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An exact, fully retarded formal expression for the dielectric function is
derived in terms of a ratio of two-time correlation functions of the
Maxwell field and the polarization operators. The present expression
incorporates properly spontaneous emission and polariton effects. Tothe
lowest order the radiation-matter coupling, reduces to the conventional
(unretarded) expression involving the two-time correlation function of

the polarization.

MOST CALCULATIONS of linear and nonlinear
optical susceptibilities in condensed phases neglect the
effects of retarded radiative intermolecular interactions
[1. 2]). Consequently, the optical susceptibilities are
expressed in terms of equilibrium material correlation
functions which are calculated in the absence of the
transverse clectromagnetic field. These theories do not
incorporate, therefore, spontancous emission properly.
In addition, in low temperature crystals or monolayers
the radiation ficld and matter (polarization) modes are
strongly correlated, and form new quasiparticles,
polaritons. The conventional theories of optical
susceptibilities completely neglect polariton effects,
and in many cases fail to give an adequate description
of dissipation processes. As an example consider the
linear susceptibility in the vicinity of an exciton
resonance (neglecting spatial dispersion).
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Here w, and w, denote the plasma and the k = 0
exciton frequency, respectively, f is the oscillator
strength, and y(w) is the dissipative widthof the k = 0
exciton state resulting from exciton-phonon scattering.
Since expression (1) is usually calculated without
taking into account the retarded interactions, the
function Ww) depends only on exciton dispersion
wo(k). That is why the resulting function y{w) fails to
give a correct description of the long-wavelength edge
of excitonic absorption lines (see [3] and references
there). In the region @ < w, for excitonic transitions
with sufficiently large oscillator strength f, retarded
interactions strongly modify the exciton dispersion
and for w < w, this effect may be very important. The
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same effect for the same frequencies takes place also
for two or three photon absorption [4]. The correct
calculation of the exciton-phonon scattering rate
requires the incorporation of polariton effects. A
microscopic treatment of polariton effects in the
nonlinear optical response was developed by Knoester
and Mukamel [S]. Another problem arises in calculat-
ing linear and nonlinear susceptibilities of monolayers.
As was shown by Hopfield [6] and Agranovich {7}, in
perfect 3-D crystals, the spontaneous emission rate of
polaritons vanishes, so in calculating the imaginary
part of the susceptibilities, only damping mechanisms
due to exciton-phonon scattering contribute to the
dissipative rate y(w). This is not the case, however, for
systems with restricted geometries such as monolayers.
Even for perfect monolayers, as was shown by
Agranovich and Dubovsky {8] (see also [9] and refer-
ence therein), polaritons in some branches have a
radiative width. Theoretical estimates and experiments
in anthracene crystal surfaces indicate that this width

. may be of the order of a few tenths of a wavenumber
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(10}, which of course should be taken into account in
the calculation of susceptibilities at sufficiently low
temperatures. Retardation and polariton effects are
also important in the radiative decay in semiconductor
quantum wells {11] and molecular microstructures
[12).

An interesting demonstration of the necessity of
properly incorporating retardation, is provided by the
decay kinetics of excitonic gratings for large exciton
transition oscillator strength [13, 14]. In this case, the
description of diffraction of the probe pulse requires
the calculation of Y*(—k, — w,: ki, ), —k; — @,

k,, w,), where w, is the grating frequency, , is the
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frequency of the probe pulse and w, = 20, — w,
is the diffracted wave frequency. k,, k, and k, =
2k, —k, are the corresponding wavevectors. At low
temperatures, and for grating excitation with w, > @y,
following a fast relaxation (tr ~ 1ps) a lattice of
density of polaritons is created. The decay of this
grating is related to the diffusion of polaritons rather
than the diffusion of excitons and, therefore, polariton
zero order states, and not the excitons should be incor-
porated in the calculation of y™ [13-15]).

These comments suggest that for calculating linear
and nonlinear optical susceptibilities in the region of
an excitonic transition (w ~ @), it would be desirable
to derive an exact formal expression for the optical
susceptibilities in the terms of equilibrium correlation
functions, which properly takes into account the
retarded electromagnetic interactions [15]. An example
of such an expression is provided by the formula for
the dielectric tensor &,(w), obtained by Dzyaloskinski
and Pitaevski [16], and the expressions for the second
order susceptibilities 7, obtained by Agranovich,
Ovander, and Toshich [17], and by Obukhovsky and
Strizhevsky [18]. Since in the deriviation of these
results the Maxwell equation was used, and not only
the material relation between the displacement vector
D and the clectric field E, the resulting formulas were
expressed through correlation functions of the type
{EE),{EEE), etc., E being the Maxwell field operator.
The result of [16] was later used by Agranovich and
Konobeev [19] to calculate the tensor g; (w) in the
excitonic region. The resulting expressions for ¢ and
¥ are given in terms of the total Maxwell field £. In
order to usc these expressions, the E field operator
needs to be expressed in terms of the dynamical
variables of the system. This is in general a complicated
problem, particularly for an inhomogeneous medium,
which can be solved only for special systems. For a
dipolar lattice this calculation was made by Ewald.

In the present note, a new exact formula for the
linear dielectric response including retardation is
developed. Our theory relates to the cross correlation
function of the polarization and electric field operators,
and it naturally reduces to the conventional (non-
retarded) theories when the radiation-matter inter-
action is treated perturbatively. The present theory
gives the response to an arbitrary ficld E. When the
calculations of the E operator is complex, we can
restrict it to the transverse part of E. This is particularly
simple using the Coulomb gauge, and results in the
transverse dielectric response (see equations (9)).

We consider a general material system whose
Hamiltonian is :

H = Hy + Hy, (1a)
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where
Ho = HM + Hk- (lb)
is the Hamiltonian of the free matter (H,,) and radi-
ation field (H,) and H,, denotes the radiation-matter
coupling. The precise form of these Hamiltonians
depends on the choice of gauge [21]. For the sake
of the following derivation, the gauge need not be
specified. We start by writing the linear casual relation-
ship:

B = [dr [ arK -

+ R(r. 1), )
Here A denotes an operator in the Heisenberg picture
A = exp (iH)A exp (—iH1), 3)

P is the polarization operator and E, is the electric
field, K, is a linear response kernel and R; is a random
force whose statistical properties will be specified
below. The subscripts i, j denote tensorial components.
The conjecture given by equation (2) is expected to
hold for any equilibrium quantum system in the linear
approximation with respect to interaction of the system
with an internal macroscopic electric field. If we adopt
a classical description of the matter in the presence of
some external electromagnetic radiation, all operators
in (3) should be replaced by classical quantities:
E — E,.P. - P, R, - R,and for the monochromatic
wave E,(r, 1) = E,(k, w)exp (ik - r — iwf), we obtain
using equation (3), that the polarization is given by
P(r, 1) = P(w, k) exp (ik - v — iwt), where F(w,
k) = x'(k, w)E,(k, w), and the linear susceptibility
x'" is given by

rot— NEE. 1)

1k, w) = J dr I dtK,(r, 1) exp (—ik * 1 + iw7).
0

@)

We now return to the quantum mechanical description.
We assume that in the infinite past, the radiation-
matter interaction is switched off. The total density
matrix is then given by a direct product of a material
and radiation parts:

p0 = plupe = 10X<0|,

where |0) denotes the ground vacuum state. We further
introduce the following notation, {A4) = Tr (4p,).
for any operator a. The equilibrium expectation value
of the random force vanishes i.e. {R(r, 1)) = 0. Also
(R(r, DE(r', r)) = 0. Note, however, that (R(r, 0
B(r', r)) does not vanish, since the random force
represents equilibrium fluctuations of the polarization
in the absence of the electric field E. Taking a commu-
tator of equation (2) with E(re, £,), multiplying by the
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equilibrium distribution of the noninteracting system
po and taking a trace we get

AP0, Ero ) = [dr [ drKye =00 = 0)

x ((E(r, 1), Efxy, o)D) &)
We now introduce the Fourier decompositions
1
(@2n)*
x exp [lk - (r — 1) — iwid],
1
@n)*

x exp [ik-(r — ry) — iwf].

AP, 0, Efr,. ) = [ dk [ do My (k. @)

(6)

<[E,-(l‘, 0, Efr,, ))) = J dk J-dw Ny(k, w)

Q)
Equation (5) then results in
Mﬂ("’ w) = Xg)(ks w)Nﬂ(k' (D).

The dielectric function ek, w) = 1 + 4n'"(k, w) is
finally given by

ek, @) = &; + 4nMy(k, w)N(k, w)};',

where

(8a)

x

Mk w) = [dr j dir exp [—ik - (r — 1) + iwi]

x

x [B(r, 1), Efre, t,)]), (8b)

Nk, w) = Idr I diexp [—ik - (r — 15) + iwi]

x (IE(r, 1), Ero, )] (8¢)

Equations (8) constitute the main result of this note.
Since the time evolution in the correlation functions
appearing in equations (8a) and (8b), defined in
equation (3), is given by the full Hamiltonian H which
includes the radiation-matter interaction H,, retar-
dation effects are fully accounted for by this formal
expression. ,

In the deviation of equation (8) we have taken the
commutation of equation (2) with E(r, 7,). Alternatively
we could have just multiplied it by E(r,, 1,) and taken
a trace. We would have then obtained equation (8a)
with M and N defined in terms of (P(r,, #,)E(ro, 1))
and (E(r,, 1,)E(x,, 1,)) respectively (rather than the
commutators). This alternative expression is also
correct. In practice, the evaluation of the com-
mutators involves a calculation of a combination of
the advanced and the retarded Green functions, which
is much simpler [22). This is why we have derived the
present expressions involving commutators. It is easy
to shown that equation (8) for 3-D crystals is equiv-
alent to the expression for ¢;,(k, ) which was obtained
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in [19] by using Dzyaloskinski and Pitaevski approach
(16, 22].

Equation (8) represents the dielectric function
which relates the displacement vector to the total
Maxwell field. The same method can also be used to
calculate ¢; which represents the response to a trans-
verse field E*. In this case we have

ik, w) = 4, + 4nM;(k, w)N'(k, 0));',

where

(9a)

x

Mik,w) = |dr j dtexp [—ik - (r — 1) + iwi]

x ([P (r, 0, E} (v, )],

(9b)

and
Ni(k. @) = |dr [ arexp—ik-(r — 1) + 1]
x (B, 1), E} (o, 16)])- %)

Equation (8) reduces naturally to the conventional
(nonretarded) expressions [l, 2, 23]. This may be
shown as follows. We introduce a transformation S(f)
from the Heisenberg to the interaction picture

A = S'WAWDSQ)."

where A(t) is the operalor A in the interaction
representation [22]

A()) = exp (iHy0)A exp (—iHyl),
and

S(1) = s(t, -x) = Texp[—i j H, (r)d1).
To first order in H,, we have

1 —i _;’ H_(t,)ds,. (10)

In the dipole approximation, the radiation-matter
coupling is given by
Ho(f) = — 1drP(r, 1) E(r. 1). an
Using equations (10) and (13) it is easy to show that
to first order in H,,
COI[P(x, 1), Efreto)]10)

= (0| B(r, DE(x,. 1) — Eilxo, to)P(r, 110>

S =

—i [dn, | d0COILE. 1), B, 0110
L]

x (OI[E/(r,. 1), E,(ro, %)]10). (12)
In the derivation of equation (12) we used the relations
(0| P(r, 1), E(xo, 5)10> = <(O|P(r, )|0)
x (0| Ei(ry, 4,)10> = 0,
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which hold for a medium with no permanent dipole
moment. Up to this point the time 1, was arbitrary.
Taking t, = — o0 and evaluating equation (4) to the
lowest order in H,,, we obtain:

COILB(r, 1), E(r,, 1,)]10)
dk 7 , )
= .[(2“)4 J. dwxu’(k' w)Ny(i, k. e

-%

x exp[i, k- (r — ry) — iwt].

where
Gk w) = —ifdr [ diCOI[P(r. 11 Par,.1))10)

x exp[ik-(r, — 1) — 1eAr. — 1))

Using equation (8a) we have:

Mk, w) = x'(k, w)N,(k, w).
Thus we get:
k. w) = &, + 4n j dr i!' de K, (r. <),
x exp[—ik ¥ + iwrt). (13)
with
K, (r. 1) = —iO|[P(r. ). PO. O O . (19)

which is the conventional (nonretarded) expression
for the dielectric response [2. 23]. The present
approach may be also extended for calculating non-
linear optical susceptibilities and also for calculating
optical susceptibilities of monolavers and clusters.

Acknowledgements — The support of 5 Center for
Photoinduced Charge Transfer sponsored by the
National Science Foundation, The Air Force Office of
Scientific Rescarch, and the Petroleum Rescarch
Fund. administered by the American Chemical Society,
is gratefully acknowledged.

REFERENCES

|. The Dielectric Function of Condensed Systems
(Edited by L.V. Keldysh, D.A. Kirzhnitz &
A.A. Maradudin), North-Holland. Amsterdam
(1989).

2. C. Flytzanis, in Quantum Electronics V.1
(Edited by H. Rabin & C.L. Tang), p. 1,
Academic Press, New York (1973); P. Maden
& D. Kivelson, Adv. Chem. Phys. 56, 467
(1984).

3. V.M. Agranovich & V.L. Ginzburg, Crystal
Optics with Spatial Dispersion and Excitons,

4.

gl

o N

10.
1.

12.

14.
15.

16.

17.

19.

20.

22.

23.

Vol. 80, No. 1

Springer, Berlin, (1984).

S.H. Stevenson, M.A. Connolly & G.J. