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The magnitude of optical nonlinearities of molecular nanostructures is determined by a 
characteristic coherence-length which controls the cooperativity of the optical response. 
Equations of motion describing the evolution of the optical polarization coupled to two-exciton 
variables are derived, and used to calculate the third order optical response (x’~‘) of a one- 
dimensional molecular crystal or a polymer. We show that the coherence-length is determined 
by the interplay between intramolecular and intermolecular (nonlocal) nonlinearities and 
explore the limitations of the local-field approximation. Phonon-mediated exciton-exciton 
attractive interaction may result in the formation of bound exciton pairs (biexcitons) . We 
show how unbound (two-exciton) as well as biexciton states could readily be observed as 
resonances in two-photon absorption and third harmonic generation. 

1. INTRODUCTION 

Calculations of nonlinear optical response in condensed 
phases are usually based on a mean-field ansatz: the local- 
field approximation. l-3 Underlying this approximation is 
the implicit assumption that the origin of the nonlinearity is 
intramolecular. The system may then be viewed as a collec- 
tion of localized anharmonic oscillators with intermolecular 
harmonic dipole-dipole coupling. In this picture, the nonlin- 
ear susceptibilities assume the form of a product of a single 
mole&& hyperpolarizability, times “locaLfield” correc- 
tions which account in a simple way for intermolecular inter- 
actions. This picture is greatly oversimplified. In reality, the 
optical response of molecular clusters, monolayers, and 
crystals is related to the dynamics of delocalized ~coherent 
excitations: the Frenkel excitons.- The conventional local- 
field picture neglects the effects of the exciton coherence- 
size, which may result in enhanced nonlinearities.7-9 It also 
neglects any intermolecular nonlinearities resulting, e.g., 
from interactions among excitons, and possible biexciton 
formation. lo A close look at the limitations of the local-field 
picture and a systematic way for its generalization can be 
obtained using a microscopic approach based on equations 
of motion.‘L12 A zero-temperature theory of nonlinear opti- 
cal response which incorporates the effects of cooperative 
spontaneous emission (superradiance) was developed re- 
cently. ‘z That theory showed how a cooperative enhance- 
ment of optical nonlinearities may be induced by the contri- 
bution of two-exciton states to the optical polarization. The 
effective zero-temperature coherence-size is equal to the op- 
tical wavelength. Intramolecular nonlinearities and their de- 
pendence on coupling with phonons at finite temperature 
were explored in a recent study of transient grating spectros- 
copy in molecular crystals. ” Intermolecular coherences and 
their role in superradiance in molecular aggregates were in- 
vestigated as we11.i3 A temperature-dependent coherence 
length which controls the magnitude of superradiance was 
calculated. 

In this work we combine the methods of these earlier 
works”*12 to derive an expression for x(3) of one-dimen- 
sional molecular aggregates. Particular attention is paid to 

the coherence-size and its dependence on exciton-phonon 
scattering. We show that phonon-mediated exciton pairing 
which is reminiscent of Cooper pairs in superconductivity’4 
may result in the formation of bound biexcitons with a large 
nonlinearity. The present model applies to molecular crys- 
talsi5 as well as polymers such as polyacetylenes or polysi- 
lanes.16-19 An extension to other nanostructures such as 
monolayers20’21 is straightforward. In Sec. II we derive the 
equations of motion for the system, which include exciton 
and phonon variables. In Sec. III we present a formal solu- 
tion for x (3) in terms of Green functions related to two-exci- 
ton and exciton-population variables. In Sec. IV we use a 
simplified model for phonon damping to solve for the Green 
functions, resulting in a closed form expression for ,yc3’. In 
Sec. V we show how the nonlinear coherence size appears 
naturally inx . (3) To this end, we factorize the intermolecu- 
lar (nonlocal), nonlinearities into products of single-mole- 
cule variables when the two molecules are separated by M 
bonds or more. We thus retain the short-range (local) non- 
linear&s and neglect long-range nonlinearities. The factori- 
zation size M can then be varied at will. For M = 1 we re- 
cover the conventional local-field approximation. As M is 
increased, the nonlinear response eventually becomes M in- 
dependent. The characteristic h4 value where this happens 
provides an operational definition of the coherence-size N,. 
Numerical calculations of two-photon absorption and third 
harmonic generation, and a general discussion are presented 
in Sec. VI. 

II. EQUATIONS OF MOTION 

We consider a one-dimensional chain of N identical 
two-level molecules. The Hamiltonian consists of an elec- 
tronic (exciton) term, a phonon term, an exciton-phonon 
interaction, and the interaction with the transverse electric 
field”~‘3 

H = J%x -II qdm + fLphon + a+0t 3 

where 

(2.1) 
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H,, =xfif-LBt,B,, + c W,,,(B, +B:)(%, +Bf,). 
,t n*m 

(2.2) 
Here, B J are the exciton creation operators for the ath mole- 
cule, which satisfy the Pauli commutation rules 

[B,, Bt] = (1--2Bt,4X,,,. (2.3) 

J,*, is the dipole-dipole coupling between the m and II mole- 
cules4 In k space we have 

B,=L ~ TB,, exp( - ikn), (2.4) 

Jk = C Jnm exp[ik(n - m)]. 
n(#m) 

(2.5) 

The phonon part is 

H phon = C hqb :b,, (2.6) 
9 

where bi is the Bose creation operator for the q phonon. 
These operators satisfy the commutation rules 
[ b,,b i, ] = S,, . The exciton-phonon coupling is4,13 - 

fL+on =L~J’rc,qBtk+qBdbq +bt-,I, (2.7) m kq 
where F depends on the specific model4 Denoting the trans- 
verse classical electric field by E( k,t), we have for the cou- 
pling with the radiation field 

Hex-phot = -@&(k,t)(B, t-B+_,).: (2.8) 
k 

Here ,u is the component of the molecular transition dipole 
matrix element which is paralled to the applied field. For 
clarity, and since we consider a one-dimensional model we 
shall not use a vector notation in this paper. It should be 
emphasized that although we are using here the terminology 
of a molecular crystal, the present model can be applied also 
to polymers such as polysilanes’? whose elementary excita- 
tions are Frenkel excitons. 

The dynamics of the system will be calculated using the 
Heisenberg equations of motion for the dynamical variables 
responsible for the optical nonlinearity. The procedure was 
developed earlier, r’,” and the main steps are outlined in Ap- 
pendices A and B. The resulting equations of motion which 
will be used in the calculation of the nonlinear susceptibility 
x [3) are 

$$@k)= - [fl+J, +%k)]@,) -J&h> +$ c Jk,[(B:,,+k,Bktk,,Bk,) 
k’,k” 

+ (B:,,+,,B,+,,,B+-,,)I - (2pp~-3%) CE(k’,t) 
k’ ( 

c (B:,.,,,B~+~,,) -fsk,k, , 
k ” ) 

(2.9) 

+$ (Btk,&,> = [J/c, + Z*(k, 1 - Jk, -.Wd] (Bt,,Bb,) + c [2*(k,,h-,,q) - Wk,,k,,q)] 

x@i,+A+, > + (PPN - “‘/fi) [ (B tk, &d) - @k, )E(k, J> 1, .- (2.10) 

+$%,B&= -[2n+J,I+B(k,)+JkZ+~(kZ)](Bk,BkZ)+~[~’(kl,k2,q) 

+ x’(k,,k,, -411 (Bk m4&,+4 > + (ppN - 1’2/fi) [ (;I,, )E(k,,t) + (Bk, )E(k, ,t> 1, (2.11) 
where ( * - * ) denotes an expectation value, and 

(B;,,+k,~k+k,.~k,) = (B~,,~+,.B,+,~.)(B,,) + (B:,,+,,B,,)(B,+-,.:) 

