

— [11— w’ — il(—p + k/2)]P(—p+ k/2, w’)~z . E’(p + k/2, w — a)’)}. (3.27b)~

Theseequationshaveto be iteratedin order to obtain the third-ordersusceptibility.
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Instead of treating the general case, however, we will direct our attention to the degenerate
four-wave mixing (D4WM) experiment [28—35].In this experiment, two fundamentalfields exist,
(k1, a)1) and (k2, a)2) and the nonlinear signal at k, = 2k1 — k2, w~= 2w1 — a)2 is observed while the
frequencydifferencew1 — a)2 is tunedthroughzero. We will assumethatw1, a)2, and2a)1 — a)2 areall far
from the material resonanceand we solely concentrateon contributionsto the third-orderpolarization
that have possible resonancesat a)1 — a)2. Furthermore, we restrict our study to the Haken—Strobl
model for the phonon-induced self-energies [54, 88]. Within this simple model, the basic equationsare

[d(Em(t)) /dt]Ph = — ~ (1’ + y)( Em(t)) , (3.28a)

[d( AL(t)E,,(t)) /dtlPh = —[t(1 — ~nm)+ y](EL(t)E~(t)), (3.28b)

where [ ~ denotesthe phononcontribution.Theseequationsimply for the self-energies

—il(k) = —1(1’ + y)/
2, 2(k; p, p’) = —i(t + y)8,,,,, + if’/N. (3.28c,d)

The parameterst and y are usually taken real, so that only imaginary self-energycontributionsare
included. I is the pure dephasingrate and ‘y representsthe populationrelaxationrate. The main
motivation to usethis model is that it allows for analyticalresults,while still preservingthe essential
physicalaspectsrelatedto puredephasing.Previousstudiesof D4WM (using responsetheory [36]) and
of transientgratings[40, 55] in crystalshave also used the Haken—Stroblmodel.

Given our microscopicexpressionsfor the self-energiesderivedin appendixA, we can in principle
improve the theory. Yet alternative(Markovian andnon-Markovian)exciton self-energymodelshave
beenproposedwithin the theory of opticalabsorptionin molecularcrystals[89—91].However,boththe
evaluationof more realistic self-energiesand the subsequentsolutionof the equationsof motion will
involve extensivenumerical calculations. Other, probably more practical improvementsover the
Haken-Stroblmodel lie in the connectionbetweenthe equationof motion (3.25) and the Boltzmann
equation(section3.5). This connectionenablesus to utilize the well-developedmethodsfor solvingthe
Boltzmannequationwithin transporttheory.

We now calculate the third-order susceptibility for the D4WMsetup. Define kg k
1 — k2,

Pg (k1 + k2)12 (g standsfor “grating”) and let Qg(P) denote the component at wave vector kg and
frequencyw1 — w2 in the discrete Fourier decompositionof the two-particle coherences.From eq.
(3.27a)wethenobtainfor the third-orderpolarizationat the signal wavevectorandfrequencyandwith
a possibleresonanceat a)1 — a)2,

p(
3) = 412p’ [J(k

1)P~’~—ph~~ Q~
2)(p), (3.29)

( ~ p

p~ hasalreadybeensolved in section3.1 and from eq. (3.27b) it follows that the Q~2~’(p) for different
p values obey the coupledequations

— w
2)Q~

2)(p)= [J(p — kg/2) — J(p + kg/2) + i(t + y)]Q~(p)

— i ~ Q~(P’)+ + UA6~.pg• (3.30)
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Here, O~R
6pp and are “source terms” that originate from the, last r.h.s. term of eq. (3.27b).

Using eq. (3.12b) for the first-order polarizations,we find

+ w
1 + i(t+ y)

12 12 + — i(t+ y)/2~ 1*
(TR—Ph ~ ~1(k

1,w1) — ~(—k2,—a)2)

_ — Ilk + i(t+ y)/2]’ — [~2 — Ilk — i(I’+ y)/2]
1}~ E~ .E±*, (3.31a)

2(ul—w1—i(t+y)12 Q—w2+i(I~+y)/2\ , ,~

____________— ~(—k2,—w2) )~L.E1/L.E2

~ph
2{[w

1 + Ilk +i(I’+ y)I2]~— [w2+ 12k—i(I’+ y)12]
1}jz Ej~i.E~*, (3.31b)

wherethe approximationshold if J(k
1)~,J(k2)~~ 11. Obviously, OR~ppand 0A~p.~pare the rotating

and anti-rotating sourcesfor the two-particle coherences,respectively,~andthey tra~tsforminto each
otherif (k1, w1) and (— k2, — w2) are interchanged.In section3.2 the sameinterchangeof rotatingand
anti-rotatingtermsunder permutationof the fundamentalfields was observed(eq. 3.15).

Equation(3.30) is solvedin appendixB and yields

+ )
p —iw12 — i[J(k2) — J(k1)] + (F + y) —iw12 — i[J(k1) — J(k5)] + (I + y)

~ (1_~E[_iw12_iJ(P_kgI2)+iJ(P+kgI2)+t+y]~1)~
1, (3.32)

where~12 — ~ Combiningeqs. (3.29), (3.12b),(3.31), and (3.32), the third-ordersusceptibility
is easily found. To simplify the result, we apply the RWA with respectto the fundamentalfields
(UA ~~e0)as well as the signal field. Furthermore, we use w

1 — Ilj ~‘ J(k1)~(w1 is off-resonance),so
that J(k1~p~1) in eq. (3.29) is negligible relative to ph E ~-.Finally, we usethe approximateidentity

(~12+Qk,Qki+1(F+Y)

~12~ J(k2)—J(k1)+i(t+y) 1.

This relation becomesan exact identity within the Heitler—London approximation (HLA)
11k =

(2 + J(k). Here, we do not obtain an exact identity, becausethe HLA hasnot been invoked in eq.
(3.29) for the polarization, whereas it is usedin the equationfor the two-particle variables.We finally
obtain

—~~k
1a)1, —Ic2 — ~ k1a)1)

~

x (i — E [—iw12— iJ(p — kgI2) + iJ(p + kg/2) + t+ v]’). (3.33)

We immediately observethat this result is the productof the rotatingpart of eq. (3.15), which was
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obtained in the single-particle factorization, and a dephasing-induced factor which is unity if F 0. In
other words, in the presence of pure dephasing, the single-particle description breaks down.

Loring and Mukamel [36]were the first to calculate the D4WMsusceptibility for a molecular crystal,
within the Haken—Strob! model for dephasing and using Liouville-space Green-function techniques.
Specific application was made for a one-dimensional system with nearest-neighbor interactions, for
which the sum over the momenta p in eq. (3.33) can be evaluated. Their analysis of the D4WMsignal
for various limiting cases is also possible from our general expression (3.33). The signal intensity
S(k~,w~) is, within the slowly varying amplitude approximation, proportional to ~3~(—k~— w

5 k1 w1,
— ~ k~w1)~

2. Any frequency dependencesderiving from the first threedenominatorsin eq. (3.33)
maybe neglected, as we assumed that a)

1, a)2 and w, are off-resonance. The only frequency dependence
in S(k~,w5) then emerges from the last factor in eq. (3.33).

Three limiting cases are now of special interest [36]. First, we consider non-interacting molecules
[J(k) = 0] and find

S(k~,w~)~1+ t(I~+2y)/(w~2+ y
2). (3.34)

This signal has a Lorentzian resonanceat w
12 = 0, whose width is the inverse of the excited-state

lifetime. The resonancevanishesin the absenceof dephasing.These dephasing-inducedresonances
have been observedby Bloembergenet al. [31] in the gas phaseand have been denotedPIER4
(pressure-inducedextraresonancesin four-wave mixing). In fig. 2 we show the variation of such a
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Fig. 2. PIER4 signal characteristicsin Na as a function of buffergas pressureF31b]. (a) Ratio of peakheight to nonresonantsignal; (b) resonance
full width; (c) integratedintensityof resonantsignal.
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resonancein Na inducedby the buffer gasHe. (Thedephasingrate .t is in this caseproportionalto the
He gas pressure.)In molecularcrystalssimilar resonanceshavebeenobservedby Hochstrasseret al.
[32] and havebeendenotedDICE (dephasing-inducedcoherentemission).An exampleis displayedin
fig. 3a and3b. This resonanceis similar to the onediscussedhere,exceptthat it occursat w12 equalto
somevibrationalfrequencyratherthanw12 = 0. This is a Ramantransitionwhichis totally analogousto
the D4WM resonance.In Hochstrasser’sexperiment,w12 = —747cm’ representsa vibrational mode
and in Bloembergen’scasew~2= 17 cm

1 is the splitting of the NaD lines. The uniqueand surprising
aspectof theseresonancesis that usually dephasingresultsin loss of coherenceand line broadening,
whereashere,it inducesnew sharpresonancesas w

12 is varied. Thereasonis a delicate interferenceof
various termscontributingto x

13~which exactly cancel in the absenceof dephasing.The addition of
dephasingeliminatesthis cancellationand resultsin the new resonance[34, 23].

As a second special case, we consider moleculeswith arbitrary interactionsin the absenceof
dephasing.For F = 0, the Haken—Stroblmodeldescribescoherentexcitonmotion on the lattice, and
from eq. (3.33) it is clear that the D4WM signal exhibitsno resonanceas a function of co

12 in thislimit.
We finally discussthe caseof finite interactionsin the strongdephasing(incoherentor diffusive)

limit, definedby F>> J(p— kgI2) — J(p+ kgI2)I (for all p) and1>> y. In this limit, the Haken—Strobi
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Fig. 3(a). Stationaryfour-wavemixing (coherentRaman)spectrumof a dopedcrystal (pentacenein benzoicacid) as a function of temperature
[32bl. The portion of the spectrum near to21 =747cm~

1is shown on an expandedvertical scale. Note that the dephasing-inducedbandat
= 747 cm~grows relativeto thepeakat to

21= 755cm~
twith increasingtemperature.(b) Growth of thepuredephasingrateF(T) asa function

of temperature[32b],asderivedfrom experimentalmeasurementsof the intensityof thedephasing-inducedbandatw~,= 747 cm_i. The solidline is
a fit to anArrheniusform.
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modeldescribesdiffusive excitonmotion. In appendixC it is shownthat for arbitrary interactionsand
dimensionalitywe now have

t(t+2y)
S(k~,w2) 1 + 2 + [y + (k1 — k2)

2D~]2 (3.35)

with the exciton diffusion constant(tensor) definedby

De00~
72~E[j(p_kg12)_j(pg/2)]2 2 ~~J2(Tm)sin2N(ki_k2)•rm].

- (3.36)

In the last stepof eq. (3.36)we have usedeq. (3.2). In the incoherent limit, the D4WM signal showsa
Lorentzian resonancewith a width that is the sum of the inverse excited-statelifetime (y) and a
contributionfrom excitonmotion (Dek~).The sameresulthasbeenobtainedfor a disorderedmedium
[82]. In general,Dc is a tensordependingon the magnitudeand the direction of kg; if, however, the
rangeof interactionsis small comparedto the characteristiclength scale kg!~ of the experiment,eq.
(3.36) reducesfor an isotropic d-dimensionalsystemto

Dc = -~ ~ J
2(rm)r~. (3.37)

Alternatively, eq. (3.36) maybe written as

~ ~~[kg•Ve(P)]2, (3.38a)
kg! IN 1’

with Ve(P) V,J(p), the exciton group velocity at wave vector p. For an isotropic d-dimensional
system, this yields

~ (3.38b)

with
1J~an effective excitongroup velocity.

3.4. Time-domain four-wave mixing: transient grating and exciton dynamics

We now turn to the study of transientgrating (TG) experimentswithin the exciton theory. The
following typical setup is considered(fig. 1). At time t = 0, two short excitationpulses, (k1, w1) and
(k2, w2), crossedunderan angle0 interferein the sampleandcreatean excitonicgrating.The decayof
the grating as a result of dephasingandpopulationrelaxationis monitoredby applyinga probe pulse,
(k3, w3), at t = T. The observableis the time-integratedintensityof the nonlinear(“diffracted”) signal
with wave vector Ic2 = k1 — k2 + k3 and frequencyw~= w1 — a)2 + o3 as a function of the pump-probe
delay r. The electric fields now take the form of eq. (3.10),exceptthat EJ (j = 1,2,3) is replacedby
the pulseenvelopeEf(t). For simplicity, we will considersquarepulseswith polarizationparallelto the
moleculartransitiondipoles,with amplitudesE1, andwith duration ~. All pulsesarelong comparedto
an optical cycle (w1r1 ~ 1), but short (delta pulses) on the dynamical time scalesin the sample.
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To describethis experimentmicroscopically, we useour equationsof motion in the two-particle
factorization[eqs.(3.23)—(3.25)].Working with the polarizationas variable,eq. (3.23) takesthe same
form as eq. (3.16a), but now with

.iU(k, t) = 211 E [J(k’)P(k’, t) — ph’z .E’(k’, t)]W(k — k’, t). (3.39)

To lowest (third) order in the pulse amplitudes, the observedpolarization P(k2, t) is sourcedby
.1U~

3~(k
2,t) in eq. (3.16a), andthe only importantcontributionto .At~

3~(k
2,t) in eq. (3.39) arisesfrom

thetermk’ = k3. (In principle,third-ordercontributionsarealsoobtainedfrom k’ = k1 or k’ = —Ic2, but
theseare very small due to negligible temporaloverlapof pump andprobe pulses.)We assumean
off-resonanceprobe pulse (!~3— I2!T3 ~‘ 1), so that the polarization envelopeassociatedwith it
instantaneouslyfollows the electric field [92],

P~
1~(t)= ~1~(k

3,W3) .E~(t). (3.40a)

The envelopeof the nonlinearsourceterm thenobeys

.At~
3~(t)E

3’(t)W~
2~(k

1— Ic2, t). (3.40b)

Within the slowly varying envelopeapproximation[22], the observablenow reads

S(T) Jdt P~
3~(t)I2~!2!w~2~(k

1— k2, T)!
2, (3.41a)

with i9~the probe pulse areadefinedby

1~3 ,uE
3r3!h. (3.41b)

In eq. (3.41a) we used the fact that E~(t)is a delta function on the dynamicaltime scale,so that
W(k1 — k2, t) doesnot vary appreciablyduring the pulse.Accordingto eq. (3.41),the TG is determined
by the Fouriercomponentof the excitonpopulationat the gratingwavevectorkg Ic1 — k2 and at time
t = T. This result agrees with the usual diffraction picture [1, 2a, 55, 93] and was first derived
microscopicallyby Loring and Mukamel [56], using responsetheory. Theseauthorsalso pointed out
limitations of the diffraction picture by showingthatin generalthe temporalprofile of the signal does
not follow that of the probepulse.

The evolution of the population can be found from eqs. (3.24) and (3.25). During the pump-probe
delay, the last term in eq. (3.25), containingthe electric field amplitudes,is, of course,absent.As in
the previous section, we restrict ourselvesto the Haken—Strobl model for the phonon-induced
self-energies.If we define the Laplacetransformof a time-dependentfunction f(t) by

f(s) = J dt f(t) exp(-st), (3.42)

then eq. (3.25) translatesinto
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SQ~2~(Icg,p, s)= [iJ(p — kg/2) — iJ(p + kg/2) — (.t’ + ‘Y)]Q12~(kg,p, s)

+ ~ Q~2~(k~,p’, s) + Q~2~(kg,p, t = 0). (3.43)

This equationhasthe sameform as eq. (3.30) governing the D4WM experiment,exceptthat —iw is
replacedby s andthe sourceterm is nowdeterminedby the grating’s initial conditionQ~2~(kg,p, t = 0)
right after the pump pulses.

Beforesolving eq. (3.43),we first determinetheseinitial conditions.As the pump pulsesareshort on
the dynamicaltimescale,the phononbath hasno time to establishcorrelationsbetweentheket andbra
sidesof the excitondensitymatrix (the crystal stateis still a pure state),so that immediatelyfollowing
the pump pulseswe may use the factorization

p, t = 0) = (b~k/
2(0)~ (1) ~ Ep+kg/2(0) ) (1) - (3.44a)

The first-orderexcitonamplitudescan beobtainedby integratingthelinear partof eq. (3.23) duringthe
pump pulses. In the RWA, assuming w1 — I2!i~~ 1 (j = 1,2), and neglectingintermolecularinterac-
tions during the pulses,we find [56]

(Ak(0))”~=i\/~V(3~6kk+ ~2~kk7) , (3.44b)

and (B~(0))~
1~= [(Ek(0))W]*. Herethe i~ (j = 1,2) denotethe pump pulseareasdefinedin analogy

with eq. (3.41b). Thus

p, t = 0) = pV~
1~26PPg~ (3.44c)

with Pg (k1 + k2)12,asbefore.As most theoriesfor theTG signal work within the site representation,
it is useful to mention that, usingeq. (2.15), the presentinitial condition (a coherenceof excitons at
wavevectorsk1 andk2) translatesinto

(A~(0)E~(0))=!1~!
2cos(kg•rm/2)cos(kgTn/2). (3.45a)

Herewemadethe commonassumptionsthat ~ = ~2 = i~andthat the systemis quasione-dimensional
with k

1 + k2 perpendicularto the lattice vector [55, 56]. Equation (3.45a) is known as the coherent
initial condition, which containssite populations(m = n) as well as intersitecoherences(m ~ n). It is
expectedto be most relevantin the caseof resonantpumping. Wong andKenkre [93] have also
introducedthe diagonal initial condition

(E~(o)A~(0)) =I~!
2cos2(kg•rm/2)6mn , (3.45b)

which only containspopulations.This condition is important in the caseof off-resonanceexcitation
followed by ultrafastvibrational relaxation[4].

We will restrict our treatmentto the caseof coherentexcitation. Combining eqs. (3.43), (3.44c),
(3.24b), and using appendixB, we eventuallyarrive at the Laplacetransformof the population
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W(k1—k2,s)=2t~1i~{s—i[J(Ic2)—J(k1)]+F+y}
1

~ (~_ ~~[S_iJ(p_IcgI2)+iJ(p+kg/2)+t+y]~1). (3.46a)

This can be rewritten as

/ t i[.9;(p)_~(pg)] \1

~ (3.46b)

J(p — kg/2) — J(p+ Icg12), (3.46c)

where the kg-dependenceof S~(p)is suppressedfor compactness.
One interestingexact result follows directly from eq. (3.46): in the absenceof exciton dispersion

[J(Ic)= constant],or, in particular, in the absenceof interactions,the populationW(k
1 — Ic2, t) only

decayswith the trivial ratey, independentlyof the scatteringstrengthF. TheTG signal thusdecayswith
rate 2y (eq. 3.41a). The physical explanation is that all coherencesQ(k, p, t) now have the same
frequency(zero),sothat theydo not dephasewith respectto eachotherandkeepaddingup coherently
to the population(eq. 3.24b) at all times, irrespectiveof the scatteringratesbetweenthem.This result
is, of course,not restrictedto the Haken—Stroblmodel.

In the caseof generalinteractions,it is hard to transformeq. (3.46b) backto the time domain and
we will thereforerestrict ourselvesfrom now on to a study of the long-time behaviorof the grating
signal. Analytical results valid for all times, have been derived by Garrity and Skinner for a
one-dimensionalsystemwith nearest-neighborinteractions[55].Theirimportantconclusionsconcerning
the limits of coherentand incoherentmotion on the experimentallength scale,however,can also be
reachedfrom our expression.We first note that the long-timelimit, !t + ‘y — j~9~(p)!~~‘ 1, is governed
by the smalls region (!s! ~ IF + ‘y — i.9(p)I) in the Laplacedomain.Equation(3.46b) thenyields

W(k1 — k2, t) = 2i~t~ exp(at), a = i~(pg)— ~ + ~ i[~(p) — (3.47a,b)
N p F+y—iS~(p)

In the remainderof this section,we will assumethat~
9(p~)= J(Ic

2) — J(Ic1) = 0, which holds under
very generalsymmetry conditions with respect to the experimentalset-up.We further note that

~kg• Ve(P), with Ve(P) the exciton group velocity defined under eq. (3.38a). Let us first
concentrateon the limit of weakscattering:.9(p) ~‘ F + y for mostp in the first Brillouin zone. This is
the coherentlimit, as the excitonscatteringlengthVe(P)/F is now muchlarger thanthe experimental
length scaleIkg!~

t. We then obtain

a=—y—t, (3.48a)

so that, using eq. (3.41a),we find for the intensity of the TG signal normalizedto its initial value

S(T) = exp[—2(y + f)r]. (3.48b)

This resulthasalso beenfound by Garrity andSkinner [55]. In the extremecaseof F = 0, no grating
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decayis observed,apartfrom the trivial population decayexp(—2yt). This result is rigorous for all
times, as is directly seenfrom eq. (3.46b), and is easily understood:for F = 0 the coherentinitial
condition is an exact eigenstateof the system. By contrast, the diagonal initial condition is a
superpositionof eigenstatesandleads,evenin the caseF = 0, to a nontrivial decayof the grating on a
time scale (kgVe)1with v~a typical excitongroupvelocity (ballistic motion) [55, 93].

We now turn to the oppositelimit of strongscattering,F ~‘ yandt ~‘ .9(p) (all p),wherethe exciton
scatteringlength is much smaller than the grating length scale (diffusive or incoherent motion).
Equation(3.47b) then reducesto

a = —-y — DeIk
1 — Ic2!

2, (3.49a)

with Dc the exciton diffusion constantas definedin eq. (3.36). In the derivationof eq. (3.49a),we used
that ~ = 0, as is explainedin appendixC. We now obtainfor the signal intensity [55]

S(r) = exp[—2(y + De!ki — k
2I

2)r]. (3.49b)

We can get an ideahow well this long-timeexpressiondescribesthe actualdecayby usingin eq. (3.46b)

v l.9(p) 1 V 2

(Equation (3.49) agrees with taking s = 0 in the r.h.s. of this expression.)The thus obtained
approximationto W(k

1 — k2, s) can be Laplace-invertedanalyticallyandleadsto an additivecorrection
in eq. (3.49b). This correctionterm hasa relative magnitude(Dek~/F)

112,which is much smallerthan
unity, anddecayson a time scaleF which is very fast comparedto the decayin eq. (3.49b).This
suggeststhat eq. (3.49b) is a good approximationto the actualsignal over the entireobservabledecay.
Furthermore,we note that the presentresult is not affectedby the exactinitial condition and is also
found for diagonalexcitationof the system[55, 93]. The reasonis that in the incoherentlimit, intersite
coherences anyhow relax very fast compared to the grating decay [cf. eq. (3.28b)].

We will now discussthe resulteq. (3.49) in more detail. The signal decayrate consistsof a trivial
contributiondue to population relaxation(2y) and a contributionfrom the exciton motion, which is
proportionalto k

1 — k,!
2. This is characteristicfor diffusive motion [1, 2a, 55, 93] andleads,for small

crossangles 9 betweenthe two pump pulses(fig. 1), to a linear relation betweenthe observeddecay
rate and 02. This relation allows us to distinguish experimentallybetweendiffusive and coherent
excitonmotion on the scale Ic

1 — k,!
1. In fig. 4 we displaythe TG signalshowingincoherent(diffusive)

motion and its dependenceon the fringe spacingthroughthe variation of 0. In fig. 4a, the TG probes
exciton motion in disodiumfluoresceinin ethanol [8], whereasin fig. 4b it probescarrier motion in a
semiconductor(GaAs). In both casesthe TG decaybecomessloweras 0 is reduced.In fig. 5 we show
the 02 variation of the TG decayratein anthraceneattwo temperatures(10K and20 K) [2b]. Notethe
diffusive character,evenat theselow temperatures.In spiteof an active search,coherentmotion has
neverbeendirectly observedin transientgratingexperiments.

In the incoherentlimit, an interestingrelationexists betweenthe D4WM andTG signals.Namely,
the amplitudeof the D4WM signal (eq. C.4) can be obtainedby evaluatingthe Fouriertransformof the
amplitude of the TG signal [exp(aT)] at the frequency ‘~,. This single-Fourier-transformrelation
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Fig. 4. (a) Fringe spacingdependenceof theTG signal probingexcited-stateenergytransport in disodiumfluoresceinin ethanol,for @12= 8°and
22°(excitationwavelength266 nm) [8]. For thesmallerangle,thesignal is dominatedby acousticeffects(note: time scaleis differentfor 0/2= 8°).
At 0/2= 22°,theacoustic-signalcontribution dampsout due to acousticattenuation.(b) Fringespacingdependenceof the TG signal probing
carrier density diffusion in GaAs. N~

5= 2 x 100 photocarriers/cm
3.The measuredambipolardiffusion constantis in good agreementwith the

known value for high purity GaAs (De, 8cm2lsec).Curve 1: 0 = 4.9°,curve2: 0 = 3°,curve 3: 0 = 1.1°(seeref. [1171).
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Fig. 5. (a) The decayrateof the transientgratingsignalversus �t~for two anthracenecrystalsat 10K, alongthea axis [2b]. The magnitudeof the
slopeequals8ir2De/A2, with A the wavelengthof thepump pulses,and thus yields directly the excitondiffusion constantD~.The value of the
interceptequals2y, where y is the population relaxationrate. (b) The decayrateof thetransientgratingsignal for the sametwo crystalsat 20K.
The difference in slopes is due to the temperaturedependenceof theexciton diffusion constant.As the temperatureincreases,a decreasein the
diffusion constantis observed.The averagediffusion constantobtainedfrom thesemeasurementsis roughly10 times largerthantheexpectedvalue
for incoherentexcitondiffusion [51].

betweennonlinear frequency-domainand time-resolvedtechniquesis not trivial and was first estab-
lishedby Loring andMukamel [36]. In concludingthis section,we mentionthat the TG signal for cases
intermediatebetween the coherentand incoherentlimits hasbeen studied by Garrity and Skinner
(using the Haken—Stroblmodel) [55] and by Wongand Kenkre(using a generalizedmasterequation
approach)[93]. Finally, we remarkthat we only studiedthe TO within the two-particledescription.The
single-particle(local-field) descriptionwould leadto the exponentialdecayeq. (3.48b), independently
of the magnitudeof F. Diffusive exciton transfercannotbe incorporatedat this level of description,
which is intimately relatedto the fact that in the single-particlefactorizationno resonancewith respect
to ~12 is found in the D4WM signal. This illustratesthe limitations of the local-field approach.

