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Exciton-exciton interactions in doubly electronically excited molecular monolayers, may result 
in the formation of bound two-exciton states (biexcitons), whose binding is induced by the 
change in the molecular permanent dipole moments upon electronic excitation. We solve for 
the biexciton energies in the dipole approximation, and explore the effects of biexcitons on the 
monolayer nonlinear susceptibility. Calculations are made for monolayers with molecular 
dipole moments oriented either parallel or perpendicular to the monolayer surface. 

1. INTRODUCTION 

There is currently a great interest in the nonlinear opti- 
cal properties of geometrically confined excitonic systems 
such as semiconductor quantum dots, wires, and wells,‘-3 
and molecular aggregatesk6 and monolayers.“* The effects 
of sample size and shape on the excitonic resonances, life- 
times, and nonlinear optical response, provide an invaluable 
insight on the way bulk crystal properties evolve from single 
atomic or molecular properties. In addition, a microscopic 
understanding of the optical properties of geometrically re- 
stricted systems is important for the fabrication of nano- 
structure optical devices. Dramatic effects of reduced di- 
mensionality have been observed in semiconductors. The 
increased binding energy of Wannier excitons in quantum 
wells leads to a greater stability and consequently, an in- 
creased nonlinear optical response,* even at room tempera- 
ture where normally bulk excitons are not observed. Blue 
spectral shifts due to quantum confinement of Wannier exci- 
tons have been measured in semiconductor quantum dots 
such as CdS microcrystallites.3 Size effects have also been 
reported in molecular aggregates. For example, size-depen- 
dent spectral shifts and radiative decay rates occur in aggre- 
gated dye molecules such as cyanine dyes.- 

Molecular monolayers made by either Langmuir-Blod- 
gett or self-assembly methods’** provide an ideal system for 
studying the effects of reduced dimensionality. Very recent- 
ly, molecular beam epitaxial methods have been successfully 
applied for growing molecular multilayers.’ Monolayers of 
dye molecules with donor-acceptor substituents, whose ex- 
cited state involves an intramolecular charge transfer, are 
particularly interesting for nonlinear optical applications.* 
These systems are characterized by a large change in the 
permanent dipole moment upon optical excitation. The goal 
of the present work is to study theoretically the elementary 
electronic excitations in molecular monolayers. 

The linear optical properties of a molecular monolayer 
may usually be interpreted using a noninteracting (boson) 
picture of the elementary excitations, the Frenkel exci- 
tons.lG’* However, in order to calculate correctly the non- 
linear optical response, we need to go beyond the noninter- 
acting Frenkel exciton model, and consider the effects of 

exciton-exciton scattering due to the Pauli exclusion princi- 
ple, as well as attractive exciton-exciton interactions, which 
may lead to the formation of bound two-exciton states, de- 
noted biexcitons, and other exciton complexes (triexcitons, 
etc.). These new types of elementary excitations may strong- 
ly affect the frequency dependent nonlinear susceptibilities, 
and should be properly taken into account. The calculation 
of optical susceptibilities requires the carrying out of a sum- 
mation over all virtual excited states. Far from excitonic re- 
sonances, the main contribution to xc3’ comes from single- 
exciton virtual states (for molecular crystals these states 
correspond to Frenkel excitons or charge transfer excitons). 
However, for frequencies w which are close to the excitonic 
transition frequency w, , the frequency 2w will be close to the 
frequency of two-particle states 2w - 2w,. In this case, tak- 
ing into account exciton-exciton interactions is essential. It 
may result in the formation of biexcitons and consequently 
give new types of resonances. The exciton-exciton interac- 
tion was used by Toshich13 for the calculation of nonlinear 
susceptibilities. Its origin, related to the excited electronic 
state permanent dipole moments, was discussed in detail by 
Fox. I4 

The nonlinear optical response of a one dimensional ar- 
ray of nonpolar molecules was recently calculated by Spano 
and Mukamel.” The effects of exciton-exciton scattering 
due to the Pauli exclusion principle (with no binding poten- 
tial and hence no biexciton formation) were studied in de- 
tail. It was shown that the third order nonlinear hyperpolari- 
zability of a molecular aggregate, may indeed be enhanced 
by a factor ofN, and scale as -N * when the aggregate length 
Na is much smaller than an optical wavelength. Here, N is 
the number of molecules in the aggregate and a is the near 
neighbor intermolecular spacing. This enhancement also re- 
quires that the superradiant damping of the excited elec- 
tronic state NT be quenched by a rapid homogeneous de- 
phasing. ( y is the radiative decay rate of a single molecule.) 
However, as the aggregate length increases to values well 
beyond an optical wavelength, the enhancement levels off. A 
cancellation between excitonic nonlinearities and exciton- 
two-exciton nonlinearities prevents a coherent enhancement 
for molecules separated by more than an optical wavelength. 
A mapping of the system to coupled anharmonic 
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oscillators15’b’ provides a simple physical picture. Ishihara 
and Cho16 have calculated the third order response for a 
general combination of external field wave vectors. Their 
calculation, which neglected radiative damping, also 
showed that the cooperative enhancement levels off for large 
N. We expect the exciton-exciton scattered states in the two- 
exciton continuum of an infinite two-dimensional plane to 
behave in a similar fashion, i.e., the enhancement of the non- 
linear optical response should be determined by the number 
of molecules within a square optical wavelength (il /a)*. 
However, the possible existence of biexciton states, may lead 
to a resonance enhanced nonlinear response outside the two- 
exciton continuum. 

