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The radiative decay rates of the lowest electronic excitations in a semiconductor sphere (quantum dot) are calculated for 
various temperatures and radii. We investigate how the interplay of quantum confinement and lattice vibrations affects the nature 
of the single electron-hole eigenstates. Application is made to the interpretation of recent fluorescence experiments in CdS quan- 
tum dots. 

1. Introduction 

The elementary electronic excitations in semicon- 
ductor microcrystallites are intermediate between the 
Wannier excitons, characteristic of bulk semicon- 
ductors, and electron-hole pairs strongly confined 
by a three-dimensional well [ l-7 1. Since the large 
oscillator strength carried by excitonic states is of 
great interest in the fabrication of materials with large 
nonlinear susceptibilities [ 71, the optical properties 
of materials composed of semiconductor micro- 
spheres (quantum dots) have attracted a wide at- 
tention. Previous investigations of layered semicon- 
ductor structures (quantum wells) have shown that 
in quasi two-dimensional systems (i.e. with one de- 
gree of freedom of electronic motion constrained by 
geometry), the excitonic state is much more stable 
against phonon disruption, since it has a larger bind- 
ing energy, and the excitonic resonances may be ob- 
served even at room temperature. For realistic semi- 
conductor microspheres with sizes comparable to, or 
smaller than the bulk Wannier exciton radius, RB, 
the bound excitonic state is perturbed by boundary 
conditions and phonons, and a quantitative analysis 
of the relative magnitude of both effects is necessary 
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in order to characterize its optical properties [ 1 - Ill. 
The confined excitonic-like one and two (electron- 
hole) pair states were investigated using numerical 
[ 5,6] and variational [ 8-101 techniques. These cal- 
culations focused on the electronic degrees of free- 
dom, and did not take into account nuclear motions 
and coupling with phonons. Depending on the ra- 
dius of the semiconductor microcrystallite, a tran- 
sition from a discrete electronic structure character- 
istic of a small, molecular-like system, to the bulk is 
observed, The details of this transition were exten- 
sively studied experimentally using absorption, flu- 
orescence, pump-probe and hole-burning tech- 
niques [ l-7,1 11. Another important problem is 
related to the mechanism and the magnitude of the 
nonlinear susceptibilities of quantum-dot micro- 
structures, which are also largely determined by the 
one and two-pair states [ l- 111. 

In this Letter, we investigate the radiative recom- 
bination of a single electron-hole pair in a spherical 
semiconductor particle and explore its variation with 
particle size and temperature. In section 2 we intro- 
duce the Hamiltonian, and in section 3 we analyze 
the variation of the radiative decay with size at T= 0. 
We use a confined electron and hole basis set [ 6,7 1, 
and neglect surface effects. For very small particles, 
the eigenstates are close to the noninteracting elec- 
tron-hole pair, and the Coulomb interaction is neg- 
ligible [ 6,7]. In this basis, the oscillator strength is 
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equally distributed among a few bright states. Our 
results show the buildup of electron-hole correla- 
tions as the radius is increased, which result in the 
redistribution of the oscillator strength. Phonon and 

temperature effects are studied in section 4. Tem- 
perature affects the radiative dynamics through 
phonon-induced transitions which shift population 

from the radiatively accessible bright states to the 
dark states, and therefore tend to decrease the ob- 
served radiative decay rate [ 121. In the regime of 
temperatures where the excitonic bound state is not 
destroyed by coupling to phonons, the radiative de- 
cay rate increases with the radius of the microsphere, 
as long as the radius is smaller than the exciton co- 
herence length. This effect is very similar to the be- 

havior of molecular particles with Frenkel excitons 
[ 12,131. However, for higher temperatures, the ex- 
citonic bound state is destroyed and the decay rate 
may decrease with dot size. The combined effect of 
phonons on both the relative and the center-of-mass 
motions of the electron-hole pairs makes the radia- 
tive decay in semiconductors a much more complex 

problem then the corresponding one for molecular 
clusters with Frenkel excitons. 

2. The quantum-dot Hamiltonian 

We shall be interested in the quantum dynamics of 
an electron-hole pair state, confined in a semicon- 
ductor sphere with radius R. The Hamiltonian is 

Ho= j dr@+(r)(g + 2 +fio,+ l’&))@(r) 

+ dr,dr2V/+(r,)~+(r2)V~/,(r,-r2) I 
x @.(r2)9(rl) , (1) 

where. p), ( pi, ) is the electron (hole ) momentum op- 

erator, #roe is the band gap energy, Vo= $/e,r is the 
Coulomb potential (E ( t-1 ) and V, is the periodic 
potential associated with the periodic structure of the 
solid. e is the electronic charge and e. is the static 
dielectric constant of the medium. 

For the electron we use the orthonormal basis set 
of a particle in a spherical well, which vanishes on 
the surface [ 1,6,7] 

(pa) 

with eigenvalues (in the effective mass approxi- 
mation) 

fi*a* 
E CL 
O1 2m2R2’ e 

(2b) 

where (I! stands for the quantum numbers cr= nl; 
n=O, 1, . . . . l=O, . ..) n- 1, j,(x) are the spherical 
Bessel functions, Y,,(0, @) are the spherical har- 
monics and a,,/ is the nth root of the Zth Bessel func- 
tion [ 61. Similarly, the hole basis set is given by the 

same functions with the electron effective mass m, 
replaced by the corresponding hole mass mh, and E, 
denoted e&. 

The electronic field-operator has the form 

(3) 

where f + a and d,’ denote operators creating elec- 
trons and holes, respectively, in the states with a spa- 
tial envelope qa(r), and where u,(r) (u,(r)) is the 
periodic part of the Bloch function for the valence 

(conduction) bands. We assume that initially a sin- 
gle electron-hole pair is created by the absorption of 
a photon. Since there is no spin-flip interaction in 

our Hamiltonian, the electron and hole must carry 
opposite spins and the spin index will be omitted. 
We now introduce the creation operator of an elec- 
tron-hole pair [ 141 Y& E ti 2,‘. Making the effec- 
tive mass approximation for both electrons and holes, 
the part of Hamiltonian given by eq. ( 1) describing 
the attraction of confined electrons and holes can be 

rewritten as 

(4) 

V ab,a,p = s dr, dr2 &Ar, )v*a(r2) 

x Vdr,-r2h(rl hGr2) . (5) 

In eq. (5) we neglect the dipole and higher multi- 
poles associated with the electric field generated by 
a unit cell [7]. 

The Hamiltonian (4) can be diagonalized using 
the transformation 
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Ia> = & wQzcB+ IQ> 3 (6) Using eq. (9a) we get yas= S,,ro, where 

with ]a) being the vacuum state, resulting in 

&= c fi%l6<4 * (7) 
0 

Here I o) denotes the Coulomb one pair eigenstates, 
with eigenvalues Aw, 

Similarly, the radiative decay rate of the Coulomb 
eigenstates is 

3. Radiative decay at T=O 

In the dipole approximation, the coupling of the 
semiconductor particle to the radiation field is given 

by 

Hint= -E(r, t)P 3 (8a) 

where J!? is the electric field, and the dipole operator 
is given by 

& dr@+(r)er@(r). 
I (8b) 

The coupling to the radiation field involves both in- 
ter- and intra-band transitions [ 7 1. In the following 
we neglect intraband transitions, which yields [ 71 

li&=d,, 1 (&?,+h.c.) , (gal 
a 

where 

dreru:(r)u,(r). (9b) 

In order to obtain this result we need to go beyond 
the coarse grained approximation employed in the 
effective mass model (eq. (4) ) and consider the 
variation of the wavefunction over a single unit cell. 
The key approximation is neglecting the dependence 
of the periodic part of the Bloch function on the k 

vector, i.e. we assume that the periodic parts of the 
Bloch functions u, and u, do not vary within the same 
band. We then decompose the integral over r into an 
integral over a single unit cell and a sum over unit 
cells, resulting in eqs. (9). 

The radiative recombination rate of a single-pair 
state with an electron in the state (Y and a hole in the 
state /3 is given by the Fermi Golden Rule 

(10) 

(11) 

which can be recast in the form 

(12) 

(13) 

We further note that when a localized (tight bind- 
ing) basis set is used, i.e. ]a) =Jdr, dr2 @(rl, r2) Jr,, 
r2), where I r,, r2) denotes the one pair state with an 
electron localized in a unit cell with position r, and 
a hole at r,, the decay rate of the single pair state can 
be rewritten as 

Radiative recombination can 
by the effective Hamiltonian 

(14) 

therefore be described 

(15) 

In the strong confinement (small dot) limit, where 
the Coulomb repulsion can be neglected, the radia- 
tive rates have a simple bimodal distribution; the de- 
cay rates of single-pair states are equal to y. when 
(~=fi and vanish otherwise (eq. ( 11) ). When the 
Coulomb interaction is turned on, the transforma- 
tion UzB redistributes the oscillator strength among 
the bright and dark zeroth-order states, as shown by 
eq. (13), and the distribution of decay rates is 
modified. 

We have numerically diagonalized (4 ), resulting 
in the Coulomb eigenstates (eq. (6) ) and eigenval- 
ues and their radiative decay rates. A convenient pa- 
rameter which measures the mixing induced by the 
Coulomb interaction is the inverse participation ra- 
tio [15] 
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Volume 189, number 2 CHEMICAL PHYSICS LETTERS 3 1 January 1992 

When the free pair states constitute a good basis set, 
we have Q; ’ = 1, whereas as the Coulomb interac- 

tion becomes more significant, the free pair states 
are heavily mixed and Q; ’ x 0. The variation of 
Q; ’ between 0 and 1 provides therefore a simple 
measure of the effect of Coulomb interaction on the 
eigenstates. The eigenvalues and Q; ’ of the lowest 
fifteen eigenstates of various size particles are dis- 
played in fig. la. Characteristic parameters for CdS 
are used (m,=0.235mo, mh=1.35mo, eo=9, where 
m, is the electron mass). For these parameters, the 
radius of the Wannier exciton is RB = tofi2/m,e2 is 30 
A. Fig. 1 demonstrates the degree of mixing and 
shows that the lowest eigenstates are more strongly 
perturbed by the Coulomb potential. The radiative 
decay rates of the same states are plotted as a func- 
tion of the eigenvalues E for various sizes of the mi- 

crosphere in fig. lb. In the strong confinement 
(R-+0) limit we obtain a bimodal distribution of 

“bright” states ((Y = /I) with the radiative decay rate 

y. and “dark” states ((Y # /3) with y= 0. As the radius 
of the microsphere is increased, the Coulomb at- 

traction becomes more significant, the electron and 
hole motions become correlated and the oscillator 
strength is redistributed. The evolution of the oscil- 
lator strength distribution for increasing size of the 
microsphere presented on fig. 1 b shows the signature 
of the buildup of the 1 s excitonic state. Note that the 
effective mass approximation used here, implies the 
neglect of effects of anisotropy in the electron and 
hole mass. This anisotropy provides another mech- 
anism for mixing the free pair states which may be 
significant for CdS, but is neglected here. In the bulk 
(R-+co) limit, the ratio of the radiative decay rates 
of excitonic states is governed by the value of the hy- 
drogenic wavefunction at r=O [ 141 i.e. 

ro 
r,, = 

where &(r) is the hydrogenic wavefunction. The 

L-2 

N 

0 

0 

N 

0 

0 

D=3Rg 

D -> 0 

Fig. 1. (a) The inverse participation ratio Q;’ is displayed as a function of the energy of the fifteen lowest one-pair eigenstate E for 

various diameters of the microsphere D. The parameters m,=0.235m0, m,= 1.35m,,, c,,=9, with m,, the electron mass were used. For 

these parameters R.= 30 A and the reference energy F 3 2&r2/rn~~ =4.2X 10 -’ eV. Note that these states do not represent bound 
excitons, and all energies are therefore positive. (b) The radiative decay rate r is displayed as a function of the energy of the one-pair 

eigenstate E for various diameters of the microsphere D. Same parameters of 1 a were used. 
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distribution of radiative decay rates in the bulk as 
given by eq. ( 17) is shown in fig. 2. Comparing it 
with fig. 1, we note that the particle size range cov- 
ered in fig. 1 is not broad enough to allow for the for- 
mation of excitons. The eigenvalues in fig. 1 are still 
positive and the distribution of radiative decay rates 
is very different from that of fig. 2. The states shown 
in fig. 1 should therefore be viewed as correlated 
electron-hole pairs rather than excitons. 

The decay rate of the lowest single-pair eigenstate 
is plotted in fig. 3 as a function of the radius R ( T= 0 
K curve). In analyzing fig. 3 we note that size con- 
finement affects both the relative electron-hole mo- 
tion as well as their center of mass. As the size is in- 
creased in the small size (R C-K RB) limit, the relative 
motion becomes more excitonic like, and the rate is 
increased. For R z+ RB, the size effect is mainly due 
to the center-of-mass motion. Following the concept 
of oscillator strength per unit volume [ 141, we ex- 
pect that the decay rate of a Wannier exciton in a 
sphere larger than the bulk exciton radius and smaller 
than the wavelength should be for T=O equal to 
yw= yO( R/RB)‘. Therefore the increase observed for 
T= 0 and R > RB on fig. 3 may be a signature of the 
expected N R’ enhancement, i.e. of the onset of co- 
operative (superradiant) decay of Wannier exci- 
tons. A similar scaling was predicted and observed 
in Frenkel excitons [ 12,13 1. 

I 
I , I 1 

0.0 0.6 12 

- logI&-E/E*) 
Fig. 2. The radiative decay rates of the bulk excitonic states with 
principal quantum number n = 1,2, . . . . 10 and zero center-of-mass 
momentum, relative to the decay rate of the 1s exciton, is dis- 
played as a function of the energy E. Note that, unlike fig. 1, these 
are bound excitons, and the energies are negative. Same param- 
eters of fig. la are used. level degeneracies are not shown. 

r 

0 
i- T= 150K 

9 
O I I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

D/RB 

Fig. 3. The radiative decay rate Tis displayed as a function of the 
quantum-dot diameter D=ZR for three temperatures. We used 
the parameters of fig. la together with V&,=0.15, and 
JKIpR-‘=10’s_‘,y,=109s-‘and6=0.05. 

4. Radiative decay at finite temperatures 

The deformation of the lattice associated with 
thermal vibrations creates a potential acting on elec- 
trons and holes. The Frijlich model of electron- 
phonon coupling assumes that the lattice deforma- 
tion is associated with dielectric polarization. For 
simplicity, we consider only the longitudinal acous- 
tic vibrations of the material, and assume that the 
deformation in r is parallel to r (radical deforma- 
tion) [ 141. The electron-phonon coupling is then 
given by 

where Qa = m a, /R is the frequency of the acous- 
tic vibration and we assumed a linear dependence of 
the frequency on the wavevector k of acoustic plane 
waves in the bulk i.e. Q(k) = @p k. Here IC denotes 
the elasticity constant and p is the density of the 
medium. 

The phonon field-operator has the form 
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where 6,’ is the operator creating phonons in the state 
with a spatial envelope &(r). The electron-phonon 
coupling can be further expressed using the single 
electron-hole pair basis set 

&,,,=A. 1 VoO,, 8,’ Pg. (6,’ +6,> 
OLT’a 

where 

P ,,=ISdr,dr,(olW+(~,)VI(TI)Iu’) 

x K+(rl --rz)pArZ) . (21) 

Our calculation of the phonon-induced dynamics of 
the single electron-hole pair state proceeds as fol- 
lows: using the results of section 3, in the absence of 
phonons, we have the equations of motion: 

-i%(~~(l))=(og+w~-i~~)(~n(l)), (22) 

where the eigenvalues o, and the decay rates y0 were 
calculated in section 3. We next evaluate numerically 

the electron-phonon coupling matrix elements in the 

Coulomb basis set vDO,a. The electron-phonon cou- 

pling potential is assumed to have a Friilich form 
[ 141 (q is a polarizability constant): 

v 1 =-- 
co 1 r- r’ 11 r’ 1 

r'*V,. pa (r” ) . (23) 

In the numerical calculations reported here, we have 

approximated the coupling by 

Ve+(r-r )PAr’ ) 

N_ Vo[~~(r’(l+S))-~~(r’)l 
R36( Ir-r’llr’l +sR2) . 

(24) 

Since the electron-phonon coupling scales as the in- 
verse volume of the particle, we have introduced the 
scaled coupling parameter V. = (qele) R 3 which does 
not change with R. 6 is a dimensionless parameter 
used to improve the numerical convergence. Eq. (24) 
reduces to eq. (23) as k-+0. 

The present model of electron-phonon coupling 
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(eq. (24) ) together with the linear dispersion rela- 
tion for phonons, represents the impact of acoustic 
phonons on the radiative decay process. In general, 
both acoustic and optical phonons should be con- 
sidered, and their interaction with electrons is usu- 
ally modelled using both the contact and Frolich-type 
of interactions [ 141. 