3.5. The Boltzmannand the diffusion equationsfor excitontransport

Furtherphysicalinsight into the equationof motion (3.25) for the two-particlecoherencesQ(k, p, t)

can be obtainedby making the connectionto macroscopictransportequations,such as the Boltzmann
equationand the diffusion equation. To this end, we define the Wigner phase-spacedistribution
function~(r, p, t) by [94, 95]

p, t) ~ Q(k, p, t) exp(ik r). (3.50)
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Here,r andp play the role of the classicalposition andmomentum,respectively,of theparticle that is
describedby the Wignerdistribution. Comparingwith eq. (3.24a),it is clear thatr is the positionof the
exciton “center-of-mass”.Thatp indeedcorrespondsto the excitonmomentum,becomesevidentif we
consider the pure state for a completely delocalizedexciton with momentum p0 then, namely,
Q(k, p, t) =

8pp8kO~The Wignerdistributionfunction carriesthe full quantumbehavior,yet it hasawell
definedclassicalanalogue:as h—~0 it reducesto the classicaldensitymatrix of the particle(exciton in
our case),and it is thereforevery usefulin providinga semiclassicalinsight in quantumdynamics[94].

In this sectionwe will only be interestedin the homogeneousequationof motion for the two-particle
variables,i.e., we ignore the last term in eq. (3.25),which couplesto the electric field. Also, we will
only considera purely imaginary self-energymatrix .~(k;p, p’) —iF(Ic; p, p1). The Wignerdistribu-
tion thenobeysthe equation

~(r, p,t)=2~J(a)sin(p•a)~(r+a/2,p,t)—~~F(a;p,p~(r+aI2,p’,t), (3.51a)

F(a;p,p’)ns~ >~F(k;p,p’)exp(—ikaI2). (3.51b)

The first term in eq. (3.51a) describescoherentexcitonmotion on the lattice [weusedJ(r) = J(—r)]; the
second term is due to (phonon) scattering. For scattering kernels that do not depend on Ic,
F(k; p, p1) = g(p, p’), we have

F(a; p, p’) = 8~
0g(p,p’). (3.52)

This implies that the position is not affected,whereasthe momentumis scatteredas in a discretized
Boltzmannequationwith collision kernelg(p, p’). An interestingclass of collision kernelsis found by
furtherrestriction to

g(p, p’) = (t+ ~ — tg(p), (3.53)

with ~ g(p) = 1 (sum overthe first Brillouin zone). The Haken—Stroblmodel, eq. (3.28), is contained
within this class,with g(p) 1/N. For a generalg(p), the equationof motion now reads

~(r, p, t) = 2 ~ J(a) sin(p. a)~(r+ a12, p, t)

— t~ [g(p’)çb(r, p, t) — g( p)çb(r, p’, t)] — ycb(r, p, t). (3.54)

The secondterm in this equationhasthe form of the BGK strongcollision operatorin the Boltzmann
equation[96, 97], in which collisions occur with rate F and the momentum after each collision is
distributed according to g(p). In this model, g(p) is the equilibrium momentum distribution. This
implies in particular that the Haken—Strobl model is a high-temperaturemodel, as the equilibrium
distribution is thenuniform over all momenta.The strong collision operatorconservesthe numberof
particles(population);a population loss with rate y is describedby the last term in eq. (3.54). This is
also nicely illustrated in yet anotherrepresentationfor the two-particle variables,which is found by
Fouriertransformingq~(r,p, t) with respectto p [95],
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~(r, s, t) = ~ ~(r, p, t) exp(—ip.s). (3.55)

Comparisonwith eq. (3.24a)shows that s plays the role of a relative coordinateand ~(r, s = 0, t)

representsthe excitonpopulation at site r.
Equation(3.54) now translatesinto [95]

~(r, s, t) = —i~J(a)[~(r+ a12, s — a, t) — ~(r + a/2, s + a, t)]

- (t + y)cb(r,s, t) + I~(s)cb(r, 0, t), (3.56a)

~(s)ns~ g(p)exp(—ip~s). (3.56b)

As a consequenceof the normalizationof g(p), we haveg(s = 0) = 1, so that the last two termsof eq.
(3.56a) indeed describea net loss of populationwith rate y.

We return to the equationof motion (3.54) for the Wignerdistribution and direct our attentionto
the coherentterm.We will assumethat the interaction is symmetric [J(r) = J(—r)] andhasa shortrange
R. Furthermore,we assumethat g(p) is centeredat optical momentap, for which p!R =~1. In the
continuum approximation,eq. (3.54) thenbecomes[95]

~(r, p, t) = . ~(r, p, t) - t J dp’ [~(p’)~(r, p, t) - ~(p)~(r, p’, t)] - y~(r,p, t),

(3.57a)

where, for an isotropic d-dimensionalsystem,

(m*)~ = (lid) ~ J(r
5)r~. (3.57b)

Here,n runsover the original latticeand r~ r5 . Furthermore,,~( p) is definedin analogywith g( p),
but hascontinuumnormalizationJ g~(p)dp = 1. Equation(3.57a)clearlyhasthe form of the Boltzmann
equationfor a classicalparticleof massm It cannow be shownquite generallythat in the limit of high
friction, I, eq. (3.57a)reducesto a diffusion equationfor the particle position distribution function
definedby

~(r, t) J dp ~(r, p, t). (3.58)

Explicitly, one finds (seeref. [97], chapter10 and appendix2):

(alat)4(r, t) = DV
2~(r,t) — y4(r, t) , (3.59a)

with the diffusion constantdefinedby

D ~ K(plm*)2)p = ~(~~ J(rn)r~)(p2~. (3.59b)

where (.. .) ~ takesthe averageover the equilibrium distributiong~(p).
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The direct solution of the equationof motion for Q(k, p, t) within the Haken—Strobimodel also
leadsto a diffusion constant(eq. 3.37),

Dc = (11db ~ J2(r~)r~ . (3.60)

It is clearthat in generalD doesnot coincide with De~evenif we take ~(p) = (a/2
7r)d, which is the

equilibrium distribution in the Haken—Strobl model (a is the lattice spacing). The quantitative
differencebetweenthe two abovediffusion constantscan be illustratedby giving their valuesin thecase
of nearest-neighborinteractions(J) on a lattice with spacinga,

Dc = (2/I’)J
2a2, D = (4ir2dI3t)J2a2. (3.61a,b)

The solution to this apparentdiscrepancyis that for the Haken—Stroblmodel, strictly speaking,the
Boltzmannequationcannotbe derivedthroughthe abovemethod,becausethe equilibrium distribution
g(p) is uniform instead of centeredat optical wave vectors. Consequently,eq. (3.59b) cannot be
derivedwithin the Haken—Stroblmodel. Alternatively, for a very broadequilibrium distributiong(p),
the classicalpicture of a momentum-independenteffectivemassm* is an oversimplification.

That it is possible,however,to derive in a rigorousway a diffusion equationfor the exciton motion
within the incoherentlimit of the Haken—Stroblmodel is clearfrom the discussionfollowing eq. (C.5).
A very elegantderivationhasbeenput forwardby ReinekerandKühne [54,98, 99]. Theseauthorsfirst
derivethe Pauli masterequationfor the siteexcitonpopulationsW~in thestrongscatteringlimit. In our
notation,this equationreads[54, 98]

= ~ w~(W~,— W~)— yW~, w~,ns2IJ(r
5~,)!

2/I~. (3.62a,b)

Equation(3.62a)hasbeenextensivelystudiedwithin the field of incoherentenergytransfer[100];w~

is the well-known Försterrateof energytransferbetweenthe moleculesn andn’ [41, 101]. For dipolar
interactions, ~ has the characteristic1Ir~,dependence.In the continuum approximation, the
diffusion equation for the exciton population density is now easily derived from eq. (3.62a), by
expandingW,~around the lattice point r~[54, 99]. For an isotropic systemthe diffusion constant
obtainedin this way indeedcoincideswith eq. (3.60).

4. Nonlinear optical responseof polaritons

4.1. Canonical transformationand operator equations

In this section we develop a polariton theory of nonlinearoptical responsefor the casethat the
radiationandthe matterdegreesof freedomarestronglycoupledandthe TO and D4WM experiments
are dominatedby polariton dynamics.Polaritonsarethe combinedradiation—electroniceigenmodesof
the crystal,which havea dispersiondiagramthatcan differ profoundlyfrom that for excitons(seefig. 6)
[57, 58]. Of course,the optical responseof a crystal is in generaldeterminedby its properelementary
excitations, so that optical signals must exhibit resonancesand broadeningsdeterminedby the
energeticsand dynamicsof polaritons insteadof excitons.The theory of section3 cannotaccountfor
thoseeffects: the calculationof responsefunctionsandsusceptibilitieswas basedon a factorizationof
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the electric field, thus treating it effectively as an external c-number and neglectingpart of the
correlationsbetweenthe material (excitons) and the radiation fields. Such a schemeleadsto signals
characterizedby the excitondispersionanddynamics.Although it is in principle possibleto defineand
calculatesusceptibilitieswithout factorization,this doesnot lead to a very practicalscheme[66, 67].
Here, we ratherfollow an approachin which a hierarchyof nonlinearequationsof motion for polariton
variablesinside the crystal is built, which directly leadsto the optical signal (polaritonhierarchy) [76].
This method is describedin more detail in the next section.

As in the exciton theory,our approachstartsby deriving a basic set of operatorequations.Now,
however,we also considerequationsfor the photon operators,as the radiation field is treatedas an
explicit degreeof freedom. We useeq. (2.9) as startingpoint andneglectUmklappcontributionsto E~.
Furthermore,we notethat, at everywave vectork, we only need to consider photons with polarization
in the planespannedby k and the moleculartransitiondipole ~t; photonspolarizedperpendicularto
this planedo not couple to the crystal andform no new eigenmodeswith the excitons.We, thus, drop
the polarizationlabels A on the photoncreationand annihilationoperatorsandarrive at (all operators
takenat time t)

ak —kc —iCk (J —iC~ 0

1 d ‘~k = i Ck —11 — Dk + i 1(k) — i Ck — Dk X k 1
i dt ak 0 iCk kc iCk ak + ~ o

—iCk Dk iCk 1l+Dk+iF(k) B_k —1

(4.la)

= ~ [D~.(B~.+ Bk.) - iCk.(âk. - â~k.),~i~(k- k’)]±, (4.lb)

= (2ikcph~~i~)”2, (4.2a)

Dk = J(k) + 41Tph~ , = — (~.i‘k)21k2. (4.2b,c)

In the derivationof eq. (4.1) we usedeqs. (2.6)—(2.8) to expressE~ in termsof photonand exciton
creation and annihilationoperators.Of course,the equationsfor Bk and B1k are equivalentto eq.
(3.1).The inclusionof F(Ic), the phonon-inducedexcitondamping,is not fully consistenthere,as it was
calculatedwithout accountingfor polaritons.We will comebackto this furtheron in this section.From
eq. (4.1) one easily derivesthe Maxwell equationsin the electricdipole approximation[71, 76]

E’(k, t) = -! ~ A~(k, t), (k2 + -~ -~
5)E~(k,t) = - ~ -~-~I~(k,t). (4.3a,b)

c3t c at c at

Theseequationsare not affectedby the nonlinearterm ‘—X(k) in eq. (4.1).
We now considereq. (4.1) in the Bose approximationX(k) = 0. It is then a closed 4 x 4 matrix

equationthat completelydescribesthe linear propagationof electromagneticwaves.The eigenmodesof
this problem are the polaritons, which are related to the photons and excitons by a canonical
transformation[57, 58, 61]. We follow Hopfield’s notationand searchfor a transformation[57]
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— Wk~ak+ xkPBk + ~ + ZkVB~Ik, (4.4)

such that

(d/dt)~kV = ‘l~0kcS~kc(Boseapproximation). (4.5)

Here~kc denotestheannihilationoperatorfor apolariton with wavevectork in branchi-’, and~k
1. is the

frequencyof this polariton. In combinationwith eq. (4.1) this defines an eigenvalueproblemwhose
secularequationgives the polaritondispensionrelation,

(kc)
2 = 1 + 2 2’ f= (8~p~QIh)u2, (4.6a,b)

—[~kc + iF(k)] + Ilk

where11k is the excitondispersioneq. (3.6). As the polariton dispersionis by definition equivalentto
the one for electromagneticwaves in the crystal, (kcIa)~j2must also define the transversedielectric
function e1(k, ~kc)~ Comparisonwith eq. (3.12b) shows that the thus obtainedtransversedielectric
functionis identical to the onefound throughexcitonresponse.Thelinear response of the crystal, apart
from a possiblechangeof the dampingconstant1(k) [seebelow], is not affectedby the introduction of
the polariton concept[57,58,80].