The theory of biexcitons closely parallels that of biphon- 
ons (bound states of two optical phonons), which were stud- 
ied in considerable detail.” The anharmonic nonlinear inter- 
action of biphonons arises from the fact that the energy of a 
double vibrational excitation of a single molecule is less than 
twice the single vibrational energy. Agranovich and co- 
workers” and Efremov and Kaminskaya” predicted that 
the existence of biphonon states should lead to new reson- 
ances in the second and third order nonlinear susceptibili- 
ties. Efremov and Kozhushner and Efremov and Kamins- 
kayal later showed the existence of biexcitons in a crystal 
with a general isotropic binding potential, and calculated the 
biexciton dispersion curve for a cubic molecular crystal. 

In this work we develop a theory for the biexciton ener- 
gy, and the transition dipole moment from the single-exciton 
state, in a molecular monolayer with Frenkel excitons, and 
use these quantities to calculate two-photon absorption 
(TPA), which is a common spectroscopic technique related 
to the third order nonlinear responseX’3). The effects ofthe 
Pauli exclusion principle are treated exactly. Single excitons 
coupled to the electromagnetic field, i.e., polaritons, in two 
dimensions have been investigated by Agranovich and Du- 
bovski” and Philpott and Sherman2’ and others.22.23 In 
these works one of the two polariton branches was found to 
be superradiant; the radiative lifetime is (/2/a)* times 
shorter than the lifetime of a single molecule.20 The present 
work treats the optical properties of Coulombic biexcitons in 
two dimensions. We do not consider the more general prob- 
lem of biexciton polaritons.23 

In Sec. II, the model Hamiltonian for a square lattice of 
two-level molecules which interact via transition and perma- 
nent dipole-dipole coupling, is presented. In Sec. III, the 
method by which biexcitons are calculated is developed. In 
the following section, biexciton dispersion curves, along 
with the transition dipole strengths are calculated for molec- 
ular dipole moments oriented either parallel or perpcndicu- 
lar to the monolayer surface. In dye aggregates these geome- 
tries are referred to as J aggregates and H aggregates, 
respectively.- The nearest neighbor transition dipole-di- 
pole coupling is negative in the former and positive in the 
latter geometries. The two-photon absorption is discussed in 
Sec. V, and our results are summarized in the final section. 

II. MODEL HAMILTONIAN 

We consider a two-dimensional square lattice with N* 
two-level molecules, each having a ground and an excited 

electronic state with transition dipole moment p and gas 
phase electronic transition frequency ~6. In addition, the 
ground and excited states have permanent dipole moments 
denoted pg and $, respectively. The effective system Hamil- 
tonian, including transition and permanent dipole-dipole 
interactions is derived in Appendix A [Eq. (A9)]. In the 
present work we retain only the terms which conserve the 
number of excitons, 

H=w, Cb!b,, +C V(m-n)bkb, 
n m,n 

+ zA(m - n)bkbib,b,. 
w 

(2.1) 

In Eq. (2.1) a factor of fi is omitted so that energy is in units 
of s-‘. The summations are over the entire 
lattice, i.e., mx,my = - (N- l)a/2 ,..., (N- l)a/2. 
(Throughout this article we take N to be odd, this should 
have no effect on our results since N will eventually be taken 
to infinity.) We assume cyclic boundary conditions so that 
m+ Nx =m, and m-j- Ny =m, where x and y are the 
square lattice vectors, x = ai and y = aj, where i and j are 
unit vectors and a is the lattice spacing. b d and b, are the 
creation and annihilation operators, respectively, for elec- 
tronic excitation at site n, obeying Fermi anticommutation 
relations when both operators correspond to the same site, 

[bi,,b,] + =h,m + (1 -4,m)2bt,b, 
and 

[b,,b,] + = (l--c‘L)2b,b,. (2.2) 
In Eq. (2.1) we have omitted a constant term E, which in 
our approximation is the permanent dipole interaction ener- 
gy when all molecules are unexcited, and is given by 
Eg = 4 I;,,” pu”, T,,puft . The near-field dipole-dipole interac- 
tion tensor is given by T,,,, = (? - 3rr)/?, where 
r = m - n. The monolayer transition frequency is renormal- 
ized to the value w. by the interaction of a single excited state 
permanent dipole moment with the remaining ground state 
permanent dipoles, and is equal to [see Eq. (A.3) ] 

wo -6 + C &,,T,,P:, (2.3) 
m,n 

with the change in dipole moment given by Ap,= CLf - pg. 
The second term in Eq. (2.1) represents the coupling be- 
tween transition dipole moments at sites m and n with [see 
Eq. (A.8)]. V(m - n) is given by 

V(m - n) = p,T,,pn. (2.4) 
The last term in Eq. (2.1) represents exciton-exciton 

interaction, and A(m - n) is given by 

A(m - n) = 1 Ap,T,,Apn. (2.5) 
In the present article, we further invoke a nearest neigh- 

bor approximation for the transition dipole coupling and the 
permanent dipole interaction, resulting in 

V(m - n) = K&ly”yhn,,n, * n + Vy&,,n,Knyn,* a (2.6) 
and 

A (m - n) = Ju&“ny~mx,n, * a + Ay4n,,n,4n,ny* cl* 
(2.7) 
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III. COULOMBIC EXCITONS AND BIEXCITONS 

When polar&on effects are neglected, a weak electro- 
magnetic wave of wave vector k, interacting with a molecu- 
lar monolayer, Creates Coulombic eXCitOnS of wave vector K, 

where K is the tangential component of k in the monolayer 
plane. Using the localized site basis In), where In) = b d IO) 
and IO) is the ground state with all molecules unexcited, the 
excitonic wave function is given by 

a(K) =; c ei”“lm). 
m 

(3.1) 

I( K) in Eq. ( 3.1) is an eigenstate of the Hamiltonian Eq.. 
(2.1)) with energy 

W(K) =Wg i- c V(m)e’““, 
m 

(3.2) 

and cyclic boundary conditions ( Im) = Im + Nx) 
= Irn + NY) ) require that K,,K,, = 2m/Na with 

n = O,l,... N - 1. Making use of Eq. (2.6), Eq. (3.2) be- 
comes 

W(K)=Wo + 2v, COS(K*X) + 2v, COS(K*y). (3.3) 

The calculation of the doubly excited wave functions is 
more complicated because two excitations cannot reside on a 
single site (Pauli exclusion principle), and because of the 
exciton-exciton interaction A(m - n). We calculate the 
biexciton states by generalizing a procedure originally devel- 
oped by Wortisz4 in treating bimagnon states in the Heisen- 
berg ferromagnet, to include an arbitrary form ofA (m - n) . 
We begin by writing a general translationally invariant two- 
exciton wave function, 

~(Io-~~~~e’~.Rd,(r)bi,_,,,,b:,+,,,,lO). (3.4) 

K is the momentum conjugate to the center of mass coordi- 

nate R for a pair of excitations separated by r. The periodic 
boundary conditions result in a wave function which is in- 
variant when R= (m + n)/2 is replaced by R + Nx/2 or 
R + NY/~. This yields the following allowed values of K: 
K,,K,, = 4m/Na, n = O,l,...N- 1. The summation prime 
in Eq. (3.4) indicates that - r and 0 are excluded since, by 
symmetry, $(r) = $( - r) and because Jl(O> is not allowed 
by the exclusion principle. $(r) is normalized so that 

C’ I& b-1 I2 = 1. 
r 

(3.5) 

Substituting ‘J’(K) into the SchrBdinger equation, 
Hw(K) = m(K), we obtain an equation for @K(r) 

(E--a,)&(r) -2x V(s’)cos 
6 ( > 

$6’ Ic;( (r + 6’) 

= M(r)&(r) - 2V(r)cos 
( > 

3 r & (0), (3.6) 

where, 6’ = x, - x, y or - y. I& (0) is not an admissible 
component of the wave function since two excitations can- 
not reside on the same site; only Eq. (3.6) with r#O follows 
from the Schrijdinger equation. However, since the wave 
function for values of r # 0 is not coupled to the r = 0 value 
(the term with r = 0 on the right-hand side is canceled by 
one on the left-hand side) it proves convenient to retain the 
r = 0 component, which is then de$ned by Eq. (3.6), and 
rewrite Eq. (3.6) in momentum space, 

fw(4)=$Ce4.r$K0, (3.7) 
r 

where the summation over r is now r,,r, 
- (N- l)a/2,...,(N- l)a/2, including r, = r =O. 

kriodic boundary conditions allow the following vaies of 
q: qx,qu = 2m/Na,n = O,l,... N - 1. Equation (3.6) is now 
transformed to 

f,(s) =$ 
2N -* & cos(q+‘){A(S’)cos(q’W) - V(S’)cos[(K/2)~S’]} 

E - W&q) 
fK (q’), 

where the energy of two free excitons with wave vectors K/2 + q and K/2 - q is given by 

f-i(K,q) r2w, + 4 c V, cos 
6 

cos(q*S), 

with S = x or y. Finally, Eq. (3.8) can be written as a vector 2 x 2 matrix equation, 

U,(K) = C My.6 (K,E) u, (K), 
6 

with the two-component vector U, (K),y = x,y, defined by 

v, cm 5 -A, cos(q-Y) ( 2 ) 

and the 2 X 2 matrix 

M,,(K,E)=4N -‘c 
{A, c0sCq.y) - Vy cost (K/2) yl)cos(q*S) 

E - n(K,q) 
When N is taken to infinify, we replace the sum by an integral, resulting in, 

My6 (K,E) = 5 
r/a 

ss 

F-r/a 

&x dq, cAy 
cos(q,a) - Vy cos(K,a/2))cos(q,a) 

0 0 E - fit&-d 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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The integrals in Eq. (3.13) can be expressed as elliptic inte- 
grals of the first, second, and third kind, as described in de- 
tail in Ref. 24, and subsequently evaluated using standard 
numerical packages. 

The eigenvalues E of Eq. (3.6) are obtained by solving 
the characteristic equation 

det[ 1 - M(K,E)] = 0, (3.14) 
where 1 is the 2 X 2 identity matrix. This equation was solved 
for E by numerical iteration for each value of K, resulting in 
the biexciton energies Eb (K). The resulting eigenvalues E 
are then used to solve the 2x2 matrix equation (3.10) for 
the vector U(K) up to an arbitrary constant which is later 
determined by the normalization condition. Finally, the 
wave function & (r)is given by 

&W =$,G,,[K;E,(Io]Ug(K), 

where the Green function Gt,, (K;E) is given by 

Gr,,. (K;E) = (4/N2) c cos(~;;‘(;;‘), 
9 , 

which in the limit of large N, assumes the form 

Gr,,b (K;E) = (4a2/r?) [“dqx C’Odq,, 

x cos(vr)cos(qr’) 
E--U&q) ’ 

IV. BIEXCITONS STATES 
A. Elgenstates and energies 

(3.15) 

(3.16) 

(3.17) 

We now explore the possible formation of biexciton 
states. To that end, we adopt a specific geometry. The transi- 
tion and the permanent dipole moments can in general be 
oriented in any direction relative to the monolayer plane. In 
the calculations presented below we assume that the perma- 
nent dipole moments are parallel to the transition dipole mo- 
ments. We further consider only the two extreme geometries 
where the dipoles are oriented either parallel or perpendicu- 
lar to the monolayer surface. Adopting the notation com- 
monly used for molecular aggregates,‘6 we shall refer to 
these geometries as J and H monolayers, respectively. 

For a J monolayer, the transition dipoles in the mono- 
layer plane are assumed to be aligned along they axis, and we 
have 

A, = --LAY _ (Ap)2a 
2 2a3 

(4.2) 

In an H monolayer, where the transition dipoles are oriented 
perpendicular to the monolayer plane, we have 

v, = v, =$, 

A, =A’=$. 
3 

(4.3) 

(4.4) 

In Figs. 1 and 2 we show the biexciton energy dispersion 
curves along two directions in K space (K, ,0) and (O,K,, ), 
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FIG. 1. (a) The biexciton dispersion curves for a J monolayer with O/O: 
= 1.1 (I), 2 (II), and 3 (III), calculated numerically by solving Eq, 
(3.14). KY = 0 and K, is varied. For O/O~ = 1.1 there is a single bound 
state. For O/O: = 2 and 3, the second critical value of 0 is surpassed 
(@/OJ , =: 1.6) and two bound states arise for all values of K,, one above 
and one below the two exciton continuum, which is the shaded region. In 
(b) K, = 0 and KY is varied. 

for the J monolayer (Fig. 1) and the H monolayer (Fig. 2)) 
for several values of the dimensionless parameter 0 =A,/ 
V, . It should be noted that since our states are the Coulomb 
states, their energies and the transition dipole moments may 
be nonanalytical functions of wave vectors at small k. The 
curves were calculated numerically by searching for the 
roots of Eq. (3.14). The dimensionless energy shown in 
these figures is defined as eb (K) = [ Eb (K) - 2~0, ] /4V,. 
One fourth of the Brillouin zone for K is shown, since by 
symmetry eb (2r/a + K) = eb (K). Because the dipole in- 
teractions are isotropic in the H monolayer, the dispersion 
curves along (K, ,0) and (O,K,, ) are identical so that only a 
single curve need be displayed. In order to test the accuracy 
of our numerics we studied the analytically solvable case 
when K, = K,, ~:/a, so that cos(K/2*6) = 0 and the two- 
exciton bandwidth is therefore zero. Eq. (3.6) shows that 
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FIG. 2. The biexciton dispersion curves for an H monolayer with O/Of 
= 1.1 (I), 2 (II), and 3 (III), calculated numerically by solving Eq. 
(3.14). K, = 0 and KY is varied. For O/Op = 1.1 there is a single bound 
state. For O/OF = 2 and 3, the second critical value of 0 is not surpassed 
(OF//og, 3.33) so that, at K = 0, there is still only a single biexciton. How- 
ever, for higher values of K the two-exciton bandwidth is smaller and hence 
the critical values are also smaller. For sufficiently high values of K two 
biexciton branches are observed. 

the H-monolayer wave function is doubly degenerate with 
eb (K) = O/2, while the J monolayer has e,, (K) = O/2 and 
- 0. These values were also obtained by our numerical pro- 

cedure. 
The most notable feature in Figs. 1 and 2 is the emer- 

gence of one or two bound states for each value of K, depend- 
ing on the magnitude of 0. In the J monolayer at K = 0, a 
single bound state appears below the two-exciton continuum 
when 0 surpasses the critical value of 0: = 1.6. Further 
increases in 0 above the second critical value 0; = 2.6 re- 
sult in a second bound state which is now located above the 
two-exciton continuum. In the H monolayer both bound 
states are above the two exciton continuum. For optical exci- 
tation at K = 0, we have Or = 1.1 and Oy = 3.6. For both J 
and Hmonolayers, the critical value decreases as the magni- 
tude of K, or K,, increases. The dispersion of biexciton states 
is negligible in comparison to the bandwidth of the exciton 
states. This is very similar to the behavior of biphonons. ” 

In Figs. 3 and 4 we show the K = 0, low energy J (below 
continuum), and high energy (higher of the two bound 
states when 0 > OF) H-monolayer wave functions, respec- 
tively, as a function of the relative coordinate r, calculated by 
using Eq. (3.15). The J-monolayer wave function is highly 
oscillatory and changes sign at every site in the x direction, 
but remains of like sign in they direction. The H-monolayer 
wave function, however, has no nodes. For 0 near 0: and 
Oy the wave functions in both cases extend over many lattice 
sites. These properties can be directly deduced from Eq. 
(3.6); for the Hmonolayer with 0 =: Or the biexciton energy 
is very close to the upper band edge, E=: 2w, + 8 V, , so that 
when r> 1 Eq. (3.6) reduces to 

Qk(r) -2$,(r+x) -W,(r-xx) 
-2$K(r+y) -2$,(r--yY)d. (4.5) 

-7 

(4 

0 
q I 0 

o a 
D q 

0  0  

. 
g*4*e..*.000*04** 

. 

5 10 15 20 

r,/a 

(1 

0 I 
n 

0 5 10 15 20 

lb) ry/a 

FIG. 3. (a) The normalized low energy K = 0 J-monolayer wave function 
as a function of x component of the relative coordinate r, for O/O: = 1.1 
(I) and 2 (II), calculated numerically by first finding E,,(O) from Eq. 
(3.14) and then using Eq. (3.15). In curve II, the wave function is highly 
localized, with an energy eb (0) = - 3.7, while in I it is largely delocalized 
with eb (0) =: - 3. Localization increases as the eigenstate splits further off 
the continuum. Note also the sign alternation as a function of r, In (b) a 
different cross section of the same wave function is shown, r, = 0 and rv is 
varied. In this direction the oscillations disappear. 

The last equation is satisfied by a slowly varying wave func- 
tion, consistent with the one obtained numerically in Fig. 4. 
For the J-monolayer wave function with Oz=Oi the same 
arguments lead to 

- W,(r) - 27bK (r + xl - WK (r - xl 

+W,(r+y) +4+&b-yY)dl, (4.6) 
which is satisfied by a wave function which changes little in 
magnitude but changes sign alternately in the x direction. 
For both monolayer types, as the binding energy 0 in- 
creases, the wave function becomes increasingly localized, 
and when 0 surpasses 0, a new bound state emerges, above 
the two-exciton continuum. In the former case, when 
0 z 0; the new state above the continuum satisfies Eq. (4.6) 
but with the first term of opposite sign. It is easily seen that 
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FIG. 4. The normalized low energy K = 0 H-monolayer wave function as a 
function of x component of the relative coordinate r, for O/OF = 1.1 (I) 
and 2 (II ), calculated numerically by first finding Eb (0) from Eq. (3.14) 
and then using Eq. ( 3.15). In curve II, the wave function is highly localized, 
with an energy e,(O) = 2.06, while in I it is largely delocalized with 
e,(O)-2.0. 

this state will therefore oscillate in sign along they direction, 
opposite to its low energy partner. When 0 is very large 
(0 > - lo), the K = 0 biexciton collapses into a pair state 
along they direction for the Jmonolayer and into a symme- 
trically distributed pair state in the x and y directions for the 
H monolayer. 

B. Exciton-biexciton transition dipole moment 
In order to calculate nonlinear optical properties and 

explore the possibility of new resonances outside the single- 
exciton and two-exciton continua, one needs to evaluate the 
transition dipole moments between the ground state and sin- 
gle exciton K state, (we recall that K is the component of the 
photon wave vector in the monolayer plane), and between 
the single exciton K state to the biexciton 2~ state. This fol- 
lows from the form of the radiation-matter interaction 
Hamiltonian, and the conservation law of wave vectors for 
quasiparticles. 

It is easy to show,23 that 

peb =p(qO) 1 c b,e-“‘“IYW)). 
m 

(4.7) 

Substitution of Eqs. (3.1) and (3.4) into Eq. (4.7) and per- 
forming the summations over R and r (which can be carried 
out independently), we get 

L&b (W = 2p&,,, T’ f,& (r). (4.8) 

The summation prime indicates that r, = O,la, 
2a ,..., (N- l)a/2 and rv = - (N- l)a/2 ,..., (N- l)a/2 
excluding r, = r,, = 0, i.e., the summation neglects - r and 
0. A brute force evaluation of p@b involves numerically cal- 
culating $K ( r ) at each point r [by evaluating an integral like 
Eq. (3.12) J and summing over the lattice. A considerably 
simpler way, which involves the numerical evaluation of 

only a few integrals, is outlined in Appendix B. The final 
result is 

i&b 00 

= ,Gc,~x ux (K) I+ R(K) 
Eb (K) - W&O) 

-Gx,o(K;E/,(K)) --R(K)G,,(K;E,(K))), 
(4.9a) 

where 

R(K)+ -M,(K,E,)]/M,,(K,E,). (4.9b) 

The amplitudes U, (K) are determined (up to a phase fac- 
tor) by the wave function normalization condition and (see 
Appendix B) are given by 

cos(q,a) + RWcos(q,a) ’ 
X 

Eb (K) - fi(K,q) I 

-@&&E,(K)) + R(K) 

G,,&E,(K))>2)-‘. (4.10) 

Figure 5 displays log [pzb (O)/,u’] as a function of 0 for the J 
monolayer and H monolayer. The calculations were made 
using Eq. (4.9) and Eq. (4.10). The two curves for the J 
monolayer correspond to the higher (above continuum) and 
lower (below continuum) energy biexciton states. Because 
/&b (K) is proportional to the integrated biexciton wave 
function, we find thit the J monolayer near K = 0 has an 
extremely small exciton-biexciton transition dipole moment 
due to the wave function oscillations (see Fig. 3). As the 

“1 
kc- 

+* 
a cu 

go- 

?? - *‘_ 

I 1 I 

0 

&I 

lb 

FIG. 5. The logarithm of&(O)/@, asa function of@/@, , where 0, SOY 
for the upper curve which corresponds to an H monolayer at K = 0, and 
O,=O: for the two lower curves which correspond to the low energy 
(upper) and high energy (lower) J-monolayer biexcitons. The H-mono- 
layer curve asymptotically approaches the value of log( 8) = 0.9, while the 
J-monolayer curves approach lag(4) = 0.6. These values follow from Eq. 
(4.10) and the limiting form of the wave function in both cases (see the 
text). 
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wave function becomes more localized (when 0 is in- 
creased), ,& (0) increases; in the limit of large 0 the K = 0, 
biexciton is simply a pair state along the y direction and 
using Eq. (4.9), we have & (0) = 2,~‘, which is what we 
obtain numerically as well. The high energy (above contin- 
uum) biexciton wave function also contains oscillations 
(along the y axis) and, consequently also initially has 
&, (0) 4,~‘. This is not the case for the H monolayer, how- 
ever. At KzO the high energy, nodeless, biexciton states 
have dipole moments or orders of magnitude larger than ,u. 
In this case the limiting value of ,&, (0) is &, (0) = 8p2, 
since localization at r = x and r = y is equally probable. The 
low-energy partner, which is not shown, has a vanishing di- 
pole moment at K = 0 because this wave function is antisym- 
metric upon the interchange of the x and they coordinates, 
i.e., there is a nodal line x = y. 

V. NONLINEAR OPTICAL RESPONSE OF BIEXCITONS 
In this section we explore the possibility of probing biex- 

citons using the third order nonlinear polarizability. To that 
end we consider only the part of the response that involves 
the biexciton states, and look for new two-photon reson- 
ances that are outside the two-exciton band. Note that in all 
our calculations of exciton and biexciton states, we took into 
account only Coulomb (instantaneous) interactions 
between charges, and retardation was neglected. This results 
in the Coulombic excitons and biexcitons.2sS26 We shall use 
these zero order states in the calculation of the nonlinear 
polarizability. In this situation we should use only the trans- 
verse part of macroscopic electromagnetic field as perturba- 
tive field. In the dipole approximation, the interaction with 
this field has the form 

%= --pn.gqn), 

n 
(5.1) 

where I? is a transverse part of the macroscopic field. 
A four-wave mixing experiment may involve as many as 

three applied electric fields; the total field is given by 

El(w) = + ,$’ [Ef exp(zkj*r - iwit) 
I 1 

+ E7’ exp( - zkj*r + icajt> 1, (5.2) 
where wj, kj, and Ef is the frequency, wavevector and trans- 
verse electric field envelope of thej th field, respectively. We 
shall consider only the cw case so that all El’ are time inde- 
pendent. The third order monolayer polarization is given by 

P(r,t) = 2 exp(iKS*r - w,~)P(K~,w,), 
CGJI 

(5.3) 

wherer=mx+ny,K,= *K, +K,, fKpandw, = fw, 
+ w, + wq with m,n,q = 1,2,... and all combinations of plus 

and minus signs are allowed. K, is the tangential component 
of the nth applied field wave vector k, in the plane of the 
monolayer (z = 0). Hereafter we choose the particular com- 
bination 0, = w, + w2 + o3 and K~ = K, + ~~ + K~. Any 

other combination can be obtained by simply changing one 
or more ~~ to - K~, wj to - wj and Ef to Ej*. The polariza- 
tion per unit area is related to the applied electric fields via 
the third order susceptibility” 

P(K,,W,) =x”‘( -~;III,,c+,~~)E~E;E;. (5.4) 

X (3) is the transverse third order nonlinear polarizabili- 
ty which gives the nonlinear polarization expressed through 
amplitudes of transverse electromagnetic fields. xc3’ as de- 
fined in Eq. (5.4) can be used to calculate any four-wave 
mixing response. The role of scattering two exciton states 
(without binding) inxc3’ was recently explored using Green 
function techniques, which resulted in mapping the problem 
onto coupled anharmonic oscillators.15 A convenient tech- 
nique for measuring the energies and lifetimes of the doubly 
excited states is two-photon absorption (TPA), which, is 
given by Im[x”‘( - w; - w,o,o)] IE1l’, where El is the 
amplitude of the (single) external field. The complete 
expression for TPA includes two-photon transitions to the 
two-exciton continuum as well as to the biexciton states and 
is quite lengthy. The contribution of biexciton states to x”’ 
was obtained using the common sum over states expression 
for the nonliner response,27V28 resulting in 

xC3’ ( - w; - w,w,w) = 
P2/-& ( 2K) -1 1 

8?i3a2 co - LEb (2K) - W(K)] + i[ rb(2K) + y(~)]/2 iY(K) 

X 
1 

+ 
1 

--w+(K) +iy(K)/2 @-W(K) +iY(K)/2 I 
1 1 - 

w-[Eb(2K)-~(K)]+i[~b(2K)+~(K)]/2-~-~(K)+iy(K)~2 I 

X 
1 1 

2W--E,(2K) +frb(2K)/2’U-U(K) +&v(K)/2 ’ > 
(5.5) 

These terms represent the four pathways in Liouville spacez8 
which contain the contribution ofbiexciton states to the two- 
photon absorption. In addition, we neglected small off-reso- 
nant terms (the rotating wave approximation). Y(K) and 

Ib (2~) are the decay rates of the exciton and biexciton 
states, which are introduced here phenomenologically. 

The various terms in Eq. (5.5) can be combined to yield 
a more compact expression 
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-~2,&(~) W -O(K) = 
4k3a2 h-&,(zK) +ir,(k)/z 

1 1 2 

X 
W -W(K) + iY(K)/2 

X 
1 

- @ + W(K) + iY(K)/2 - 
(5.6) 

This form is naturally obtained from the nonlinear oscil- 
lator model of the medium.15 Biexcitons may show up in 
TPA as new two-photon resonances at 20 = Eb ( 2~)) as giv- 
en by the first denominator in Eq. (5.6). These resonances 
will be clearly visible and distinct from the single exciton 
resonance at w = W(K) provided the biexciton splitting is 
large compared with the damping 

IEb (k) - b(K) 1 %Y(K),rb (w (5.7) 
The biexciton resonances have a possible enhancement due 
to,& (2K) which, as discussed in Sec. IV, can be much larger 
than ,u’ for the H monolayer, but smaller than 4~’ for the J 
monolayer. 

For the sake of clarity, in the expression for xc3’ pre- 
sented here, we have left out various geometric factors such 
as the polarization state of the external field (s orp) relative 
to the plane of incidence and the inner product between the 
field polarization vector (e) and the dipole moment vector 
(m). These factors are, of course, very important; the H 
monolayer, for example, cannot be excited by a field which is 
normally incident (k vector normal to the monolayer 
plane). For the Jmonolayer in this configuration, there is no 
problem and our expression for TPA can be used without 
modification, provided that e is parallel to p. This condition 
can also be attained for an s polarized wave, at a nonzero 
incidence angle. To effectively excite the H monolayer re- 
quires a p polarized wave at a large incidence angle. The 
component of the external field tangent to the plane will not 
be absorbed, and therefore our TPA formula must be slight- 
ly modified. The positions of the TPA resonances and the 
oscillator strengths are, however, unaffected. 

VI. CONCLUSION 
In this paper, we have examined the possible formation 

of biexciton states in a monolayer of polar molecules, and 
calculated the two-photon absorption. Specific calculations 
were made for the case where the change in the permanent 
dipole moment of each molecule upon excitation from the 
ground to excited state is parallel to the transition dipole 
moment. The transition dipole moment was taken to be ei- 
ther parallel (J monolayer) or perpendicular (H mono- 
layer) to the monolayer surface. For either configuration, a 
certain critical value of the interaction strength 0 is needed 
in order for a single bound state to emerge, and a second 
higher critical value is required for the existence of two 
bound states. In the optically important regime where kz0, 
the critical values are Of,@; = 1.6, and 2.6 and Or,@,” 
= 1.1 and 3.6. Using the definitions of 0 and the intermole- 

cular couplings [ Eqs. (4.1)-(4.4) 1, these translate into 
critical ratios of permanent dipole moment change to transi- 
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tion dipole moment D=Ap/p, i.e., D:,D: = 1.8, and 2.3 
and D~,D~ = 1.5, and 2.7. Therefore, bound states can 
more easily be formed in H monolayers. In addition, the 
biexciton which first emerges is symmetric to the inter- 
change of the x and y relative coordinates and is completely 
nodeless. The resulting large exciton-biexciton transition di- 
pole moment leads to a strong two-photon absorption above 
the two-exciton continuum. 

The position of the biexciton states depends primarily 
on the values p and hp. For example, for ,u LZ Ap GZ 5 D, the 
splitting of the biexciton state from the two-photon contin- 
uum may be order hundreds of cm - ’ and in such situations 
should be detected experimentally. The possible observation 
of biexcitons depends crucially on the rate of bimolecular 
quenching. We need to identify conditions whereby the bi- 
molecular quenching does not destroy the bound state of 
two-excitons so that biexcitons could be probed optically, 
e.g., by luminescence or nonlinear optical techniques. For 
biexciton states in semiconductors [ Wannier-Mott exci- 
tons] the main decay channel is radiative, but in molecular 
crystals, the main channel should correspond to bimolecular 
annihilation. The reason is that exciton-exciton van der 
Waals interactions are weaker in semiconductors since the 
excitons have large radii and smaller transition dipoles. 
Biexciton states which are above the two-exciton contin- 
uum, will have an open decay channel which corresponds to 
a transition to the two-exciton continuum with the creation 
of optical or acoustical phonons. This channel, which is open 
even at low temperatures; provides a broadening mechanism 
for the biexciton states. The rate of bimolecular annihilation 
was previously calculated with the assumption that bimo- 
lecular quenching is weak,23 in the sense that the corre- 
sponding width is small compared to the biexcitonic binding 
energy. In the future we hope to investigate this question for 
more general situations. 
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APPENDIX A 

The molecular crystal Hamiltonian which includes ex- 
citon-exciton interactions was derived in Ref. 10 (see also 
Ref. 11). 

Adopting a two-level model for each molecule (with a 
ground state 0 and an excited state f, with gas phase elec- 
tronic transition energy he,. ), the Hamiltonian is given by 

iLEg +G, +fiz +ii3 +ii,, (Al) 

where Eg is the ground state energy of the crystal, and 

2, =C’ (fOIk,Iq(~t,~+41f 19 
nm 
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22 =c two +-@f)bpnf 
n 

+C’Y,‘,(b’,fb”~+~(b~rb’,,+b.B,,)], 
n,m 

(-43) 

23 = C’ [(Of ltInmF) - (fk$ql nm 
x (b tnf + bn,P LJLlf9 

2, = CA(n - m)b!&,fik&,,,-, 
n,m 

where 

(A4) 

(A5) 

Ah-m) =1 [Wl~nml.tT) + (@l~,,,P) 
-qf4LIfo)l9 (A61 

-@f = 2 {(Of I^v,m Pf > - pkl P)3, (A7) 

cm = {Of I^v,mlfq. (A81 

Here b L/( b,, ) is the creation (annihilation) operator for 
an excitation on the nth site,These operators satisfy the 
Pauli commutation relations. V,, represents the intermole- 
cular interaction and its matrix element is defined by 

&%,IW= 
s 

a3pP,i$QC, dr,, dr,,,, 

where p z represents the state where site n is in state a. The 
number operator for the excitations is 

2~1 b Lfb,, 
n 

If we neglect in Bq. ( 1) the H, and H3 terms, we obtain a 
zero order Hamiltonian which conserves the number of exci- 
tons (i.e., commutes with N), 

Hoso +g2 +&. (A9) 
The last term in this Hamiltonian is responsible for the ap- 
pearance of a bound two-exciton state (biexciton). In crys- 
tals made of the molecules with a center of inversion the 
interaction A (n - m) vanishes in the dipole approximation, 
however, for nonsymmetrical’crystals it follows from Eq. 
(A.6) 

A(n-mm) =+A~,T,.A~*, 

where 

(AlO) 

AP, = (fblf) - ~%W~d-~c1:: (All) 
is the change in dipole moment upon optical excitation, and 
T,,, is the dipole-dipole electrostatic interaction tensor. 

APPENDIX B: EVALUATION OF p..,,(K) AND U,(K) 

In this Appendix, we derive Eqs. (4.10) and (4.11) for 
the exciton-biexciton transition dipole moment and biexci- 
ton normalization, respectively. We first write the summa- 
tion over r, using Bq. (3.15), as 

~‘A&9 = ~‘Gmx+.y,xUrW) + Gmx+w,,UyW, 
m,n 

031) 
where the summation is taken over values of r = mx + ny, 
excluding - r and 0. Substituting in Eq. (B. 1) for the Green 
function [Eq. (3.16)] and using U,(K) =R(K)U,(K), 
where R(K) from Eq. (3.10) is given by, R(K) 
=[I -~,W/M,,(fo], 

U:(K) C’ [G,n,+w,x +RWGm+.,,y]2 = 1. 033) 
ma 

The summation involves terms like 

F 2 c q:,q; 
X,, (cos[wxa + nq+z] )(cos[mq:a + m&a] )cos[q,a] 

’ qnqv &.q; [E,(K) - WK,d] [E,(K) - nUbi’)] 

which are easily evaluated by the same summation technique used for the transition dipole moment. Collecting these various 
terms into Eq. (B.3) and solving for U, (9) yields Eq. (4.10). 

T’&(r) =y 2 
X,, cos[mq,a + nq,,a]m[q,a] + R(K)cos[mq,a + w,a]cos[q,a] 

& (9) - NW 
032) 

4x.qy 
Now, if the sum in the numerator is denoted as x, then y = 2x + (m = n = 0 term) denotes the sum when the values of - r 
and 0 are included. Now the sum y is easily evaluated, y = 2N2S,,Sqy-, [ cos( qXa) + R (K)cos( q,,a) ] + (m = n = 0 
term) = 2[ 1 + R(K)] + (m = n = 0 term). Substituting x = (u - 1)/2 into Eq. (A.2) and letting Ngo to infinity, and 
further substituting this into Eq. (4.9) yields the exciton-biexciton transition dipole moment given by Eq. (4.9a). 

In order to evaluate the normalization U, (K), we substitute Eq. ( 3.15 ) into the normalization condition 

&’ I&(r>l’= 1 

giving 
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