+ @t,,,+,,)@,+,J,,) -2(Btk,,+k,)(Bk+k,,)(Bk,). (2.12) 

I 
A similar factorization holds also for the other three-opera- B(k)e - 2 X(k,k,q) - i(y/2), (2.14) 
tor variable by replacing B,, in Eq. (2.12) by B t k, .h Eqs. 9 
(2.9)-(2.12), all B, (Bl) operators are Heisenberg opera- and 
tors at time t,p E N/ Vis the molecular density, and E( k,t) is . . 
the Fourier component of the electric field. The phonon- 
induced self-energies are given by” 

WW ‘,q) = --& vliyoF&Fk l,q 

X 
( 

% 
J k’+q -Jk# -wq --iv 

+ Jk’+q 

l+n-, 

-J,, 4-0~~ -iv 
(2.13) 

Z;‘(k,k’,q) = 1 lim Fz,,FF, 
,fi2N 9-+o. 9 ,: 4 

X 
( 

% 
J,,--J,,-,---a,-&’ 

+ 
l+n-, 

> Jk, -Jk,-, fw, -iv ’ 
(2.15) 

with the boson thermal occupation number 
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n,- 
[expVi$kT)] - 1 * 

The self-energies B and 8’ are in general complex. The real 
part represents level shifts wherever the imaginary part rep- 
resents relaxation and damping. In Eq. (2.14) we have in- 
cluded an additional damping rate y which represents the 
exciton lifetime. 

Equations (2.9)-(2.12) were derived as follows. The 
Heisenberg equations obtained using the Hamiltonian (2.1) 
result in an infinite hierarchy of equations which successive- 
ly couple B and B + to higher operators containing products 
of more B and B + operators. This hierarchy may be truncat- 
ed at the cubic level, “*i2 and operators containing products 
of four or more B or B + operators need not be considered, 
since their expectation values are at least fourth order in the 
E field, and they do not contribute to,yC3’. This results in the 
equations of motion given in Appendix A. The calculation of 
higher order susceptibilities such as x”’ will, of course, re- 
quire the generalization of these equations by adding more 
dynamical variables.“’ The factorization (2.12) of the triple 
product of operators, which is derived in Appendix B allows 
us to close the hierarchy at the quadratic (two-operator) 
level. It is based on an ansatz for the density matrix [Eq. 
(Bl ) ] which can be rationalized using maximum entropy 
arguments. Finally, the phonon variables are eliminated us- 
ing the procedure given in Appendix A of Ref. 11, resulting 
in Eqs. (2.9)-(2.16). These equations contain three types of 
variables: (Bk) represent the exciton amplitudes which de- 
termine the optical polarization [Eq. (3.3) 1, (B l, Bkz > re- 
present exciton populations (EP) and (Bk,Bh) represent 
two-exciton (TE) variables. The interaction with phonons is 
incorporated by calculating a self-energy which is evaluated 
to second order in the exciton-phonon coupling. Two self- 
energy terms appear in the present theory: Z for the EP var- 
iables and 2’ for the TE variables. 

Equations (2.9)-(2.12) form the basis for the theory 
developed in this article. They map the problem of calculat- 
ing optical nonlinearities onto the dynamics of a coupled set 
of anharmonic oscillators. This is a natural extension of the 
harmonic oscillator (Drude) picture of linear optics.23V24 
An anharmonic oscillator picture is frequently used in quali- 
tative descriptions of the donlinear optical response.’ The 
present derivation provides a rigorous and a systematic 
method for identifying the oscillators in terms of single-par- 
ticle and two-particle dynamical variables. 

III. GREEN FUNCTION EXPRESSIONS FOR OPTICAL 
SUSCEPTIBILITIES 

In a four wave mixing experiment, the system is inter- 
acting with three light waves. The electric field is then given 
by’ 

E(rJ) = i Ej exp( - ik,r + iwit) + c.c. 
j- 1 

(3.1) 

We shall consider a stationary (frequency-domain) experi- 
ment where the field amplitudes Ej do not depend on time. 
El and the field amplitude introduced in Eq. (2.8) are relat- 
ed by 
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E(k,,t) = VE, exp( - iwit), (3.2) 
with V being the quantization volume. The linear and the 
nonlinear optical response is expressed in terms of the expec- 
tation value of the optical polarization, defined by 

P(k) =d%((&) + @+-,>>. (3.3a) 
In analogy with Eq. (3.1) we introduce the polarization am- 
plitude 

P(r,t) = C Pi exp( - ikjr + icojt) + c.c., (3.3b) 

so that 
P(kj,t) = VP, exp( - iwit]. (3.3c) 

In order to calculate the optical susceptibilities, we need to 
solve the coupled equations of motion for the P, EP, and TE 
variables. This could be done by expanding all variables in a 
power series in the electric field, and solving for successively 
higher orders. The optical polarization is then given by a 
series P, = Pj’) + Pj*) + ***, where the superscripts den- 
ote an order with respect to the field amplitudes Ej. In all the 
calculations reported below, we have further invoked the 
rotating wave approximation, thereby neglecting off-reson- 
ant contributions to the nonlinear response. This amounts to 
neglecting the (B+!,) and the (Bf;M+ksBk+k.B~m--k.) 
terms on the right hand side of Eq. (2.9). Consider first the 
linear response. When Eq. (2.9) is linearized we get 

+f UAc,)(‘) = - [” +A1 + Wk,)] (B$‘) 

+ -@@% E(k,,t). 
n 

(3.4) 

The steady state solution of Eq. (3.4) can be obtained using 
the substitution 

(B,,)“’ = ’ ’ --exp( - icojt)xi”(kjwj)Ej, 
0-J 

(3.5) 

where the linear susceptibility is defined by 
Pj’) =x”‘(k,w,)E,. (3.6) 

Equations (3.4)-(3.6) result in 

x”‘(kjq) = - @/+i)p2 
w+-L-J,,-Z(kj)~ 

(3.7) 

This is the conventional expression for the linear susceptibi- 
lity.4r” 

We next turn to the nonlinear response. For the present 
model Pj” = 0 so that the lowest order nonlinear polariza- 
tion is 

P’3’(k,) =,u@[ (Bk,)‘3) + @+-,)‘3’]. (3.8) 

In general, k, can be any combination of the form 
k, = + k, + k, f. k,. Hereafter we choose k, = k, - & 
+ k, and o, = w, - w2 + w3. Any other combination may 

be obtained from our final expression by changingwj, kj, and 
Ej to - wj, - kj, and ET, respectively. With our choice of 
k,, we shall calculate the nonlinear susceptibility 
Pc3) =,yc3’( - k,T - w,;klw,, -k, - w,,k,o, ,E,EfE,. s 

(3.9) 
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In order to calculate Pj3’, we first solve Eq. (2.10) for 
the EP variables, with the substitution of Eq. (3.5) in the 
right-hand side. These variables are second order in the field. 
We define the solution of Eq. (2.10) by introducing a Green 
function GkZk, (q) for the EP variables” 

W2,,Bk,., }~~Giir*1(q)E,E:exp[i(w2 --w,)t]. 

(3.10) 
Upon the substitution of Eq. (3.10) in Eq. (2.10) and trans- 
forming to w space, we obtain the following equation for the 
Green function: 
[a2 - wl - e*(k, + ql + dk, + q)]G+,t, (q) 

= - C Z,!:.i, (q,q’Wk,k, (4’ + 4) , 

- ;p,fi, [xX1)@ lwl 1 -,y(‘)(k2w2)]Sq,c, (3.lW 
where the self-energy Z”’ is defined as 

Xi;:, (q,q’) =Z*!k, + q,k, + q,q’) - W, + q,k, + q,q’), 
(3.11b) 

and 

E(k)-Q +Jk + B(k). (3.12) 
f 

Throughout this article the q and q’ summations run over the 
values 2rp/N withp = O,..., N - 1. We next repeat the same 
procedure for the TE variables. ‘* In analogy with Eq. (3.10) 
we introduce the corresponding Green function Dk+, (q), 

lBk, + qBk, - q > -$ &,k, (q)E, E3 eXP[ - i(@, + a3 >t 1. 

(3.13) 
Replacing (B ) in the right-hand side of Eq. (2.11) by 
@ )“), and substituting Eq. (3.13)) we obtain the following 
equations for the TE Green function: 

[al + ~3 - dk, + a) - 4k, - q)]Dk,k, (4) 

= C %f:, (wW& (4’ + 4) 

4’ 

- (p/f9 [x(Yk, ml 1 -t,y(1)(k3w3 )]6,,, (3.lW 

with the corresponding self-energy 

%f:, (w’) =B’(k, + q,k, - w’) 

+ B’(k, - q,k, + w’). (3.14b) 
We now turn to the calculation of (B ) (3). Upon the substitu- 
tion of Eqs. (3.10) and (3.13) in Eq. (2.9) and collecting 
terms to third order in the field, we obtain 

+$tB&‘3’= - [n+~k~+z(k,)]~Bk,)‘3’+~-EEE,E, 
N2$Tp P 

x f’(k+% )Jk, c Gk,k, (q) +x’%w, > cJq+ &,k, (4) +x(“*(k,o,) c Jk, + qDk,k, (4) 
4 4 4 

- Wk,xc1)*(k2m2 )x”‘(k, w, )x”‘(k,w, ) - (p/fi)~* 1 Gk,k, (q) 1 , (3.15) 

where Z, stands for a sum over the six permutations of the fields (k, wl, - k: - w2, and k, w3 ) . This sum accounts for all 
possible time-orderings of the various interactions. Solving for the third order polarization Eq. (3.8) and using Eq. (3.9) we 
finally obtain for the third order susceptibility 
x0)( -kk, -w,;klw,,-k2 -w,,k,w,) 

2v2 1 =- c [ - %c3P -*X*(‘)(b2 )X 
N* [ -w,+fl+J,,+B(k,)] p 

‘“(k,w, h?‘(k,w, ) - (p/fi)~* c G&k, (4) 
4 

7 
+/~‘1’(k303)Jks ~G/+,(q) +xYk,cQ ~J/c,+qGk,k,(q) +x*‘1’(k2w2) C/Jk,+qDk,k,(q) * 

I q 9 B 

(3.16) 

Equation (3.16) provides a closed formal expression forxc3’ 
in terms of the Green functions for the EP and TE variables 
(G and D, respectively). It contains three types of terms. 
The first term in the square brackets represents the contribu- 
tion of the cubic nonlinearity (CN) (B + ) (B ) (B ) in the 
equation of motion. The following three terms which con- 
tain the Green function G represent the contribution of the 
(B + B ) (B ) exciton-population nonlinearity, and the last 
term with the Green function D represents the contribution 
of the two-exciton (Bt ) (BB ) nonlinearity. 

A simple limit is provided by the single-particle approxi- 
mation, * ’ where we factorize the expectation values of all 
products of operators into the products of expectation val- 

I 
ues, thus retaining only single-particle variables, i.e., 

(B tk,&, > = (B tk, > (B/c, >, (3.17) 

(Bk, &, > = (Bk, > (B/c, )a (3.18) 

We thus get 

G,, (4) = -I-x*“‘(k,w, )x”‘(k,w, )S,,, - 1 
ru* 

Dk,,&) = &?‘(k,~, )x’1’(k,w, )6,,, 
P2 

and 

(3.19) 

(3.20) 
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f${Bks)“‘= - [n+J,+zck,,]CB,~)‘3’+~~s,,_,,k~[w, -a-Z(k,)] 

xx*‘1’(k202 )f’(k,w, )x”‘(k,w, )EzE, E3. (3.21) 

Upon the substitution of Eqs. (3.7), (3.19), and (3.20) in Eq. (3.16) we get**” 

In the next section we shall introduce a simplified model for 
the exciton-phonon coupling, which will allow us to solve 
Eqs. (3.1 la) and (3.14a) for the necessary Green functions 
and obtain an explicit expression for ,yc3’ which goes beyond 
the single-particle approximation, Eq. (3.22). 

IV. FOUR-WAVE MIXING AND x(‘) 

We now adopt the following simplified model for the exci- 
ton-phonon coupling: 

K+XXl =& CBt,B,(b, +bt,), (4.1) 
n 

where the phonon annihilation operator in real space is 

b, -!..- ~ T b, exp(iqn). (4.2) 

Equation (4.1) represents a site-diagonal coupling to optical 
phonons. Transforming to k space yields Eq. (2.7) with 

Fk,q = Fc - (4.3) 
Using Eq. (4.3) we obtain from Eq. (2.13) for the self-en- 
ergy for the EP variables” 

X.i$ (44’) = i $ - i(r + W,,, 

and the exciton damping is 
Z(k) = - i(I’ -t- yV2, 

where y- ’ is the exciton lifetime, and 

(4.4) 

(4.5) 

r= vc12 ng Im 1 
fi2 J, - JO - wq - iv 

+ 
1 

J, - JO + w, - iv I ’ 
(4.6) 

where q is a typical average wave vector. Equation (4.4) 
represents a strong-collision model, where each k exciton is 
scattered to all other k ’ excitons with the same rate P/N. 
Correspondingly, at long times, all exciton states will be 
equally populated. This relaxation thus corresponds to an 
injinite-temperature damping mechanism, known as the Ha- 
ken-Striibl model. It was recently applied to transient-grat- 
ing spectroscopy.” 

We next turn to calculating the self-energy of the two- 
exciton variables Z’*‘. To that end we adopt the following 
simplified model for the exciton-phonon coupling: 

I 
Hex-p,m = P’h C Bt,B,(b, +b,)(S,,+1 +&,,-,I 

nm 
+ h.c. (4.7) 

Equation (4.7) represents an off-diagonal coupling with 
acoustic phonons. Upon transforming to k space we have 

Hex-p,m = C F3%nbp 
nmP 

[cos(k + q) 

9cos(k)lexp{i[(k+q)n- km-qpl)) + h.c., 

(4.8) 

which finally yields Eq. (2.7) with 

Fk,q = F,’ cos[k + (q/2)]cos(q/2). (4.9) 

Using Eq. (4.9) we get 

Fk,,qFk,,-q =&2[cos(k, +k,) -tcos(k, -k, +q)] 

XL1 +cos(q)l. (4.10) 
We shall maintain the essential q dependence of the product 
and replace it by 

Fk,,q-Fk,,-qr~F~2[COS(k, -k, -I- 4) + cos(q)]. 
(4.11) 

Proceeding along similar lines to those leading to 8”) we 
obtain 

“gl, (ad> 
FCJ k -k, = --cos 
N 

q+q’+y I 

(4.12) 
where 

2F &*n, 
I?, =- 1 

+ 
1 

+i2 JO -Jq -oq -iq JO - J, + We - i7 1 
=r; + ir;. (4.13) 

Here I?; and I?&’ are the real and imaginary parts, respective- 
ly, of the 2(*) kernel. 

The relaxation kernels given by Eqs. (4.4)) (4.5), and 
(4.12) will be used in the following calculations. An alterna- 
tive simplified way of deriving these forms of the relaxation 
kernels is by using a stochastic model for the exciton- 
phonon coupling 
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&ephon = fi 2 mu (tpp,,. (4.14) 
n 

SK& (t) is a stochastic Gaussian random variable with the 
following properties: 

@a,, ct> ) = 0’ (4.15) 

@-J, (f)Sf&, (f’)) 

r 

i+t- t’) n=m 

= 
(4.16) 

gr;, +ir;)s(t--t’) mn=m*l’ 

lo else 

Using this model, we obtain the following relaxation terms 
in the equations of motion: 

[-$ @nu))]pho” = -f@,(t)). (4.17a) 

= - [r(l--s,,) +Y](~t,w,w), (4.17b) 

[ -$@nWn,,(N] 
phon 

=+ +ir~>(&Jw,*,(t)). (4.17c) 

Equations (4.17a) and (4.17b) represent the Haken-Strobl 
model of exciton relaxation. 11*25 By transforming to k space, 
Eqs. (4.17) will result in the relaxation terms given by Eqs. 
(4.4), (4.5), and (4.12). The real-space representation of 
the relaxation [ Eqs. (4.17) ] will be used in the next section. 

In order to obtain a simple closed form expression for 
M (3), we further approximate the dipolar coupling by a near- 
est-neighbor coupling J,,,,, = F%,, * 1 which gives 
Jk = 2 Vcos k. In Appendix C we calculate the Green func- 
tions G and D [ Bqs. (3.11) and (3.14) ] using the self-ener- 
gies Eqs. (4.4) and (4.12). Using these Green functions we 
finally obtain for x (3) of an infinite crystal (N- OTJ ) 

X’3’(-k,-o,;kIwl,-k2 -w,,k,w,) 
1 

F w2 -a-J&i-i- 
2 >( 

q --CI-J~, +if 
>( 

w3 -CI-Jk, 

X q -fl-Jk, ~i~)W,,k,) -ir$(k,,k,) 
J 4 

(co2 - q - iT)l(k, ,k, ) 
+ (Jk, - Jk, h&k, ,k, 1 

I 

+L (J/c, + Jk, ) 
I 2 [l-Qdk,+k2)] ’ (4.18) 

where we have introduced the following auxiliary functions: 
r 1 (w2 -w, - iT)l(k,,k,) ’ 

(4.19) 

T=r+y, ‘( 4.20) 

;;‘;;=m (4.21) 

1’ 2 
1, 2 - 2 (Jkz -J/c, > ’ 

(4.22) 

dks -+ kz) 
1 1 Et 

(w3 +o, -2n+iT) 7 

with ..- 
77 = 4Vcos[ (k, + k,)/2]/(w, +‘w, - 20 + iT). 

(4.24) 
Equation (4.18) has three terms in the curly brackets. They 
correspond, respectively, to the CN, EP, and TE nonlineari- 
ties which appear in Eq. (3.16). When expanded in powers 
of molecular density (and noting. the additional overall p 
prefactor), we find that the first term gives a contribution 
-p, whereas the second (EP) and the third (TE) terms are 
wp2. This is to be expected since the first term is due to 

‘intramolecular (local) nonlinearity, whereas the other two 
are induced by intermolecular (nonlocal) interactions. In- 
termolecular interactions enter therefore Eq. (4.18) in two 
ways. They modify the intramolecular term, and they induce 
additional new terms. The appearance and the form of these 
new terms provide an excellent direct probe for intermolecu- 
lar interactions, as will be demonstrated in Sec. VI. 

V. THE LOCAL-FIELD APPROXIMATION: NONLINEAR 
COHERENCE-SIZE 

The expression for x (3) derived in Sec. IV contains the 
contribution from intramolecular as well as intermolecular 
nonlinearities. The intermolecular nonlinearity results in the 
second and the third term in the curly brackets in Eq. (4.18). 
The third term may be responsible for an enhanced (cooper- 
ative) nonlinear optical response. The enhancement can 
most conveniently be described in terms of an exciton coher- 
ence length which represents the separation of two sites 
which can still respond coherently to the applied fields. In 
order to define the coherence-size more precisely and gain a 
clear insight into its role, we recast our equations of motion 
in real space. Eq. (A2) (without the phonon part) thus as- 
sumes the form 
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+;Bn = --4, -CJn,(B, +Bt,> Jn,, =Jh,, + J;,,,, 
m with 

+2~JABt,B,B, +Bf,B,,Bfn) 
m 

J 
J;,,, = 

,,d In --I <M 
0; In-ml>M ’ 

I 0; J,,,= J 
In-mm]<M 

,,,,,; In - ml>M ’ 
We have further introduced the local-field at site n generated 
by the long-range part of the intermolecular interactions. 
This field is different from the average Maxwell field E(n), 

+ (,dfi9E(n9 [ 1 - 2B%,]. (5.1) and 
The key approximation will now be introduced. The cubic 
variables B LB, B, represent coherences among the n and the 
m sites, which contribute to the optical nonlinearity. If we 
assume the existence of a finite nonlinear coherence-size NC 
in the problem, then the expectation values of these cubic 
terms can be factorized into a product of two single-particle 
factors when the n and m sites are separated by a number of 
bonds larger than NC. In the equation of motion we thus 
retain the cubic variables if the two sites are separated by less 
than Mbonds, and factorize them into products of single-site 
variables otherwise. Mis an arbitrary chosen number which 
can be varied at will. We thus set 

(B%A,) = (B%,)(%)J In - ml>M (5.2) 

~Bf;B,A,) = @j;B;)@,,,) + #A,J(B,~ 

+ (Bt,>@,&~ -2@t,W4NL), 
In - ml CM. (5.3) 

We expect the factorization made in Eq. (5.2) to be a serious 
approximation which will strongly affect ,yt3’ as long as 
M<N,. However, for M> NC this approximation should 
have a negligible effect, since the neglected coherences are 
not relevant anyhow. By varying&& and observing the varia- 
tion of the calculatedXC3’ with M, we expect a saturation as 
Mcrosses over NC. This should confirm our ansatz regarding 
the existence of NC, and provide an operational definition for 
Nc- 

UsingEq. (52),Eqs. (2.9)’ (2.10),andEq. (2.11) now 
become 

$-$O$,)= -(n-ic)(B.)-~Ji,,t@,,) 

+ @t,) - WtB,&,; - 2@f;B,,Bt,), 

- Wfi)E!r(WI;B,) - 11, (5.4) 

+$(B%) =CJ;,,#t,,B,) -CJ;,,(Bf;B,t) 
In’ m* 

+i[IW--k,J +~]@t,B,,h 

+ QdfiW!ABt,) -E!,@,,,)9, (5.5) 

E!,=-%n) -;;J;m((B,) + (Bk)). (5.8) 

We note that the factorization [ Eq. (5.2) ] has not affected 
Eqs. (5.5) and (5.6) which are identical to Eqs. (2.10) and 
(2.11)’ respectively. The partial neglect of nonlinear-i&s 
only affected Eq. (5.4) which constitutes an approximation 
to Eq. (2.9). Equations (5.3)-( 5.6) constitute a closed set 
of equations for single site variables (B, ) , and two-site var- 
iables (B,,B,,,) and (Bj;B,,) with In-ml CM, and their 
complex conjugates. They have a simple physical interpreta- 
tion. Intermolecular variables representing molecules separ- 
ates by less than M bonds constitute nonlinear oscillators 
which are relevant for the optical nonlinearities. Long-range 
interactions among molecules whose separation is greater 
than M take place only via the local-field which is the field at 
site n generated by the average field and the contributions of 
the long-range interactions. Equations (5.2)-( 5.6) provide 
a flexible prescription for calculating the nonlinear response. 
They offer a rigorous treatment of short-range dynamics and 
an approximate treatment of long-range interactions. The 
physical picture is that the system behaves as a collection of 
anharmonic oscillators. The anharmonicities are short- 
range, interactions among well-separated oscillators are har- 
monic! By choosing M = 1 we put all intermolecular interac- 
tions in the local-field; and as will be shown below, this 
results in the conventional local-field approximation. ‘,‘l As 
M is increased, we treat the intermolecular interactions 
more rigorously, and the local field becomes closer to the 
average field. For M = Nwe treat all intermolecular interac- 
tions explicitly, EL = E(n) and Eqs. (5.4)-(5.6) become 
identical to Eqs. (2.9)-( 2.11). This interplay among local- 
field and intermolecular interactions has been discussed by 
Mukamel, Deng, and Grad.3(a) 

+$@.B,,~= -2W,B,,) --~JJm,(B,,B,) 
“I’ 

- g J;,,,r @,B,,,~ > 

+ WV,) + i-!$ @,B,HL~,,~l 

+ Wfi)W!,,@,) +E%,,)), (5.6) 
where we have separated J,,, into a short-range (J ;,,,, 9 and a 
long-range part (J tm ) 

Equations (5.4)-( 5.6) can be solved in a similar man- 
ner to what we did in Sec. IV. In this section we retain the 
general form of Jk and unlike Sec. IV we do not make a 
nearest-neighbor approximation. We further invoke the ro- 
tating wave approximation and neglect terms with off reson- 
ant denominators. The local-field is then given by 

E’(k,o) = 
w-0-J; +i(F/2) 
w-Cl-J, +i(T/2) 

E(k,u), (5.9a) 

with 
J; =CJL,, exp[ik(n -m)] (5.9b) 

and simila~y for J{. We finally obtain the M-dependent 
nonlinear susceptibility 
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(5.7a) 

(5.7b) 
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x$‘( - ks - w,;k, ~1, - k, - cwbm3 > 

- 2PP4 1 
d/C 

T 
fi3 

w,-fi-Jis+i- T F- 
P 2 >( 

w,--n-J;+il 
>( 

o1 -n--J& +iz 
>( 

.T w3 --Q-J,&+zT 
>I 

X 
K 

w1 -a-J& +is)#,(k, -k,) -iI’#M(k, -k2) 
[ 

J& 
(w, - w, - iT)l,(k, - k, ) 

+ (Ji2 - J;,M&,,k,)] +’ 
(J;, + J&> 

2 [l--oK,(k, +W] I 
fW,,k, NW, ,k, W(w,,k, No, ,k, 1, (5.10) 

where 

q&(kl -k,)=l 
/[ 

1+ il? 1 (w, -a1 -iT)I,(k,,k,) ’ 
(5.11) 

2 
--w 

1 
_ J ’ &+q + J;,+, -f> 1 

x(01, -co1 -iF>, 

q=$p, p=o,1,2 )..., M- 1. (5.12) 

1 [1 -G’(k,,k,)] 
‘I!, (k, ,k, ) sz 

J& -J;, ’ 
(5.13) 

KM% + k, > E-- kz cos2(q) 
M q (w3 +a, -2n-JI;,+k,-q -J; +iF) ’ 

(5.14) 

CO,-tl-JJ;,+i(T/2) 
S(oj,k,) =p 

w,-fi-J,+i(F/2) ’ 
(5.15) 

The auxiliary function introduced in Sec. IV (#, 1, $, and K) 
can be obtained from $M, IM, IjlM, and K~ by specializing to 
nearest-neighbor interactions and sending M- 03. For 
M = 1 we recover the familiar local-field approximation and 
the four S(wj,kj) factors represent the local field correc- 
tions.*v2 In a three-dimensional system, S’(wj,kj ) may 
be expressed in terms of the dielectric func- 
tion e-(kj,.aj)sl + 47&“(kjwj), and is given by 
[.s(kj,q) + 2]/3. ForM + M) and using a nearest-neighbor 
coupling Jk we recover the result of the previous section 
[ Eq. (4.18) 1. Of course, we expect that for large systems 
N, <N. Equation (5.10) could then hold when N, < M<N. 
This is the regime when the present form of the equations 
[Eqs. (5.4)-( 5.6) together with Eq. (5.10) ] should be most 
useful. 

VI. CALCULATIONS AND DISCUSSION 

We shall now present numerical calculations of x0’ 
which will illustrate the relative role of the three types of 
nonlinearities. In all the calculations presented below we 
have used the nearest-neighbor interaction ( Jk = 2 Vcos k) 
and neglected any explicit dependence on light wave vectors 
(the long wavelength approximation) setting k, = k, 

= k, = 0. By monitoring the convergence of Eq. (5.10) as 
M is increased, we establish the existence of the nonlinear 
coherence-size N,, and analyze the factors affecting it. We 
shall focus our analysis on two four wave mixing techniques: 
two-photon absorption, and third harmonic generation. The 
two-photon absorption signal is given by 

W TPA = Irn &)A, 

where 
(6.1) 

,y$$)A qc3’( - k - w;kw, - k - w,kw). (6.2) 
Positive values of W,,, correspond to two-photon absorp- 
tion whereas negative values represent a bleaching (satu- 
rated absorption). The third harmonic signal is given by 

W THG = k%G 1’9 

where 
(6.3) 

,&jG = yc3’( - 3k - 3w;kw,kw,kw), , (6.4) 

~$2~ is obtained from Eq. (4.18) by simply changing the 
sign of k, and w2. 

In Fig. 1 we display the real part, the imaginary part, 
and the absolute magnitude of ,7(i), ,&$)A, and ~$2~. The 
calculations were made using Eq. (4.18). xgG is shown in 
the vicinity of the single photon resonance w--Q, and the 
three photon resonance w-K&,/3, where (n, = a- 2 1 V 1 is 
the band edge frequency. In Fig. 2 we show the contributions 
of the cubic nonlinearity (CN), exciton population (EP) , 
and two-exciton (TE) terms to the TPA, and to the THG 
signals. The dependence of the four wave mixing signals on 
the three phonon-induced relaxation parameters (l?, I’&, 
and I,“) is shown in Fig. 3 (for W,,, ) and in Fig. 4 (for 
W,,, ) . The THG signal in the vicinity of w - fiL, /3 does not 
vary with IO, we therefore only display its variation with I. 

All the above calculations were based on the general 
expression for ,yc3) [ Eq. (4.18) 1. In the following we use the 
expression derived in Sec. V [ Eq. (5.10) ] which provides an 
operational definition of the nonlinear coherence-size N, 
which controls the magnitude of the optical nonlinearity. 
We first consider the variation of the local-field switching 
function C(M)EJ{_~/J~=,, [Eqs. (5.7) and (5.9)] with 
M. For M = 1 all intermolecular interactions are incorpor- 
ated via the local-field and C = 1. As M increases, the local- 
field corrections become smaller and C(M) 4 0. This beha- 
vior is illustrated in Fig. 5. 

The most dramatic effect of taking a finite M value is the 
appearance of TE and biexciton resonances in xc3’. These 
resonances come from the TEcontribution to,yC3) [the third 
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FIG. 1. Frequency dependence 
of the linear and nonlinear sus- 
ceptibilities. Solid line: Im x; 
long dash: Re ,x; short dash: 1x1. 
Phonon relaxation parameters 
are given in units of IPI = 1. 
r=y=O.l; I?; = - 3; r; 

-0.01; v= - 1; n = 10. 
(11 ,y”‘(w); (b) x$-L; Cc) ~$20 
in the vicinity of the band edge; 
Cd) ,&o in the vicinity of the 
three photon resonance 
o-&/3. 
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FIG. 2. The contribution of the CN, 
EP, and TE terms toy”’ represent- 
ing TPA and THG. F=y=O.l; 
I-; = - 3; r,- = -0.01; v= - 1. 
Solid line: total d3); long dash: TE 
contribution; medium dash: EP con- 
tribution; short dash: CN contribu- 
tion. (a) TPA signal W,,,; (b) 
[&& I, square root of the THG sig- 
nal in the vicinity of the band edge; 
(c) same as (b) in the vicinity of the 
three-photon resonances o-Q,/3. 
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FIG. 3. Dependence of the TPA 
signal W,,, on the phonon relaxa- 
tion parameters (all given in units 
of IV(=l). (a) Solid: r=y 
= 0.1; long dash: r = y = 0.08; 

short dash: I‘= y= 0.12. l-6 
= - 3; I-; = -0.01; v= - 1. 
(b) Solid: l?; = - 3; long dash: 
r;, = - 3.5; short dash: 
r; = -4, r=y=o.i; 
r;; = - 0.01; V= - 1. (c) Solid: 
r; = - 0.01; long dash: P;; 
= - 0.1; short dash: P’; = ~ 1. 

r=y=o.1; r;, = - 3; 
v= -1. 

FIG. 4. Dependence of the 
square root of the THG signal 
Wi<o on the phonon relaxation 
parameters (all given in units of 
(VI = 1). (a) Variation with I? 
in the vicinity of the three photon 
resonance. solid: r = y = 0.1; 
long dash: I? = y= 0.2; short 
dash: r = ~'~0.3. r;, = - 3; 
rr* = -0.01~ 0 , V= - 1. (b) 
Variation with I? in the vicinity 
of the band edge. Solid line: 
r=y=o.i; long dash: 
r=y=o.2;. short dash: 
r=y=o.3. r;= -3; 

.r;;= -0.01; v= - 1. tc) 
Variation with l?;, in the vicinity 
of the band edge. 
r; = - 2; long dash”? 
= - 3; short dash: P; = - 4. 
r=y=o.i; r; = -0.01; 
I’= -.~ 1. (d) Variation with P;; 
in the vicinity of the edge. solid: 
pL -001. 0 . , long dash: 
r*’ = _ 0 1. 0 . 2 short dash: 
p = - 1. 0 r=y=o.i; 
rg = - 3; v= - 1. 1 
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FIG. 5. The local-field switching func- 
tion CeJ;,O/Jk,O. For M= 1, 
C = 1, and the local-field correction is 
the largest. As M increases, C-0 and 
the local-field correction becomes 
smaller. 

term in the curly brackets in Eq. (5.10) 1, and occur when 
the denominator 1 - F0 K~ vanishes. Using Eq. (5.12) this 
results in the following equation: 

co? q 
p (WY +w, -2i2--44vcosq+ir) * 

The TE resonances occur whenever o1 + w3 satisfy Eq. 
(6.5). In Fig. 6 we display the TPA signal calculated using 
Eq. (5.10) with M = 100, for various values of the phonon 
mediated attractive interaction I’;. All curves show a 
progression of two-photon resonances in theTE band. These 
resonances are blue-shifted compared with the band edge 

(6.5) (w > a, ). The blue shift results from the Pauli exclusion 

FIG. 6. Dependence of the TPA signal 
on the phonon-induced attraction I?;. 
Shown is the function K( W,, ) [see 
Eq. (6.6)]. Calculations were made 
using FJq. (5.10) with M= 100; 
r = y = 0.001; &’ = 0.0. Solid line: 
r;, = - 2; long dash: r; = - 3; 
short dash: r; = - 4. 

0.95 1 

O/Ql 
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FIG. 7. Frequency dependence 
of the linear and nonlinear sus- 
ceptibilities [FQ. (5.10)]. 
Shown is the function K(x) 
[see Eq. (6.6) 1. Solid line: 
x = Im ,&& ; long dash: 
x= Ix%I; r;, = - 3.0, 
r$ = 0, M = 100; short dash: 
x = Im x(“(o). 
l-=y=O.OOl; (b) l-2; 
= 0.01; (c) I- = y= 0.05; (d) 
l?=y=O.l. 

FIG. 8. Frequency dependence 
of the linear and nonlinear 
susceptibilities E!qs. (3.7) and 
(4.18). Shown is the function 
K(x) [see FLq. (6.6)]. Solid 
line: x=ImXk$,; 
r; = - 3.0, r; =o; long 
dash: x = I&?,, I; short dash: 
x = Im,,$“(u). 
r=y=O.OOl; (b) (‘; 
= y== 0.01; (c) r=y 
=0.05;(d) r=y=o.i. 
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FIG. 9. Dependence of the nonlinear susceptibilities on the truncation size 
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which acts as an effective repulsion among excitons. In addi- 
tion, we see an exciton bound resonance (biexciton) which is 
red-shifted (w < R, ) . The red shift increases with the bind- 
ing energy I’;,, as is clearly shown in the figure. It should be 
noted that in the present model the exciton-exciton interac- 
tion has a repulsive and an attractive part. Both contribu- 
tions have a different dependence on interexciton separation 
In - m l. The Pauli repulsive part exists only for n = m  
whereas the attractive part form = n f 1. The Green func- 
tion D requires solving the eigenvalue problem with both 
potentials present. We then find that when the attractive 
part is sufficiently strong, a new bound (biexciton) state will 
be found. The attractive phonon-mediated interaction is to- 
tally analogous to the attraction of two electrons in the 
theory of superconductivity (the Cooper pair).14 Since 
W& may change sign, and we wish to display it on a log 
scale, we have plotted the following function: 

K(x)= I-4 
Xlog(l+ 1x1); (6.6) 

where x = WTPA, for 1~1% 1, K = (sign x)loglx[, whereas 
K-x for 1x1-0. In Fig. 7(a) we compare the linear absorp- 
tion, TPA, and THG signals for M= 100. Both TPA and 
THG show the TE and biexciton resonances discussed above 
[ Eq. (6.5) 1. The linear absorption does not show these re- 
sonances. As the phonon-induced damping is increased, 
these resonances broaden and gradually disappear. This is 
illustrated in Figs. (7b), (712)) and ( 7d). Figure 8 is comple- 
tely analogous to Fig. 7, except that we do not invoke the 
local-field approximation, taking M  = N with N-, co [ Eq. 
(4.18 ) 1. As was shown previously, I2 the TE resonances do 
not show up here, since as M  increases they become very 
close and eventually merge and disappear. The reason is that 
the system becomes less anharmonic asMincreases since the 
Pauli exclusion becomes less effective in this case.” The 

FIG. 10. Dependence of the TPA sig- 
nal [ Im ~$2~ ] on the truncation size 
M, for various values of the phonon 
relaxation parameters. Solid line: 
r = Y=O.I; r;= -3; r; 

- 0.01; long dash: f’ = y= 0.1; 
G = - 4; r; = - O.O!; middle 
dash: r=y=o.i; r; = -3; 
r;= - 3.0; short dash: r’=y 
= 0.01; l-6 = - 3; I-;; = - 0.01. 

2 8 M  14 20 
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FIG. 11. The dependence of the coher- 
ence&e NC, defined using TPA [ Eq. 
(6.7) 1, on the phonon relaxation para- 
meters. (a) Dependence on P. 
p = -3. p; -001. 0 

-0.0s; v=” 
. > w-i& 

= -l.P=yisvaried 
iu the range 0.01-0.03. (b) Depen- 
dence on I;. &‘= -0.01; 
w--C& = -0.08; V= - 1. r; is 
varied in the range - 12 to - 3. (c) 
Dependence on r;;. r‘= y= 0.1; 
r; = -. 3; a, - n, = - 0.08; 
V= - 1: I; is varied in the range 
- ml to - 0.01. 

biexciton resonance does show up for small damping rates 
[Fig. 8 (a) 1, but gradually disappears as the damping is in- 

the biexciton resonance will appear above the TE band, and 

creased [Figs. (8b), (8c), and (8d) 1. It should be noted that 
is more likely to be broadened by the decay channel provided 
by the TE states. 

the phonon-mediated interaction I’; could be either attrac- 
tive or repulsive. In the present calculations we have taken it 
to be attractive (I’; negative). For a repulsive interaction, 

The convergence of ,yC3’ with M is shown in Fig. 9. A 
clearer picture may be provided by looking at the TPA signal 
at a given frequency w - CR = 0.08 V and plotting it vs M. 

FIG. 12. Dependence of the TIIG 
signal IV,,, on the truncation size 
M, for various values of the phonon 
relaxation parameters, for 
o--n, = - 0.5, VA - 1. Solid 
line: r=y=o.oi;. r;,= -3, 
I’; = - 0.01; long dash: P = y 
= 0.4; r; = - 3; rg = - 0.01; 

middle dash: I’= ~~0.01; I;, 
= - 3.2; &’ = - 0.01; short dash: 
r = y = 0.01; . I-; = - 3; 
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I I I 

0.3 0.6 0.9 

l..J L 
- I 

FIG. 13. The dependence of the coher- 
ence-size NC defined using the THG 
[ Eq. (6.8) ] on the phonon relaxation 
parameters. [a) Dependence on r var- 
ied in the range 0.01-l. r;, = - 1; 
r”z -001. 0 * , o--62, = -0.5; 
V- - 1. y= I?. (b) Dependence on 
r;. r-y=o.i; r;;= -0.04; 
w - SL, = - 0.2; V= - 1. r; is var- 
ied in the range - 1.0 to - 2.0. (c) 
Dependence on rg. lY(, = - 1; 
r = y= 0.2; 0 --R, = - 0.5; 
F’= - 1. r;; is varied in the range 
- 0.02to - 5.0. 

This is shown in Fig. 10 for different values of the damping. 
As expected, when the damping is increased, the coherence- 
size decreases and the saturation occurs for smaller values of 
M . Figure 10 allows us to introduce the following opera- 
tional definition of the nonlinear coherence-size N, : 
IW,,,(M=N,) - JG,,mf-N)I =O.1p&imf+N)I. 

(6.7) 
N, is thus defined to be the value of M  for whichX’3’ attains 
90% of its asymptotic (M = N) value. N, defined that way 
is displayed in Fig. 11 as a function of the various phonon- 
coupling parameters I’, I’;, F;. Figures 12 and 13 are analo- 
gous to Figs. 10 and 11, except that the calculation is made 
for THG. N, is then similarly defined by 
I W,,, Wf = Nc I- WA, (M-N) I 

=O.lI?‘V&(M+N)I. (6.8) 
The values of N, obtained from THG (Fig. 13) are very 
similar to those of Fig. 11. We believe that the concept of the 
nonlinear coherence size introduced in this article is very 
general, and should have important implications on the in- 
terpretation of the nonlinear optical response in condensed 
phases (whether bulk or restricted geometries). An applica- 
tion to semiconductor nanostructuresZ6 is also a natural ex- 
tension of the present results. 
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APPENDIX A: THE NONLINEAR-OSCILLATOR 
EQUATIONS OF MOTION 

The equations of motion will be derived by starting with 
the Heisenberg equation for an arbitrary operator A, 

+-$A = [f&A 1. (Al) 

Taking A = B, , B l, B, , B,, B,, , and b, which represent po- 
larization (P) , exciton population (EP ) , two-exciton (TE) , 
and phonon variables, respectively, and using the Hamilto- 
nian Eq. (2.1) we get 

+$Bk= --BI,-JJk(Bk+Bt,,-CF,,-,B,-, 
P 

x(b, +bt,) +$ C J,,B;,,,,,B,,,,, 
k'.k u 

X(B,, -tBt_,J - 2F@$) c E(i 'J) 

k' 

x 
[ 

xBt,.,+kJk+kt. -Tfikesk , 
I -- 

(AZ) 
k " 

+&,Bk, 

= ! Jk, - Jk, )B i3Bk, + - 
& 

(/q/Q [B tk,Nk J) 

- &,Ww) ] + G (IFk2,qB t, + q&c, 

-F/c,_.,Btk,Br,-:)(bq +b+-,I, (A31 
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+‘,‘B,’ = - G3 + J/c, + J,,lB,,Bq 

-I- ~d(fifl) [ 4, E(k, 4 + B,,E(k, A ] 

-c (&,-q,qBk,Bkx-q 
+iklmq,q&-q&3)(bq +b+-q) cA4) 

+$b, = -ash, -- & ~Fk--q%&. (A51 

The next step is to eliminate the phonon variables. In Ref. 11 
this was done in detail for the P and EP equations. For the 
TE variables this can be done in a similar way, and will not be 
repeated here. When this is done, we finally obtain Eqs. 
(2.10) and (2.11). 

APPENDIX B: TRUNCATION OF THE HIERARCHY: 
DERIVATION OF EQ. (2.12) 

In this appendix we show how the hierarchy of equa- 
tions is truncated, resulting in a closed set. We first neglect 
terms which are products of four B factors. These terms do 
not contribute toxc3’ since they are fourth order in the field. 
The remaining problem is then to factorize the triple product 
ofB factors. This is done by introducing the following ansatz 
for the density matrix at time t: 

p(t) =sexp C CP,Ji +PXB,) 
n 

+ z ~~nnzB~Bt, + timB,Bm +‘~mBt,% 1 . nm 1 (Bl) 
All the coefficients s, j3, y, and K are time dependent. We 

can relate these coefficients to the expectation values of our 
relevant set of operators by expanding the exponential per- 
turbatively. We thus have 
(A > = ‘W&l, (B2) 

(OlplO> =s(l +f; lF12) 7 

(B,) =+:(l ++z IkI’) m 

(B3) 

(B4) 

(BfiB,) =s(& +P?x,, +:&m c IB,i’) 7 (B5) 
P 

(B&n) =N?;&n +2Y,wn), (W 

At this point we can close the hierarchy using the relation 

@f;,BbBk,) =Tr[Bt,,(0)B,,(O)Bk~(O)p(t)], (B8) 

where we use the Schrodinger picture, i.e., the operators are 
taken at t = 0 and the time evolution is included in the den- 
sity matrix. Upon the substitution of Eq. (Bl) in Eq. (B8) 
we get 

@%,zBp) =s(P,b’tPf +2&Y,, +/+n, +~~Knph 
(B9) 

When Eqs. (B4)-( B7) are substituted in Eq. (B9) we final- 
ly obtain Bq. (2.12). 

APPENDIX C: DERIVATION OF EQ. (4.18) 

In this appendix we solve for the Green functions G and 
D and derive the expression forX’3’. We start by calculating 
G. Upon the substitution of Eq. (4.4) in (3.1 la) we get 

[a2 -0, - Jk,+q + Jk, - i(r + 7) ] Gkzk, (4) +i-+2k,(~+d) 4’ 
= (P/fi) [,y*“‘(k,w,) -,y”‘(kp, ) IS,,. 

Using Eq. (Cl) we get 

(Cl) 

1 
(;k,,&+& =- 

W2 
x*“‘(k,w2)X”‘(k,w, 1 + i$c 

q [co2 --ml -Jkz+q :,,+, -j(r+Y)] . I (c2) 
Upon the substitution of Eq. (C2) in Eq. (Cl ) we finally get 

G,& (4) =-$*(l)(kzoz ),y’!‘(k,w, ) - i (r/Np2) 
P2 [W2 -@I -Jb+q +Jk,+q -i(r+Y)] 

X 
X*“‘(k,w, )X’*‘&o, ) 

I ‘++ ,a,,,-~J,+,.:J k, + 4 -i(r+y)] I 
Adopting a nearest-neighbor approximation for the interaction V we get 

Jk = 2Vcos k; 

and using Eqs. (C3) and (C4) we get 

IN(kl,k2)/(ca2 --ml - iP)=z-&z 1 
q ~2 -WI -Jbtq +Jk,+q - i(r + Y) 

w2 -wl --@-4Vsin q+ ( !k$!L) sin(E!-fk)] , 

(C3) 

(C4) 

(C5) 
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for N- CQ we perform the summation and get Eq. (4.21) 

~Jk,+-qGk,k,(q) =$x 
P  

*“)(k,o,)y”)(k,o,)[J,, -i$-(l--$)(1+ (w2 -c-jf,I)el]. CC61 

We next solve the equation for D. Using Eq. (3.14) together with Eq. (4.12) we get 

[w3 +w, -26Jk,+, -JkJsq -t%r+Y)]DkI,k,@) - 
roq%% - k + 3~) 

N I xp$(q’+q+y) DV, (a + 4’) = - @ ifi> [,y”)(k,w,) +‘x.(l&wj ),]s,,, 
, 

4’ 

where 
4(k) = cos(k). 

Repeating the same procedure used for G  we solve Eq. ( C7 ) resulting in 

..I- 

(C7) 

-(C8) 

f c d(P - v) Dk,k, (P) 
P 

:$& 
.* 

f ~. 

1 k, -k, =I- _ 
Np ‘( 2 2 > a!(%~3 );Y”‘(k,o, ) 

/[ 

#((k, -k k, 112 -p’)qQ’ - (k, + k, )/2) 

03 4-0, ~2fi-J~,+,,-~. -J __,i+i(r+fy)] ’ 1 
(C9) 

Dk,k, (4) = --$(W ,m, )x”‘(k,w, ) P2 

#[(k, +k,)/2-p’]#[p’-(k, +k,)/2] 

l-s? [% +@, -2~-Jk3+k,-p, =-Jep, +i(l?+y)] 

Equation (3.16) requires the evaluation of a sum involving D. Using-Eq. (ClO) we get _.__..- 

+qDk,ks(d =1X”‘(k,w,)X”‘(k,o,) 
roKiv(ks + k2 > 

P= 
Jk, +&(J, +-I,, - 

I l-roKdk,+kd ’ 
where 

K,(k, +k2)++os2 
P 

k + k2 %  +q -2fiq4Vcos- 
2 > 1 -1 

+iT . 

Upon the substitution of Eqs. (C3), (C6), (ClO), and (Cll), in Eq. (3.16) we get - 

1 + 237 1 -1 

(0.1~ -q -iT)I,(k,,k,) 

+kkl-i-$-l,(;,k,)] [l+iM ]-l] 
+ Jk, + i(Jk, + Jk, ) ro&v(ks + kz) 

[i - r&,(kS + k,)] I -wk3 -x~~~$ ’ 
i+i. I- 

(02 -w3 -iF)I,(k,,k,) I) ’ 
(C13) 

Equation (Cl 3) is identical to Eq. (4.24). 

J. Chem. Phys., Vol. 95, No. ii,1 December 1991 Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



0. Dubovsky and S. Mukamel: Exciton coherence and optical nonlinearities 7845 

’ N. Bloembergen, Nonlinear Opfics (Benjamin, New York; 1965) ; D; Be- 
deaux and N. Bloembergen, Physica 69,67 (1973). 

zC. Flytzanis, in Quantum Electronics V.I., edited by H. Rabin and C. L. 
Tang (Academic, New York, 1975), p. 1; Y. R. Shen, The Principles of 
Nonlinear Optics (Wiley, New York, 1984). 

’ (a) S. Mukamel, 2. Deng, and J. Grad, .I. Opt. Sot. Am. B 5,804 (1988); - 
(b) J. Knoester and S. Mukamel, Phys. Rev. A 39, 1899 (1989); J. Opt. 
Sot. Am. B 6,643 (1988). 

‘A. S. Davydov, in Theov of Molecular Excitons (Plenum; New York, 
1971). 

r (a) G. J. Small, in Excited States, edited by E. C. Lim (Academic, New 
York, 1982); (b) S. H. Stevenson, M. A. Connolly, and G. J. Small, 
Chem. Phys. 128, 157 (1988). 

’ K. E. S&river, M. Y. Hahn, and R. L. Whetten, Phys. Rev. Lett. 59,1906 
(1987). 

‘E. Hanamura, Phys. Rev. B 37, 1273 (1988). 
‘F. C Spano and S. Mukamel, Phys. Rev. A 40,7065 ( 1989):-~ _ 
‘H. Ishiharaand K. Cho, Phys. Rev. B 42,1724 (1990); Nonlin. Opt. 1 (in 

press, 1991). 
‘OF. C Spano, V. Agranovich, and S. Mukamel, J. Chem. Phys. 95, 1400 

(1991). 
” .I. Knoester and S. Mukamel, Phys. Rep. 205,l (1991). - 
“F. C. Spano and S. Mukamel, Phys Rev. Lett. 66; 1197 ( 1991); J. Chem. 

Phys. 95,7526 (1991). 
“F. C. Spano, J. R. Kuklinski, and S. Mukamel, Phys. Rev,.Lett. 65, 21.1 

(1990). 
i4G. D. Mahan, Many Particle Physics (Plenum, New York,, 1990):’ 
is D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Or&&c Mole- 

cules and Crystals (Academib, New York, 1987), Vols. I and II. - 

i 

r,i. ,; 
_ _ 

#- 1. 

hl 

_~ ~. 

,’ 

, 

!‘B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, Phys. Rev. 
Lett. 58, 2750 (1987); B. I. Greene, J. Orenstein, and S. Schmitt-Rink, 
Science 247,679 (1990-). 

I’ P. D. Townsend, W.-S Farm, S. Etemad, G. L. Baker, Z. G. Soos, and P. 
C. M. McWilliams, Chem. Phys. Lett. 180,485 ( 1991); Z. G. Soos and G. 
W. Hayden, Chem. Phys. 143,199 ( 1990); S. Etemad and Z. G. Soos, in 
Spectroscopy of Advanced Materials, edited by R. J. H. Clark and R. E. 
Hester (Wiley, New York, 199 1 ), p. 87. 

‘*G. J. Blanchard and J. P. Heritage, Chem. Phys. Lett. 177,287 (1991); 
W.-S. Farm, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, and F. 
Kajzar, Phys. Rev. Lett. 62, 1492 (1989). 

i9J. R. G. Thome, Y, Ohsako, J. M. Zeigler, and R. M. Hochstrasser, 
Chem. Phys. Lett. 162,455 (1989); J. R. G. Thome, S. T. Repinec, S. A. 
Abrash, and R. M. Hochstrasser, Chem. Phys. 146,315 (1990). 

tOtangmuir-Blodgett Films, edited by G. Roberts (Plenum, New York, 
1990); M. Orrit and P. Kottis, Adv. Chem. Phys. 74,1 (1988). 

‘I D. Mobius and H. Kuhn, Isr. J. Chem. 18,375 ( 1979); D. Mobius and H. 
Kuhn, J. Appl. Phys. 64,513s (1988); F. F. So, S. R. Forrest, Y. Q. Shi, 
and W. H. Steier, Appl. Phys. Lett. 56, 674 (1990). 

*2J. R. Kuklinski and S. Mukamel, Phys. Rev. B 42,2959 (1990). 
*) H. A. Lorentz, The Theov of Electrons (Dover, New York, 1952). 
“J. J. Hopfield, Phys. Rev. 182, 945 (1969); U. Fano, ibid. 103, 1202 

(1956). 
*‘H. Haken and Y. Strobl, Z. Phys. 262, 135 (1973). 

-’ 
?6.S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 

8113 (1987); S. Schmitt-Rink, D. S. Chemla, and H. Haug, ibid. 37, 941 
(1988). 

, .$ 

J. Chem. Phys., Vol. 95, No. 11,i Detiember 1991 Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html