We now first analyzethe polariton dispersionand transformationin more detail for the important
caseF(k) = 0, i.e., totally neglectingthe phonon bath. This is the standardcaseconsideredin the
literature. Equation (4.6) then gives the usual dispersion diagram (cf. fig. 6) with two branches
separatedby the polariton stopgap:the frequencyinterval whereno real wave-vectorsolutionsto the
dispersionrelation exist, so that no waves with thosefrequenciescan propagatein the crystal. In an
atomiccrystal, the stopgaprangesfrom the transverse(a)

1) to the longitudinal (a)11) excitonfrequency
[43, 57, 58]. For our crystal of two-level molecules,theseboundariesdependon the direction of

/erPolariton

WAVE VECTOR
Fig. 6. Typical polariton dispersioncurvesin the optical region for an atomic crystal (thick solid curves).The diagonal line representsthe pure
photondispersioncurve(w~= kc). The shadedregionbetweenthetransverse(Cr) andlongitudinal(CII) crystal excitonfrequenciesis thestopgap,
whereno polaritonmodesexist. Qindicatestheatomictransitionfrequency.For a crystal of two-level molecules,thestopgappositiondependson
thedirection of propagation(seetext).
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propagationandarereplacedby 11~and(Il~+ ~
2~l /2 respectively,with Il~ lim~

0
11k andf asdefined

in eq. (4.6). (Exciton dispersionis neglectedwhenconsideringthe stopgap.)
Thestrongestmixture betweenexcitonsandphotonsoccursin the photon-andexciton-bandcrossing

region kc 11~ 11. In that region the frequencydifference betweenthe two branchesreachesits
minimumvalue,which, to a good approximation,is given byf[60b]. Fromeq. (4.6),we observethatf
is a measurefor the densityof oscillator strengthin the crystaland in combinationwith eq. (4.2a), it is
also seenthat f12 is the coupling Ck betweenthe exciton andthe radiationfield in the band-crossing
region.For molecularcrystals,we usually havef =~11. For example,for the lowestsingleta-excitonin
naphthalene,we havef 45 cm- and11~ 11 31500cm- [60b]; for the sameexciton in anthracene,
we find f 1000 cm1 and Il~ 25 000cm- I [60a]. (Both f valuesaccountfor the crystal’sbackground
index of refraction.)

The polaritontransformationcoefficients,which aredeterminedby theeigenvectorsof the diagonali-
zation procedure,alsonicely demonstratethe mixed characterof the polaritons. In the case1(k) = 0,
the coefficientsare found to be

— (a) + kc)(a)2— 11~—f2) 4 7Wk
0 — e 2(a)kc)

112[(a)2 — 12~—f2)2 +f2k2c2]112 ( . a)

—. I~ fkc(a)+fl) 47b~ — ie 2(a)Il)1’2[(a)2 — Il~—f2)2 +f2k2c2]112 ( . )

kc—a) a)u1
= kc + Wkfr, Zk~ = ~ + 11 xkc , (4.7c,d)

where~‘pis an arbitraryphaseanda) standsfor ~kp~ Thesecoefficientshavebeennormalizedaccording
to [57, 58, 61]

2 2 2 2
IWkP! + Ixk~l — Iy~l— lZkpl = 1. (4.8)

In spite of the complexity of eqs. (4.7), severalgeneralandinstructive conclusionscan be drawn.
First, the coefficientsy,~and Zkp usually have absolutevaluessmall comparedto unity (see,e.g., ref.
[68]). Second,the limits for smallandlargewave vectorsareeasilystudied.In the limit Ic! —~0, we find
for the upperbranchIxI = 1, wI = l~!= IzI = 0 (up to orderf/Il), so that the polaritonis apureexciton
there.For kI—*oo, the samebranchrepresentsa purephoton (1w! = 1, IxI = I~!= IzI =0). This could,
of course,havebeenalreadyguessedfrom the dispersiondiagram (fig. 6). Equally naturalresultsare
found for the lower branch.For intermediatewave vectorsthe polaritonssmoothlychangecharacter
from exciton-like to photon-like (or vice versa). Third, at the band crossing (kc 11), we find

I w12 = I x 12 = ~ for both branches,confirming that the strongestphoton—excitonmixture occursthere.
We notethat thecoefficients (4.7) do not exactlycoincidewith the onesobtainedwithin the minimal

couplingHamiltonian [57, 58], but their basicfeaturesarenot affectedby this. The dispersionrelation
(4.6),which is an “observable”,is of courseindependentof the choiceof theHamiltonian.The present
polariton transformationdoes coincide with the one derivedin ref. [102],if in the latter we ignore the
coefficientscoupling to the higher Brillouin zones(Umklappcontributions)andneglectthe retardation
in the effective interatomic interaction. Finally, we will need the inverse polariton transformation,
which can, quite generally,be shown to read [61]
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= ~ ~ — Ykc5~_kv) = ~ ~ — zk~~.kV). (4.9a,b)

We nowreturn to the generalpolaritontransformationwith F(Ic) ~ 0. The two branchesfoundabove
are then no longer the correcteigenmodes.For flF(k) ~ 1, the maximum amountof mixing between
photonsandexcitonsis of theorderf/F(Ic), so that the polaritonsareto a good approximationjust the
photonsand (damped)excitons[60, 68]. In otherwords, if the exciton—radiationcoupling,f, is small
comparedto the coupling of excitonsto phonons(or any otherperturbingdegreeof freedom[1031),
measuredby 1(k), no strongly mixed radiation—mattereigenmodesexist. We thenexpectthe exciton
descriptionof optical responseto be accurate.We notethat in this caseof strongexcitondamping,.the
eliminationof the phononbath [leadingto F(k)] beforeconsideringthe coupledexciton—photonsystem
is fully justified.

Conversely,the conditionf/F(k) ~‘ 1, which is typically met in low-temperaturepurecrystals,marks
the region of strongpolariton effectsin optical response.It is theninconsistentto accountfor phonons
(or other bathvariables) by including the exciton damping1(k) in eq. (4.1). Instead,we shouldfirst
diagonalizethe bareexciton—photonsystem[1(k) = 0] andthen accountfor otherdegreesof freedom
by consideringtheir perturbationto the thusfound polariton eigenmodes(polaritonself-energies)[60b,
68]. In the remainderof this reviewwe will assumethat the limit of strongpolaritoneffectsapplies,so
that from now on the polariton dispersionand transformationcoefficients refer to the case1(k) 0.
The polaritonself-energiesareaddressedin appendixA andincorporatedin the equationsof motion in
section4.2. For completenesswe note that the theoreticaltreatmentof the intermediateregion where
the exciton—photoncouplingroughly equalsthe exciton—phononcoupling, is very complicated,because
it is then impossibleto indicatea simple set of eigenmodesthat are weaklyperturbedby the phonon
bath.

So far we only consideredpolaritons in the Bose approximation,which resultsin a purely linear
optical response.However, using the above-obtainedpolariton transformation,the full equationof
motion (4.1) yields

d~kcIdt= k~’’~kc+ i(xkP — ZkjX(k) , (4.10)

andits hermitianconjugatefor the polariton creationoperator~. Equation(4.10) is, apartfrom the
omissionof the phonon-inducedself-energy,exactandfully accountsfor nonlinearbehavior.The linear
part of the equationis, of course,equivalentto eq. (4.5); the nonlinearpart is determinedby eq. (4.lb)
and maybe translatedinto polaritoncreationand annihilationoperatorsby using the inversepolariton
transformation(4.9). A typical term in .X(k) reads

~ a(kk’k”, ~I~IIplR)~~t c ~k+k” c” (4.11)
k’k’ ccv”

with a(kk’k”, vi/’i/”) a complicatedfunction of wave vectorsandbranches.Finally, as the exciton
populationoperatorplaysacrucial role in the nonlinearity,it is usefulto give its full expressionin terms
of polaritonoperators.Using eqs. (3.5) and (4.9) we arrive at

— Ic’) = ~ (x~k.~V Xk+k v ~k+k” p ~k+k”: + Zk.+:., ~. Zk+k.~ ~-k’-k” V i-k-k”

— xk.+k ~‘ zk+k ~k’+k” V f—k—k” v — Zk.+k~~p~Xk+k~~f—k—k” V ~k+k” ~) , (4.12)
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4.2. The polariton hierarchy in the two-particle description

Before turning to the treatmentof the TG and the D4WM experimentsin the limit of strong
polariton effects,we first discussthe generalapproach,the polariton hierarchy[76]. Considera finite
crystal that is still large enough,however,so that its eigenmodesare to a good approximationthe
polaritons discussedin section 4.1. The nonlinear evolution of the isolated polariton systemis in
principle fully describedby eq. (4.10), but this equation does not yet describe the generationof
polaritonsby the external laser fields. It is important that this generationis not causedby a direct
interaction term betweenelectromagneticfields and polaritons in the Hamiltonian [69], becausethe
electromagneticfield itself is, inside the crystal, fully containedwithin the polaritons. Instead,the
coupling occursthrough the boundaryconditionsat the surfaceof the crystal. If an externalelectric
field with wavevectork andfrequencya)

1 (o..~1= k’1!c) is incidenton the crystal, it launchesa polariton
which is specifiedby matchingthe boundaryconditionsfor the expectationvaluesof its electromagnetic
field componentsto the externalfield (accountingfor reflection). Thus, the polariton will also have
frequency ~ its wave vector k1 is determinedby the componentparallel to the crystal’s surface
(k1~~= kpi) and by its magnitude,IkJ!, which is fixed through a)1 and the polaritondispersionrelation
(i.e. the crystal’s dielectric function) [69]. This agreeswith Snell’s law. Finally, the amplitudeof the
polariton, (~kjt)), is (in the frame rotating with frequencya)1) proportional to the external field
amplitude E~.

The completesolution to the boundaryvalue problem is, in particular if spatial dispersionis taken
into account,a complicatedproblem[43, 104—107]. Insteadof rigorouslysolving this problem,we will
incorporatethe abovewell acceptedideasabout the generationof polaritonsby addingsimplesource
termsto our equationsof motion (seebelow). In the absenceof the nonlinearterm in eq. (4.10), the
thus generated“first-order” polaritonsconstitutethe only responseof the crystal to exciting fields.
Clearly, however,the nonlinearterm causesfusionof first-orderpolaritonsto higher-orderonesat new
(not fundamental)wave vectorsandfrequencies.Sucha higher-orderpolaritongeneratesan observable
nonlinear signal outside the crystal which is, again, found by matching boundary conditions. In
particular, the signal amplitude will be proportionalto the amplitude K ~k,V1(t)~ of the higher-order
polariton. The problemof calculatingthe optical responseof the crystalnow boils down to calculating
the amplitude K ~k1v,), which can be done using a truncatedhierarchy of equationsof motion for
polariton expectationvaluesbasedon eq. (4.10).

To apply this schemeto the TO and D4WM experiments,we use the truncationthat also proved
useful in the exciton theory, namely, we factorize the exciton population in the expectationvalue of
X(k) (two-particledescription).From eq. (4.10), we then obtain [~~~(t) K ~~(t)~]

~kP(t) = -ia)kV~kV(t) - i ~

+ (xk~ — ZkV) ~ ~ [y(k’P’)~k.P.(t)— y*(k~p~)~k,O,(t)]W(k— k’, t)

+ ~ A(Icv, k)E~(t)exp(—ia)1t). (4.13a)

Here, ~ is the phonon-inducedpolaritonself-energygiven in eq. (A.14b) and

y(k~) Ck(w + y~)+ iDk(x — z~). (4.13b)
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Finally, the last term in eq. (4.13a)describesthe abovediscussedgenerationof polaritons,whereE~(t)
is the (slowly varying) amplitudeof thejth externalelectricfield. The proportionality constantA(kv, k;)
is nonzeroonly if the jth externalfield modeexactlymatchesthe polariton Icy; its magnitudeis thena
complicatedfunction of geometryand frequencywhich we do not calculate here. Of course,this
“source term” only makessensefor pulseswhich are long comparedto an opticalcycle.