The radiative decay time profile was calculated by 
following the time-dependent populations of the 

Coulomb states. To that end we introduce the vari- 
ables representing these populations 

G,(t)=( E,‘(t)F&)) . (25) 

The time-dependent photon emission rate is then 
given by 

I(t) = 1 y,G,(t) . (26) 
0 

The time-dependent excited state populations were 
calculated using the following master equation: 

$ G,(0=&G,(l) 

cn 

+#I* 
s drC wm.(7)Go,(t-7), (27) 

0' 
0 

where 

D o-3 ~=i(wO-oO~)-yo-yo,, (28) 

and the Laplace transform of the transition rate from 
state o’ to 0 is given by 

w&(z)= c (1-&3wLm1* a 

X 
n, + 

n,+l 

z+ D,. -X&-y, z+D,,. +is2,-y, > 

X 
n, + 

n, + 1 

z+ D,., -X&-y, z+ D,., > +X&-y, * 

(29) 

z is the Laplace variable conjugate to t and 
na= [ exp( kL2JkT) - 1 ] - ’ is the Boson thermal oc- 
cupation number of the (Y mode. The master equa- 
tion was derived by starting with the Heisenberg 
equations, and the derivation is similar to our pre- 



Volume 189, number 2 CHEMICAL PHYSICS LETTERS 31 January 1992 

vious [ 12 1. We 
have employed the factorization 

(6C:(t)6~.(t-7)Po+(f-.r)~~(,(t-7)) 

x(6,‘(t)6~,.(t-7))(P,+(t-r)~~,(t-7))) 

(30) 

where the phonons are assumed to be unperturbed 
by the electronic motion so that 

(6,‘(0&,(t’ ) > 

=s,,,n,exp[-iSL,(t-t’)-y,It-t’l]. (31) 

ys is the phonon damping,rate. We also neglected the 
coupling between diagonal ( ( ‘E,+ (2) pO( t) ) ) and 
nondiagonal ( ( f’,’ (t) fO, zo( t) ) ) terms of the elec- 
tronic density matrix (this is exact for periodic 
boundary conditions). 

The solution of eq. (27) can be written in Laplace 
space as 

G,(z)= 1 [zf-6--n*@(z)],!G,(t=O). (32) 
0’ 

We further assume that at t = 0 an electron-hole pair 
is created in the lowest eigenstate I a). This state 
corresponds for a microsphere larger than the 
Wannier exciton radius to the 1s exciton with zero 
center-of-mass momentum, whereas in the strong 
confinement limit this is the Is-1s single-pair state. 
We therefore use the initial condition G,( t = 0 ) = S,, , . 
The slowly varying part of time dependent popula- 
tion of various single-pair states is evaluated from 

Go(z)= [zf-fi-~*~(z)],L, , (33) 

using a method described in ref. [ 121, which con- 
sists of approximating e(z) x I?‘+ z F@ ’ in order to 
find the poles lying close to z=O, we obtained a so- 
lution of the form G,(z) = C, a,(~-&). We then 
calculated numerically the average radiative decay 
time 7R defined by 

TR 

l-l/e= dtZ(t) 
s 
0 

(34) 

(i.e. rR is the time in which the total probability of 
emitting a photon is equal to 1 /e). We then define 
a dimensionless radiative decay rate r= (rr&,) - ‘. 

The dynamics of G,( t) was solved numerically us- 
ing this method. We have used the same typical pa- 

rameters for CdS ( eO, m, and mh) used in figs. 1 and 
2. The excitonic Bohr radius for these parameters is 
equal to RB x 30 A. We reiterate that the present cal- 
culation does not include the anisotropy of the ef- 
fective mass or the light and heavy hole structure. 
The parameters fi R --I = lo7 s- ’ and Vo/yo 
= 0.15 were chosen to fit the data of ref. [ 161 (see 
fig. 4). The value of y. corresponding to this tit is 
yo’ox 4 x 10” s-l. In the numerical calculations we 
have used the parameters ys= lo9 s-’ and LO.05 
These parameters were adjusted to assure the nu- 
merical stability of the computed radiative decay 
rates. 

We found the solution of the master equation (eq. 
(27 ) ) to be numerically unstable unless the phonon 
damping ys exceeded a value of y,x lo9 s-l. Above 
this value, the solution was practically independent 
of Ye when it was varied by two orders of magnitude. 
ys should thus be viewed as a smoothing (coarse grat- 
ing over time) parameter. We have checked the va- 
lidity of our calculations by extending the second-or- 
der expression for W,,. (eq. (29) ) to fourth order. 
The fourth-order master equation (which is consid- 
erably more complicated) is numerically stable and 
the results (with y,=O) agreed with those obtained 
using the present second-order calculation with the 
smoothing parameter ys. This confirms the conver- 
gence of the present procedure. 