As next step in the hierarchy, we need equationsfor the two-particle variables contained in
(W(k— k’, t)). In section3 we consideredthe excitontwo-particlevariables,Q(k, p, t) [cf.eqs.(3.24)],
but this choice is not useful here,becausethesevariablescouple to expectationvaluesof productsof
excitonandradiationoperators,which we cannotfactorin thelimit of strongpolariton effects. Instead,
it is moreappropriateandmoredirect to considerpolaritontwo-particlevariables.Fromeq. (4.12),we
seethat four types of such variablesareinvolved. However, as in generalIZkvI ~ 1 and,moreover,for
the self-energymodelsto which we will confineourselveslater on, IZk~I~ IxkVI, we will only maintain
the first r.h.s. term in eq. (4.12), SO that

W(k, t) (2/N) ~ x~12VxP+k!2 ~ p, t), (4.14)

p, t) K ~—k/2.V(t)~P+k/2,V(t)). (4.15)

The next step in the hierarchynow resultsin the equationof motion for the variablesE~~(k,p, t),
which reads

(d/dt)E(k, p, t) = i(a)Pk/2~ — WP+k/2,iEVV(k, p, t) — i ~ .�~(k,v; p, p’)E~~.(k, p’, t)

+ ~P..k/2p(t) ~ .4(p + k/2, v, k~)E(t)exp(—ia)1t)

+ ~p.vk/2v(t) E fl*(p — k/2, JI’, Ic)E* (t) exp(iw1t) . (4.16)

The first term in this equationreflectsthe linear coherentmotion [first r.h.s. term in eq. (4.10)]. The
nonlinearcoherentmotion is neglectedon this level, becauseit couplesto variableswhich areof fourth
andhigherordersin the externalfield amplitudes,whichis beyondthe leadingorder (3) for four-wave
mixing processes.The secondterm in eq. 4.16) accountsfor phononscattering.The calculationof the
self-energykernel .�(k,v; p, p’) [v (i-’, v’, v”, v”)} is addressedin appendix A (eq. A.16), and
remarkssimilar to those following eq. (3.26) for the exciton self-energyapply here.In particular, we
seeagainthat the “center-of-mass”wavevectork is conservedin the scatteringprocess.Finally, the last
two contributions in eq. (4.16) accountfor creationof two-particle coherencesfrom existing single-
particle amplitudesand new polaritonsgeneratedby externalfields [cf. the generationterm in eq.
(4.13a)1.

4.3. Polariton dynamicsprobedby transientgrating spectroscopy

We now apply the two-particlepolaritonhierarchy[eqs.(4.13a)and (4.16)] to theTO experimentin
the limit of strongpolaritoneffects. Two externalpump fields [(k, cvi) and(k~,a)2)] createpolaritons,
k1 ,i~ and k2 v2, resulting in a gratingcharacterizedby the wave vector Ic1 — k2. After a delaytime T, a
probepulse (k~,w3) generatesprobe polaritons,k3 v3, which interactnonlinearlywith the grating and
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give rise to signal polaritonswith wavevectork~ Ic1 — Ic2 + k3. The amplitude~k~(t) determinesthe
amplitudeof the observablefield at k k — k~+ k~.From eq. (4.13) we observethat the nonlinear
sourceterm for the signal polaritonsto third order in the externalfield amplitudesis given by

f (1) (2)
~xk~ Zk2v,.tYt. l~3 k3v3 1 2’ 4.17

wheresuperscriptsin parenthesesindicate the order in powersof the externalfield amplitudes.We will
assumean off-resonance(square)probe pulse that is short comparedto the typical time scale for
populationdecay. On this time scale,the amplitude~~t) thenbehavesas a deltafunction centered
aroundt =~-,so that the time-integratedsignal intensity(to third order in the externalfield intensities)
is given by

S(T) f dt I ~
3~(t)I2 W~2~(k~- Ic,, T)I2IE~I2. (4.18)

Thus, as in the excitontheory of section3.4, theTO signalis determinedby theexciton populationat
the gratingwavevectorkg k

1 — k2. This is a direct consequenceof the fact that theexcitonpopulation
operatoris really the only nonlinearityin our system(cf. section3.1; the photonsareperfectbosons).
The difference with the theory of section 3 is, of course, that now the evolution of the exciton
population occurs within the completepolariton system[eqs. (4.14)—(4.16)] instead of the isolated
exciton system. We thus take into accountthat, even though thereare no external fields during the
pump-probedelay, the (microscopic) radiation field still affects the material. The TG signal is a probe
forpolariton dynamicsduring the delayperiod. A seconddifferencebetweenthe excitonandpolariton
approachesis the initial condition immediately following the pump pulses. In section3, thesewere
exciton amplitudesandcoherences(eqs. 3.44), whereasin the presenttreatmentpolariton amplitudes
andcoherencesareappropriate.Usingeq. (4.13a) for squareexcitationpulseswith amplitudesE anda
durationT~ that is short enoughto neglectthe self-energy(Tel~ °~ 1), we obtain

= A(k1v1, k)tE exp(—iw,t), j = 1,2, 0< t< Te . (4.19)

This leadsin particular to the initial condition for the delayperiod

~‘c~(Te)= A(k1~1,k~)TeE~exp(—ia)iTe). (4.20)

More directly relevantto the descriptionof the TO, are the initial conditions for the two-particle
variablesE~(kg~p, t). Using eq. (4.19) in eq. (4.16) and neglectingthe self-energycontributions
during the pulses,we obtain

E~
2(kg,~O,Te) = A(k

1i.’~,Ic)A*(k2v2, k~)E~E~*T~exp[i(W2 — a)t)Te] 6PPg (4.21)

with Pg (Ic1 + Ic2)/2. Note that this result is consistent with the factorization K ~~V,(t)~kV(t)Y2) =

~ during the pulses, which results from the fact that phononscatteringcan be
neglectedfor theseearly times. An analogousfactorizationhasbeenused in section3.4 to determine
the initial two-particle excitonvariables.
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In summary,the TG signal can, in principle,be calculatedfrom eqs. (4.18) and (4.14)after solving
the coupledequationsof motion (4.16) for the two-particlevariablesE~(kg,p, t) (for all p andwith
kg Ic1 — Ic2 fixed) during the pump-probedelayperiod.During this period, the last two terms in eq.
(4.16) are absent(no externalfields) andthe initial conditionfor this period is given by eq. (4.21). In
practice,we haveto restrictthe treatmentto simplemodelsfor the self-energy(or scattering)kernelto
find analyticexpressionsfor the signal. Beforediscussingsuchmodels,we give a generalresult. In the
absenceof scattering(low temperature),the TG signal does not decay. Namely, the solution of eq.
(4.16) for Ic = kg is in this casetrivially given by the initial condition (4.21) with an additional phase
factor exp[i(a)2 — a)1)r]. As this factor gives the only T dependenceof W(kg, T), the signal does not
dependon Tat all. It shouldbe notedthat this resultdoesnot rely on the approximationeq. (4.14),but
alsoholdsif the completeform eq. (4.12) for the excitonpopulationis used.The physicalexplanation
is, of course,that the initially createdpolariton coherence(eq. 4.21)is an eigenstateof the systemin
the absenceof scattering.

We now discusstwo specific modelsfor the phonon-inducedscatteringkernel~(k, ii; p, p’) in eq.
(4.16), for which analytic resultscan be obtained.In the excitontheory,we usedthe Haken—Strobi
model. As discussedin section3.5, this is a (high-temperature)strong-collisionmodelthat scattersall
excitonsinto eachother with equal rate F, irrespectiveof their energies.Using the samemodel for
polaritonswould be very unrealistic. First, becausetheseexcitationsspan an enormousbandwidth.
Second,it is only the exciton componentof the polariton that couplesdirectly to phonons,so that
photon-likepolaritons cannotbe scatteredvery strongly. A simple model that takestheseconsidera-
tions into account,is a restrictedHaken—Stroblmodel,which is definedas follows. All polaritonswith
excitoncomponentsIXkvI > ~scatterinto eachotherwith equalrate1, whereasall other(photon-like)
polaritonsdo not take part in the scatteringprocessat all. This modelboils down to the Haken—Strobi
modelfor the restrictedset of exciton-like polaritons,which (section4.1) constitutethe upperpolariton
branch for IkI < k0 and the lower branch for III > k0 (k0 1101c marks the photon—excitonband
crossing). We thus consideronly oneeffective branch(i.e., only one polariton per wavevector) with
width f (fig. 7), so that branchlabelscan be droppedwithout ambiguity.
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Fig. 7. Illustration of therestrictedHaken—Strobiscatteringmodel for polaritons. All polaritons within theshadedregionof width! (eq. 4.6) have
excitoncomponentsgreaterthan (section4.1) andare assumedto scatterinto eachotherwith equal rates. f2~is the excitonfrequencyat zero
(optical) wavevectorandk0 = Q0/c indicatestheexciton—photon(dasheddiagonal) bandcrossing.The polaritonstopgapis not shownandexciton
dispersionhas been neglected.
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In the Laplacedomain,eq. (4.16) for k = kg now takesthe form

p, s) = [ia)Pk /2 — ~a)p+k/2 — (1 + yp)]E12~(kg,p, s)

+ (i,/N) ~ E12~(kg,p’, s) +
1E

12~(Icg,p, t = 0) , (4.22a)

with the initial condition

E~2~(kg,p, t = 0) ~e~ (4.22b)

Here we assumedthat initially exciton-like polaritonsare excited. In eq. (4.22a)we addedan overall
loss of polaritonswith rate y~.The equationof motion is identicalto eq. (3.43),exceptthat the exciton
dispersion and scatteringrates are replaced by those for the polaritons. The solution for the
E12~(kg,p, s) is, therefore,easilyobtainedby analogyto the solution in section3. In calculatingthe
signal from this solution, we use one more approximation,namelywe replaceeq. (4.14) by

W12~(kg,s) (2/N) ~
1E~

2~(kg,p, s) . (4.23)

We thus approximateall polariton transformationcoefficientsXkV for the exciton-like polaritonsby
unity. Admittedly, this is a strongdiscretizationof theexcitoncharacter,but in view of the very simple
scatteringmodel, it seemsunnecessaryto accountin a morerigorous way for thesecoefficients.The
solution for W(kg,s) is now of the same form as eq. (3.46b), with F—~f.,, y—~y~, and
~(P)~~ ~ — ~p+k~/2~ In the coherentlimit (1 = 0), this yields for the signal

S(T) = exp(—2y~r) (coherent), (4.24)

which agreeswith our generalconclusionthat in the absenceof scatteringthe signal does not decay
(apart from the trivial population loss with rate ~ In the opposite limit of strong scattering

~‘ kt)p_y~— °~p+k~/2I~~ we obtain, in analogyto eq. (3.49),

S(T)= exp[—2(y~+ DPI/C
1 — k,1

2)T] (incoherent), (4.25)

with the polariton diffusion constant(tensor)

1 1 2
D~ —~—--~~ ~ (a)P_kg/2— ~~+k

0/2) . (4.26)
g ~

Here, we assumedthat ~k = ~k~’ which holds undergeneral symmetryconditionswith respectto the
experimentalsetup. -

Equation(4.26) can be rewritten using the polariton groupvelocity v~(p) ~ [cf. eq. (3.38a)].
For an isotropic d-dimensionalsystem, a), is a function of I~Ionly and we have

(4.27)
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with aneffectivepolaritongroupvelocity. As polaritonshavea photoncomponent,it is clear that
is larger than the effective exciton groupvelocity ~e (eq. 3.38b) for the samesystem.Thus, ignoring
possibledifferencesin the excitonandpolariton scatteringrates,the generaleffect of polaritonson the
TO will be to acceleratethe decay.An estimatefor ~ is calculatedin appendixD, within the infinite
effective exciton-massapproximation(iJ~= 0 then!) on a simple cubic lattice. We find

(tJ~Ic)2 ~T(fII1)(aIA
0)

3, (4.28)

with a the lattice constantand A
0 = 2i~c/u2the vacuumwavelengthcorrespondingto the molecular

transition.
Although, strictly speaking,our crystalmodel is oversimplifiedto fully representaromaticmolecular

crystals,it is temptingto useeq. (4.28) alsofor thisclassof crystalsby replacinga
3 by the volume of a

unit cell. We thenobtain 2 x i05 cm/s and U~ 106cm/s for the lowest singlet a-transitionsin
naphthaleneand anthracene,respectively.(Forf and11, we usedthe valuesgiven in section4.1; for a3,

we used400A3 for naphthaleneand600A3 in the caseof anthracene.)This result for anthraceneis an
orderof magnitudelarger thanthe estimatemadeby Agranovichet al. [51] for the relevantpolariton
groupvelocity (seebelow). In view of the simplemodelandthe approximationsused,it is not surprising
to find such a largediscrepancy.

The situationin anthraceneis probably muchbetter describedby the secondscatteringmodelthat
we wish to discusshere:the bottleneckmodel.This model is inspiredby the explanationby Agranovich
et al. [51, 52] for the TG experimentson anthracenecrystalscarriedout by Rose et a!. [2b]. Let the
experimentbe such that the two pump pulseshave frequenciesjust in the exciton band,so that they
excite first-orderpolaritonswith high wavevectorand strongexcitoncharacter(fig. 8). Accountingfor
a positiveeffectiveexcitonmass,it is reasonableto assumethat at low temperature,polariton—phonon
scatteringwill causethe initially createdpolaritonsto relaxrapidly to the bottleneckregion,wherethe
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,,/r~ottIenec~

WAVE VECTOR

Fig. 8. Illustration of the bottleneckmodel for polariton scattering.Comparedto fig. 7, alargerpart of theBrillouin zone is shownand a finite
(positive) effective excitonmass has been included. High wave-vectorpolaritons in the lower branchare excited by pulses with frequenciesjust
above Q

11 (the zerowave-vectorexciton frequency)andrapidly relax to the polariton bottleneck,where theactualTG decaytakesplace.
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densityof stateslevelsoff. This classical(particle)picturetranslatesinto the following modelfor rapid
initial relaxationof the polariton coherences~(k, p, t).

(i) The polaritoncenter-of-masswavevectork is conservedat its initial valuekg = k1 — Ic2 we have
obtainedthis previouslyas a generalresult for phonon-inducedscatteringprocesses.This is equivalent
to the assumptionin ref. [52] that during the rapid relaxationprocess,the spatial densityof polaritons
createdby the interferingpump pulsesis unchanged.

(ii) p relaxesrapidly to the bottleneckregion.This is equivalentto the statementin ref. [52] that the
polariton momentum(wave vector) relaxesrapidly. In general,p must be expectedto be distributed
over the entire bottleneckregion after the relaxation,becausemany scatteringstepsinvolving many
different phononscan takeplaceduring this process[52]. We notethat theclassicalinterpretationof p
as the polaritonmomentumthat relaxesto the bottleneck,only makessenseif Ikg/21 is small compared
to the wave-vectorwidth of the bottleneckregion. Only then does the coherenceE’(kg, p, t) involve
two polaritonswith wavevectorsp ±kg!

2 that alsolie within the bottleneckregion.For the experiments
on anthracene,this is indeedthe case,as thesewere carried out at very small crossangles ~9of the
pump pulses,so that the gratingwave numberwas always muchless than opticalwave numbers[2b].

If the initial relaxationis fast enough,the observedpart of the TO decaynow starts from a new
initial conditionfor thecoherenceswithin the bottleneck.We will assumethat within the bottleneckall
polaritonsscatterinto eachotherwith rate1~,andthat thereis an overallloss of polaritonswith rate y~.
Like the first scatteringmodel that we discussed,this defines a restrictedHaken—Stroblmodel, for
which the equationof motion (4.16) can be solved analytically. To calculate the signal from this
solution,we useeq. (4.23),which is a good approximationin the bottleneck,becausethe coefficients

I xkVI arecloseto unity there.Nevertheless,the polaritongroupvelocity may differ appreciablyfrom the
bareexciton groupvelocity [60]. Let ~1b denotethe typical group velocity in the bottleneckregion. If

~ k~IVb, the polaritonmotion is diffusive on thelengthscaleof the gratingandwe recovereq. (4.25)
for the signal, with the diffusion constanteq. (4.27), except that the effective group velocity rJ~is
replacedby Vb.

This result is independentof the exactinitial conditionwithin the bottleneck;such an insensitivityto
the initial conditionwasalsonotedin the strongscatteringlimit of the excitontheory (section3.4). The
presentexpressionfor the signal was alsousedby Agranovichet al. [51, 52]; our approachshowshow
to derive it microscopically. For anthracene,Vh i05 cm/s; combining this with a scatteringlength

i0~cm (estimatedfrom absorptiondata),one arrivesat D~ 1 cm2/s [51], which agreeswith
the observedvalues [2b].= We concludethe discussionof the bottleneckmodel by noting that in the limit of weakscattering,

‘~ IICg! Vh, the initial conditionis in generalimportantfor the form of the TG signal. Decaywill always
occur, evenif .f, = = 0, becausethe initially populatedcoherencesS(kg,p, t) for differentp valuesin
the bottleneckwill dephasewith respectto eachother.

4.4. Polariton effectsin frequency-domainfour-wavemixing

In this sectionwe discussthe degeneratefour-wavemixing experimentin termsof polaritons.Two
cw external electric fields with wave vectorsk, frequenciesa)

1, and amplitudesE~(j = 1,2) are
incidenton the crystalandwe areinterestedin the signal with wavevectork~= 2k~— k~andfrequency
a)0 = 2a)1 — ~ The amplitudeof this signal is proportionalto the amplitudeof thepolariton with wave
vector k5 = 2k1 — k2 that is generatednonlinearlyin the crystal by the first-orderpolaritonswith wave
vectors k1 and k2. Our descriptionis basedon the temporal Fourier transformsof the two-particle
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polaritonhierarchyeqs. (4.13a)and (4.16). We will confine ourselvesto the restrictedHaken—Strobl
model introducedin section4.3, and, as in the exciton theory of section3.3, we will only calculate
contributionsto the signal with possible resonancesat a)

12 — 0.
Fromthe Fouriertransformof eq. (4.13a)wefind for the signal amplitudeto third order in the field

amplitudes

(xk~ — zk~)y(kl~1)~~1(a)t) ~ E~
2~(k~,p, w

12) , (4.29)

wherewe usedeq. (4.23)and kg = Ic1 — k2, as before.The two-particlevariablesfor differentmomenta
p obey coupledequationsof motion thatareobtainedfrom eq. (4.16)with the restrictedHaken—Strobl
scatteringmodel,

~ia)i2E~
2~(kg,P’ w

12) = [~(Wp_kg/2— a)~~~12)— (~+ yp)]E~
2~(kg,P’ w

12) + ~ ~ p’, a)12)

+ [~~~~*(a)2)A(kl~, k )E~+ pi(a)l)4*(I~2 ~‘2’ k~)E~*]3pp (4.30)

pgns(k1 +k2)/2.

This equationis solvedin the standardway (appendixB) andafter substitutingthe first-orderpolariton
amplitudesfrom the linear approximationto eq. (4.13a),we obtain

(3) y(k1v1)A
2(k

1i.’1,k~)A*(kP k~)(E~)
2E~*

~k~(a)S)~(xk~ Zk~) . . =0~ ~0 SO —1a)t
2_1(a)k2—wki)+

1+yp

~(~— ~ (—i~
2— ‘~p_k~J2+ ~p+k~/2 + + ~~Y’). (4.31)

We will assumethat the secondfactor on the r.h.s.hasno sharpdependenceon a)12. For excitons,this
was found as a result of cancellationsbetweenthe source

0R and the quantity —iw
12 — i[J(k2) —

J(k1)] + F + y in eq. (3.32). In the presentcase, ~UR is replacedby the factor multiplying ~ in eq.
(4.30), and a cancellationis not likely, eventhough we haveno detailedform for A(kv, k’). Note,
however,that a)1 = ~k and w2 = ~k’ as the frequenciesof the first-orderpolaritonshaveto equalthe
frequenciesof the externalfields. This is an essentialdifferencewith the exciton theory.

We thusconcludethat thefirst denominatoron the r.h.s.of eq. (4.31)doesnot dependon w12 at all!
Any w12-resonancemustemergefrom the last factor,

R(kg, w12) (i — ~ (—iw12 — ‘~pk0I2+ ‘~P+kg/2+ + ~~Y’). (4.32)

For = 0, wehaveR(kg, a)12) = 1, so that no w12-resonanceis found. Conversely,in the limit of strong
dephasing(1 ~‘ yr,, ~P~g/2 — a)p+kg/2I)~we find (cf. appendixC),

R(kg, ~I2) = 1 + 1,/(—iw12+ ‘y~+ D~k), (4.33)
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with D~the polariton diffusion constantas definedin eq. (4.26). The intensityof the D4WM signal,

~II2HR(~1~g,a)

2)!

2, then exhibits a Lorentzian resonanceanalogousto the one in eq. (3.35)
(replace I’-...*i, y—*y~, D~—*D~).Comparingthis with our resultsin section4.3, we also conclude
that, as in the excitoncase,the amplitudeof the D4WM signal is relatedto the amplitudeof the TG
signal by a single Fourier transform.

5. Concluding remarks

The calculationof the nonlinearoptical responsein condensedphasesis a complicatedmany-body
problem involving the material and the radiation-field degreesof freedom. Numerousapproximate
schemeshavebeendevelopedover the yearswith variousdegreesof sophisticationin order to calculate
optical nonlinearities[19—23,70, 71, 92]. The presentreviewprovidesa unified theoreticaldescription
which clarifies the interrelationshipsamongthe differentschemesand their rangeof validity. Figure 9
illustratesthe systematichierarchy of approximations.Startingwith the multipolar Hamiltonian [73]
which is fully retardedand containsno explicit intermolecular interactions,we can rigorously derive

[ Multipolar

(no inteimolecularinteractions)

Eqs. (2.9)

Maxwell Eqs. & Material Eqs.

(with intemiolecularinteractions)

WeakField-MatterCoupling StrongField-MatterCoupling

— excitons potaritons
Maxwell field externalfield

susceptibilities signal

4, _ _
Two-ParticleDescription .

Two-ParticleDescnption
excitontransport

polantontransport
degeneratefour-wavemixing ______________________________

4, ISingle-ParticleDescription

Single-ParticleDescription
—I anharmonicoscillators

local-fieldapproximation

Fig. 9. Schematicdiagramshowing the hierarchy of approximationsusedin this paper.
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Heisenbergequationsof motion (eq. 2.9) in which intermolecularforces are explicitly included[76].
Equation(2.9),which appliesto any materialandfield operatorQ, is the startingpoint for the present
microscopictheory. For Q = E, we get the Maxwell equation(eq. 4.3b). In simple single-molecule
theoriesof nonlinearresponse,oneoften usesthe Schrodingerpictureandsolvesfor the densitymatrix
[19—23].This procedureis impracticalfor complexmany-bodysystems,sincethe completemany-body
densitymatrix is very complicatedand containstoo muchinformation. The Heisenbergequations,on
the other hand, allow the direct calculationof the relevantobservables.

At this point, as shown in fig. 9, we should follow two separateroutes, dependingon the
radiation—mattercouplingstrength(f). The keyparameterisf/F(k). The excitondephasingrate 1(k)
maybe obtainedfrom linear opticalmeasurements[seeeq. (3.12b)]. If it is sufficiently large[1(k) ~‘f],
it destroys the coherencebetween the radiation and exciton modes, which then become weakly
coupled.In this case,the material—radiationcorrelationscan be neglected,andwe mayderive coupled
equationsfor the field and the material degreesof freedomas illustrated in the left route in fig. 9
(section3). The field satisfiesthe Maxwell equationswhereasthe materialsystem(excitons)satisfiesan
infinite hierarchyof coupledequationsin which thepolarization K P~is coupledto the expectationvalue
of the Maxwell field and to higher variablessuch as K PW), which in turn couple successivelyto
higher-ordervariables.By solving theseequationsperturbativelyin the averageMaxwell field E, we
obtain the optical susceptibilities~ ~ etc.

The successof this methodis basedon the fact that the linear opticalpropertiesof the systemdepend
only on single-particlestateswhereasweaknonlincarities,suchas ~ and~ dependonly on a few
particles.This situation,which is similar to the zero-temperaturemany-bodytheory [44, 811, allows us
to truncatethe hierarchyvery early andstill maintainthe essentialphysicsof the system.The simplest
approximationis obtainedby factorizingat the single-particlelevel (section3.2). In this case,the only
relevantmaterial dynamicalvariables(by assumption)are the polarization variables.The nonlinear
susceptibility ~ can then be written in various equivalentforms. Within this factorization, the
local-field approximation [eqs. (3.19) and (3.20)] holds, and the many-body problem reducesto
essentiallya single-bodycalculation.We further recoverthe coupled-oscillatorexpression(eq. 3.14a)
with interaction-inducedcorrection terms. At this level of description, the susceptibilitieshave
resonancesat the Frenkel exciton energies,exciton transport is not accountedfor, and we cannot
describethe TO or degeneratefour-wave mixing experiments.

When the hierarchyis truncatedatthe binary (two-particle)level (sections3.3 and3.4), we obtaina
good description of quantumtransport and we can make the connectionto the phenomenological
macroscopictreatmentsof the gratingexperimentwhich usemasterequations,the Boltzmannequation,
andthe diffusion equation(section3.5). The single Fourier-transformrelationbetweenthe TO and its
frequency-domainanalogue(degeneratefour-wavemixing) is demonstrated.

The two-particle descriptionillustratesthe limitations of Bloembergen’sclassicalanharmonicoscil-
lator picture [19]. When nonlinearitiesare important, new dynamical variables (other than the
polarizationP) becomerelevant. The oscillator model neglects the contributions of theseadditional
variablesandrequiresthe factorizationof everyvariablein termsof the polarization.In our equations
we choose a particular two-body factorization in which W is the source of nonlinearity. This
nonlinearity is local in space (intramolecular)and seemsadequatefor the calculation of the TG
experiment,sincethe signal dependson W. It shouldbe emphasized,however,that alternativesources
of nonlinear evolution may be important in other situations[47, 59] (cf. section3.1). In particular,
enhanced(cooperative)optical nonlinearities,which may be observedin molecularaggregates,have
beenshown to originate from intermolecular(nonlocal) nonlinearities[35]. The presenthierarchy is
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illustrated in fig. 9. The single-particledescriptioncan be obtaineddirectly from eqs. (2.9) (asdonein
section3.2), or by factorizing the two-particle variablesinto productsof single-particlevariables.

When the oscillatorstrengthper unit volume is sufficiently largeand dephasingprocesses,are slow
[f ~ 1(k)], the radiation andthe excitondegreesof freedomare strongly coupled,andtheyshould be
treatedas a single dynamical system. In this limit, the descriptionof optical processesin terms of
polaritonmodelsis mostnatural (section4) andis illustratedin the routeshownon the right sidein fig.
9. Although it is formally possibleto definenonlinearsusceptibilitiesevenin this limit [66,67], theyare
complicatedandnot particularlyuseful. In section4 we developa polaritonhierarchy[76]which allows
us to expandthe nonlinearsignal directly in termsof the external fields (ratherthanthe Maxwell fields)
and to abandonthe notion of susceptibilities.Note that this expansionthen dependson the boundary
conditionsrelating the externalfield to the polaritons.

Ovander[59] has incorporatedpolariton effects in nonlinearoptics, by expressinghis total Hamil-
tonian, which alsocontainscubicandquarticterms,in termsof the polaritoncreationandannihilation
operators.The harmonic (quadratic)part then assumes,by definition, the simple form of a set of
noninteractingharmonicoscillators (the bare polaritons). The anharmonicterms yield, evenfor the
simplestapproximationsof the polaritontransformation,a largenumberof interaction termswhich are
responsible for nonlinear processes,and Ovander treats them as perturbations to the harmonic
Hamiltonian. The Fermi goldenrule is used to evaluatepolariton fusion and fission rates,which are
relatedto, e.g., the sum harmonicintensity, the Ramanscatteringintensity, etc., dependingon the
specific perturbationterm underconsideration.This formulationhas severallimitations. The resulting
Hamiltonian is very complicated,the Bose approximationused for the Pauli operatorsresultsin the
neglectof intramolecularnonlinearities,and the Fermi goldenrule doesnot suffice to treatnonlinear
processesof orderhigher thanthree;higher-orderperturbationtheory hasto beusedto describethese.

Our polariton hierarchy does not suffer from these difficulties. In the strong-couplingregime
analyzedin section4, the TG probes the dynamicsof polaritons.Like the exciton motion, polariton
dynamicscan be either coherentor incoherent(diffusive), dependingon the magnitudeof polariton
dephasing.Two conditionshave to be satisfiedin order for the dynamicsto show diffusive polariton
motion,namely,1(k) ‘~fand ~=I~pk02— a)p+k~2!(section4.3). Theexcitondephasingratehasto be
sufficiently small for the elementaryexcitationsto be polaritonsandthe polariton dephasingshouldbe
sufficiently large to makethe motion incoherent.Both conditionscan be satisfiedsimultaneously.A
two-particle and single-particlelevel of approximationexists for polaritons, in completeanalogywith
what we derived for excitons. Since our interest is in polariton transport, which is absent in the
single-particledescription,we consideredonly the two-particle level.

An importantconclusionof the presentanalysisis that observationof coherentexciton motion for
dipolar excitonsis impossible,because,whenexcitondampingis smallenoughto give coherentexciton
motion, the radiation modesare necessarilystrongly coupledwith the polarization, so that polariton
effects becomesignificant. Coherentexcitonmotion over distancesgreaterthan the opticalwavelength
is thereforean unrealisticand oversimplified model of elementaryexcitationsin molecularcrystalsat
low temperatures.

The presentformulation andequationsof motion can be directly usedandextendedto treatoptical
nonlinearities in other systems.There is currently a growing interest in the optical propertiesof
nanostructures[108—113].These are fabricated molecular assemblieswith specific molecular-level
order.Examplesare clusters,monolayersandmultilayers. Our equationsof motion areideally suited
for the microscopiccalculationsof optical nonlinearitiesin thesesystems.Other interestingextensions
of the presentformulation involve the incorporation of short-rangeforces and static and dynamical
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disorder [82]. This is important for calculating optical nonlinearities in doped glasses,polymers,
solutions,and in mixed crystals.
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Appendix A. Elimination of phonon degreesof freedom

In this appendixwe discussthe elimination of phononvariablesunderlyingthe variousself-energy
and scatteringkernelsfor excitonsandpolaritonsgiven in sections3 and 4, respectively.To this end,
severalapproachescan be used,which do not differ essentiallyin their results[42, 68, 114]. Herewe
usethe projection-operatortechniquewhich was alsoemployedin ref. [68]. The relevantHamiltonian
for our problemreads

Hs+Hph+Hsp. (A.1)

Here i~[~ standsfor the “system” Hamiltonian. To=describethe scatteringof excitons on phonons

(section3), we choosethe excitonHamiltonian for H5,
HS=h~QkE~&. (A.2a)

(Weusethe Heitler—Londonapproximationin this appendix.)To describepolariton—phononscattering
(section4), we choose

11S = /1 ~ ~kv5~kvS~kv’ (A.2b)

with ~kp the polariton dispersionin the absenceof exciton damping [1(k) = 0 in eq. (4.6)]. Both
excitons and polaritons are treated as bosonsin the calculation of the self-energies.The phonons
constitute a “bath” and are describedby the Hamiltonian HPh (eq. 2.13). Finally, H5~denotesthe
system—bathinteraction (eq.2.14). If we takethe polaritonsas the system,H5~hasto be expressedin
terms of polariton operators,which is done usingthe inversepolariton transformationeq. (4.9b); it is
customaryto make the approximationZkV = 0 when doing this [60a,68, 80].

We will work in the SchrOdingerpictureanddefine15(t) to be the total densityoperatorof the system
and the bath. We now define a projection onto a reduceddensityoperatorby [68, 115]

&(t) PphTrPh,5(t), (A.3)
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where~ is the densityoperatorfor phononsin thermalequilibrium at temperatureT andTrPh traces
over the phonon degreesof freedom. The details of this projection can be found in ref. [68]. In
particular,it can be shownthat up to secondorder in H5~,the contributionfrom thephononbathto the
evolutionof the expectationvalue of an arbitrarysystemoperatorO~,is given by

(~K O5(t)~) = — J dt’ Tr[{L5~ exp[iL~(t— t’)] L5~O

t}t&(t’)], (A.4)

hL
5Ons[fI~,O1 , hL~~Ons[fI5~,O1 , (A.5a,b)

whereTr denotesthe total trace.
We first consider the exciton caseand calculate the effect of the phonon bath on the variables

KBk(t)) and KBk.(t)Bk(t)~. For KBk(t)), the result is readily obtainedfrom the scatteringcontribution
to K ~k~(t)’1 that was derivedin appendixA of ref. [68]. To this end, we drop the branch-labelsand
-sums in that derivation,we replacethe polariton dispersionby the exciton dispersionand we set all
polaritontransformationcoefficients Xkv equalto unity. Without further derivationwe give the result
within the Markov approximation,keepingboth the frequencyshift and width,

[(d/dt) K ~k(t) )]ph = —i.~(k)K bk(t)) , (A.6a)

with the complexself-energy

~(k)~ -~ lim ~ IF~(Ic,q)I2( K’~qs~i + Kt’qs + 1)T - )
/1 N i~—=()~ q.s

12k+q — — [Iq, 17) 11k+q — + — iS]
(A.6b)

F
5(k, q) = F5(Ic, q) + y~(q).

Here K flq~) T is the thermal (Bose—Einstein)occupationof phononswith wave numberq in branchs.

We note that this result can alsobe derivedon the operatorlevel [114],which we usedin eq. (3.1).
Taking the limit s~—~0± explicitly, we arrive at eqs. (3.3) for the phonon-inducedfrequencyshift and
damping rate of the exciton. Of course, KB~(t)~obeys eq. (A.6a) with .~(k)replacedby ~~

0(k)
[~0(k) denotesthe complexconjugateof .~(Ic)].

We now briefly outline the derivation of the phononcontribution to the evolution of the exciton
coherenceKB~.(t)Bk(t)),which we need in section 3.3. We take O~= BkBk in eq. (A.4), and
straightforwardalgebraleads to (T t — t’)

L
5~exp(iL~r)LSP(A~Ek.)= ~ F0(k, q) exp[i(Ilk+q Qk)T] LsP[A~+qEk’kqs(T)]

— ~ ~(k’ — q, q) exp[i(Ilk — 11k~q)T]Lsp[E~Ekqkqs(T)],
‘P1.’ (A.7a)

(qs(T) ~q.sexp(—iQ~0T)+ l~qçexp(i.12_qsT). (A.7b)
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For the commutatorsappearingin the r.h.s.of eq. (A.7a) we obtain

LsP[B~+qBk~Xqs(T)]

= ~ [~.(k + q, q’)E~±q+q~.— ~.(k’ — q’, q’)E÷qE~.q.](~q.s.+

+ ~ F~(k”,—q)E~+q&E~qEk[exp(iQ~qsT) —exp(—iflqsT)], (A.8a)

LSP[B~Bk.~_qXqs(T)]

= ~ [~(k, q’)~+qAkq - ~~(k’ - q - q’, q’)E~~.qq]kqs(r)(~q.s. +

+ ~ F0(k”, —q)E~qEk’ Bkq[~P(~QqsT) — exp(—i~q0T)]. (A.8b)

We will neglectthe last contributions(the k” summations)in theseequations,as theycoupleto ahigher
(quartic) exciton variable. We now combineeqs. (A.7) and (A.8), and after some straightforward
algebrawe obtain

Tr[{L~~exp(iL5T) LsP~ Ak)}
t~(t’)] = ~ fr~(Ic,q) exp[—i(Qk÷q— Qk’)T]G(T)

x [~(k + q, -q)KE~.(t’)E~(t’))- F~(k’+ q,

— ~-~_-- ~ F~(k’+ q, —q) exp[—i(Q~— Qk+q)T]G*(T)

x [F~(k, q)K E~+q(t’)&+q(t’)) - F~(k’, q)~ ,(t’)Ek(t’)~], (A.9)

G(r) KflqS~Texp(iulqsT) + (fl_qs + 1)T exp(—iQq
5T). (A.10)

Equation(A.9) combinedwith eq. (A.4) definesthe phononcontributionto the equationof motion

for K B~.(t)Bk(t)).This equationcan be madetime-local by applying a Markov approximation.To this
end, we approximate[68]

K E~.(t’)~,~(t’))K E~.(t)f3k(t)~exp[—i(Qk — Qk)T] , (A.11)

and we calculatethe remainingtime integralsby addinga convergencefactor exp(—~’r)(~~—*0~).We

thenobtain
[(d!dt) K ~ (t)Ek(t) ) ]ph = i[~*(k~)— Z(k)] K ~ (t)Ek(t) ~

+ i ~ [1”(k’, Ic, q) — .~(k,k’, q)](A~.+q(t)A~+q(t)~, (A.12)
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with .1(k) as defined in eq. (A.6b) and

- 1 - / Kn ). Kn +1~
~ lim ~F~(k,q)FV(k’,q)t\ q.s F + q5 T

Ii N n—~o ~k ±q — ~k’ — — D] ~k’ ±q — ~k’ + ~ qs —

(A.13)

The first r.h.s. term in eq. (A.12) simply containsthe uncorrelatedsumof the self-energiesof KE~.(t)~

and K Bk(t)), andis the “T1 “-contribution [22,75] to the total self-energyof K B~(t)Bk(t)). The second
r.h.s.term in eq. (A.12) reflectscorrelateddynamicsof the braandthe ket sideof the densityoperator

or pure dephasingcontribution) [22, 75]. If we rewrite eq. (A. 12) in termsof the variables
Q(k, p, t) introducedin section3.3, we finally arriveat the phononcontributionsin eq. (3.25) with the
self-energymatrix eq. (3.26).

We concludethis appendixby consideringthe casethat the polaritons constitutethe system(eq.
A.2b) and we give the phonon-inducedself-energiesfor K~kJt)~ andK~.~,(t)~k~(t)).In the approxi-
mation that the polariton transformationcoefficients Zk,, 0, the calculation is very analogousto the
onefor excitons,and we just give the final results,

[~K~(t))]~= -i~ IVV.(Ic)K~kV.(t)), (A.14a)

— lim ~ ~ F,(k, ~
Fl N ~ qo ~

~( Kn~S~T- + K~-qs+ 1~i . ); (A.14b)
— ~ — ~qs— 17? ~k±qe’ — ~~

1ke’+ —

[~K ~~,(t)L(t)) I ph = ~ [I VV,(k)~VV~- .1VV..(Ic)6V.V,,.]K ~.~,(t)~k~.(t))

+ i ~ ~ [~ Vpvp(Ic, k, q) — ~ Ic’, q)] K ~+qe(t)~k+qe(t) ~,

“p (A.15a)

~ Ic’, q) h2N ~ F~(k,q)~(k’,q)xkpx+qpx~.xk.±qp..

~( Kn~T - + K~-qs+ 1~ (A.15b)
— ~k’~’ — f2q., 17? ~k’±q~’ — ~‘1k’,’ + 12—qs 17?

Note that Eqs. (A.14b) and (A.15b) reduce to the exciton self-energieseqs. (A.6b) and (A.13),
respectively, if all xkV are set to unity, the (summationsover) branch labels are dropped,and the
polariton dispersion is replaced everywhereby the exciton dispersion.Equation (A. iSa) for the
two-particle polariton variablescan be rewritten in termsof the variables~ p, t) introducedin
section4.2. This leadsto the secondterm in eq. (4.16), with

v; p, p’)ns [~V.V...1VV..(P + k/2) — ~ — k!2)]~~.+ ~ + k!2, p — k/2, p’ —p)

— k!2, p + k/2, p’ —p), (A.16)

where ii is symbolic for (~i, t.”, i?’, u”).
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Appendix B. The two-particle Green function

In this appendix,we solve the equationof motion for two-particle coherenceswithin the Haken—
Stroblmodel. This equationis encounteredin sections3.3 (eq. 3.30),3.4 (eq. 3.43),4.3 (eq.4.22)and
4.4 (eq. 4.30). For explicitness,we adhereto the problem of section3.3; the other applicationsare
readily translatedto the notation usedhere.The equationof interestreads

ia)Q(p,a))[i~(p)(F+y)]Q(p,a))+(F/N)>~ Q(p’,a))+f(p), (B.1)

wherewe defined

= J(p — kg/2) — J(p + Icg/2). (B.2)

The variablekg is suppressedin all quantities,as the equationof motion is trivial with respectto it (kg is
conserved).The a)-dependenceis indicated explicitly, as this variable is independentof kg in the
time-resolvedapplications(sections3.4 and 4.3). Finally, we assumeda general sourcef(p).

For one-dimensionalsystems,eq. (B.1) hasbeensolved by Haken and Strobl [88], Reineker[54],
andGarrityand Skinner[55],usingeigenvectoranalysis.In this appendix,wewill solve eq. (B.1) using
the Oreenfunction methodof ref. [40].The problemin the equationis the secondright-handsideterm,
which resultsfrom puredephasingprocesses(—=1). In the absenceof this term,the equationis diagonal
in p and trivial to solve:

Q°(p,a)) G~(a))f(p), G~(a))= [—ia) — i~(p)+ t + y]’, (B.3a,b)

and expression(B.3b) is the unperturbedGreenfunction.
As the perturbationin the full equation(B.i) couplesto all momentap’ with equal strength, it

representsa single impurity in the Fourier spaceconjugateto p. Therefore,the full problemcan be
solved through a T-matrix analysis [116].We use the following Fourier transforms:

Q(m,a))=(i/V’N)~Q(p,a))exp(—iprm), (B.4a)

= ~ ~(p) exp[—ip (rm — r0)], f(m) = ~ f(p) exp(—ip~rm). (B.4b, c)

Equation(B.1) then translatesinto

~‘ H’~mn — + (t+ ~ — t5mn8mo]Q(n, w) f(m). (B.S)

The full Greenfunction in coordinaterepresentationis definedby

Q(m, a)) ~ Gmn(a))f(n), (B.6)

and is now easilyfound to obey

~[rnmmm+(f~Y)8mm t6mm’8mo]n’n(a))ömn~ (B.7)
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StandardT-matrix analysiswith F6mm8m() as perturbingpotentialnow yields [40]

Gmn(a)) = G~~(w)+ G~1(a))G~5(a))t![1— tG~0(a))]. (B.8)

Here, G°mnis the unperturbedOreenfunction in coordinaterepresentation

G°~~(a))= (1/N) ~ G~(a))exp[—ip. (rm — r,,)] (B.9)

[cf. eq. (B.3b)]. The eventual quantity of interestis [see,e.g., eq. (3.29)] ~~Q(p, a)), which can be
written as:

~Q(p, a)) = V~Q(m= 0, a)) = ~ G~n(a))f(n))[1 - tG~)(a))]~, (B.10)

wherein the last stepwe usedeqs. (B.6) and (B.8). Using eqs. (B.3b), (B.4c), and (B.9), we finally
arrive at

V ~~[_ia)_i~(p)+E+y]if(p)= . . = - . (B.11)
1—(1!N)~~[—la)—1i~(p’)+F+y] I

Appendix C. The diffusive limit of the D4WM intensity

In this appendixwe deriveeq. (3.35) for theD4WM intensityin thediffusive limit [t> J(p — kg!
2)

—J(p + kg/2)! (for all p) and t> yl. We start from

S(k,,a)
0)~!~g,a)12)!, (C.1)

R(kg, a)12) (i — ~ [—i~12— i~(p)+ 1+ ]i) (C.2a)

wherewe used the shorthandnotation

= J(p — kg/2) — J(p + Icg/2). (C.2b)

StraightforwardTaylor expansionyields

~ [—ia)12 — i~(p)+t+ ]1 ia)i2 + 1+ Y [i + ~ ~ — (~~+ ~~
1~C.3)

The secondterm on the r.h.s.vanishesupon summation[~~~9(p)= 0], because.~(p)is the differenceof
two lattice Fourier transformsandp runs over an entire Brillouin zone. In the third term within the
r.h.s. summation,we approximate—iw

12 + I + y 1, assumingthat over the frequency range of
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interest Iwt2! ~ 1’. This will be verified a posteriori. Substituting eq. (C.3) into eq. (C.2a),we then
arrive at

ia) +F+y t

R(k ,a)12) = 12 2 1 + . 2 (C.4)
g —iw12 + y + Dekg 1a)12+ y + Dekg

Dekg
2 (1/tN) ~ [~(p)]2. (C.5)

At this point, it is useful to note that R(k, w) is essentiallythe Green function for the exciton
populationW(k, a)) in momentum—frequencyrepresentation.This is seenby combining eqs. (3.24b),
(3.32), and (C.2a). In the last form of eq. (C.4), the term 1 may be neglectedrelative to the second
term,so thatwerecognizethe Greenfunction for a diffusing particlewith diffusion constantD~.Thus,
Dr hasthe meaningof an excitondiffusion coefficient; in general,De dependson the wavevectorkg.
Combining eqs. (C.1) and (C.4) andusing Dek~e~~ (becauseI~(~)I~ t for all p), we finally obtain

S(k
0,w,) = 1 + t(t+ 2y)![w~2+ (y + Dekg

2)2]. (C.6)

This signal has a Lorentzian resonancewith width y + Dek~.c~~, which justifies a posteriori our
assumptionthat 1w

12I ~ F in the frequencyregion of interest.

Appendix D. Effective polaritongroup velocity in the restricted Haken—Strobl model

In this appendix,we calculatean estimateto the effective polariton groupvelocity definedthrough
eq. (4.27) for the restricted Haken—Strobl model. Our system is not isotropic and the polariton
frequencydependsboth on the direction and the magnitudeof its wave vector. In order to obtain a
simple analytical result, we will replacethe dispersion relation eq. (4.6a) [with 1(k) = 0: strong
polariton effects] by that of transversepolaritons in an isotropic (atomic)systemwith transitiondipole
~ This dispersionrelation reads(a) is the polariton frequency)[43, 48a, 57]

(kc)
21w2= 1 +f2!(w~— w2) e(w), (D.1)

with f2 8~pQp.2/h[cf. eq. (4.6b)]. As mentionedin section4.1,f is the frequencyseparationbetween
the upper and lower polariton curves at the wave number k

0 where the exciton band and photon
dispersionline cross.In practice,f ~ (2. In eq. (Di) an infinite effectiveexciton massis assumedand
w1 is the transversedipolar excitonfrequencyat optical wave vectors(k 0) [48a],

= ((22 — f
2/3)”2 12 — f2/612. (D.2)

We also define the longitudinalexciton frequency[48a],

= ((22 + 2f2/3)”2 11 + f2/312. (D.3)

These expressionsfor w
1 and w11 are easily obtainedfrom eq. (3.6) and the approximationto the

dipole sumJ(k) given below(eq.3.17).In the continuumlimit for k (N, V—3 ~, N/V= p), we nowhave
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1 Jdkv~(k)= ~ Jdkk2v~(k). (D.4)

(~.ir)p 2rrp

The integralhastwo contributions:onefrom the upperbranch,extendingfrom k = 0 to k = k0, andone
from the lower, ranging from k = k() to the edgeof the Brillouin zone (fig. 7). It is convenientto
transform to the frequencyas variable,

f dk k
2v~(k)= f da) E(a))(a)!c)2v~(a)). (D.S)

can be found by taking differentials of both sidesof the relation

= k2c2. (D.6)

We then obtain

da) 2ca)\I~)v
10(a)) = = , 2 , r (w) dr/da) - (D.7)

dK E(W)a) +2a)r(w)

Using eq. (D.1), we arrive at

2 22(w —w)
v~(w)= c\/~ 2 2 2 2 2 ‘ (D.8)

(a).—a) ) +f~,

The ~/~(~j posesno problemas the integrationoccursoutsidethe regionwherer(w) <0 (thepolariton
stopgapranging from a)1 to

Combining eqs. (D.1)—(D.5) and (D.8), we arrive at

~p = ~ + I/~, (D.9a)

w~+j/2
2 2 23/2 2 2 1/2

1 1 w(a)a)) l~a)a))

1 2 I 2 22 22 ( . )
2~rpc .‘ (a) —w1) +fw1

2 2 2 3/2 2 2 i/2
~ (~—~ ) (~±—~)

‘2 = 2 j da) 2 2 2 2 2 (D.9c)
2lTpc (a) —w1) +fw1

Here we haveusedthe fact thatthe upperbranchhasas lowestfrequencyw11 andthe lower branchhas
highestfrequency o1. The other integrationboundariesaredeterminedby the polaritonfrequenciesat
k= k1, ~ = a)1 ±f!2,wherein eq. (D.9b) we approximatedw, +f/2 w~+f(1 f/12)/2 w11 +f!2.
(Use eqs. (D.2) and (D.3) and the fact that ff12 ‘~ 1.) As the integration domainsare restrictedto a
region close to the transitionfrequency12, a resonanceapproximationcan be appliedto the integrands.
After straightforwardchangesof variables,we arrive at
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fl/f
2 3/2 1/2

= ~ I dx x (1+x) (D.iOa)4ir2pc -1 (1 + x)2 + (12/f)2

fl/f

j = ~2Q f dx (1+ x)3~2x”2 (D.lOb)2 4rr2pc x2 + (12/f)2

As 12/f~s1, a good estimateis obtainedfrom

fl/f

~2_J+I~ 2 J dx 2 x2 2 f92 (1—~!4). (Dli)
F’ 2rrpc x +(IlIf) 2rrpc

If we define A
0 = 2ircKl, the vacuumwavelengthof the moleculartransition,anda the latticeconstant,

we finally have(1 — ir!4 1/4),

(lJ~!c)
2 ~r(f/12)(a!A

0)
3 . (D.12)
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