0.0 0.2 0.4 0.6 0.8 1.0 

T-’ (x lOK-‘) _ 

Fig. 4. The radiative decay rate r is displayed as a function of 
temperature. The various curves represent different values of V,/ 
y,,=O.lS (p), 0.1 (- - -), 0.2 (...). The dot radius isR=20 
A. Other parameters are same as in fig. 3. The squares represent 
the experimental results [ 161 coming from fluorescence studies 
in the 5-100 K temperature range in CdS. 
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In fig. 3 we display the calculated effective decay 
rate as a function of the microsphere radius for sev- 
eral temperatures. We see that for T=O K the de- 
pendence of r on the radius of the microsphere re- 
flects the buildup of the 1s excitonic state. For 

increasing radius, the confinement effect of electron 
and hole states is overcome by the attractive Cou- 
lomb potential which increases the correlation be- 
tween the electron and the hole, leading to a faster 
radiative recombination rate. A different behavior is 
observed for T= 150 K, where the decay rate is de- 
creasing for larger sizes of the microsphere. This can 

be viewed as a consequence of the decreased split- 
ting among various electronic levels, which facili- 
tates phonon mediated transitions. If the concept of 
oscillator strength per unit volume [ 17 ] is applied 
together with the temperature-dependent coherence 
length [ 121, we expect that the decay rate of a 
Wannier exciton in a sphere larger than the bulk ex- 

citon radius and smaller than the wavelength should 
be equal to yw = y0 (R, ( T) /RB ) 3, where R, is the co- 
herence length associated with the center-of-mass 
motion. This scaling is completely analogous to that 
found for Frenkel excitons [ 12,13 1. 

Recent fluorescence experiments performed on 
CdS particles with 30-50 8, diameters, have mea- 
sured the radiative decay rate in the temperature 
range 5- 100 K. The fluorescence of semiconductor 
particles is usually dominated by trapped states (e.g. 
at the surface), and does not provide a direct mea- 
sure of the radiative lifetime [ 21. These experi- 
ments, however, had employed high quality samples 
which show a relatively intense band-edge emission 
compared with the red-shifted emission from trap- 
ped states. The short time dynamics is therefore be- 
lieved to reflect the purely radiative decay [ 16 1. We 
have compared the predictions of our theory to these 
experiments. The solid curve in fig. 4 shows the de- 
cay rate r as a function of the inverse temperature. 
The squares show the experimental data [ 161 (the 
parameters K, y. and V. were fitted to these data). 
The dotted and dashed lines show the decay rate for 
different values of the electron-phonon coupling 
strength ( V,). The dependence on V, displayed in 
fig. 4 has a simple intuitive interpretation; stronger 
electron-phonon coupling more rapidly destroys the 
cooperative emission, and reduces the decay rate lZ 
The various curves in fig. 4 demonstrate the sensi- 
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tivity of the average radiative decay rate to the elec- 
tron-phonon coupling strength. 

5. Summary 

We have calculated the lifetime of single-pair elec- 
tron-hole states in a semiconductor sphere. The cal- 
culations were made by neglecting the effects of sur- 

face states, the nonparabolicity and nonuniformity 
of bands in semiconductors, the lattice vibrations 
with nonradial displacement, and using a simplified 
phonon structure with LA modes only. We have 
shown that the suppression of the radiative decay at 
finite temperatures may be viewed as a consequence 
of phonon-induced mixing between short and long- 
lived electron-hole states. 

Radiative recombination in semiconductor parti- 
cles is much more complex than that of molecular 

clusters with Frenkel excitons. In the latter problem, 
the exciton motion can be characterized by a single 
coherence length which controls the extent of coop- 
erativity in the radiative decay [ 121. For Wannier 
excitons we need consider both the relative and the 
center-of-mass motions of the electron-hole pair. The 
effect of confinement and coupling with phonons on 
both coordinates plays an important role in deter- 
mining the magnitude of optical nonlinearities of 
semiconductor particles as of well as conjugated 
polymers [ 18 1. The calculations presented here show 
how phonons couple with both types of degrees of 
freedom, and how dephasing determines a coherence 
length associated with the center of mass [ 121, as 
well as destroys the correlations in the relative mo- 
tion of electrons and holes. 
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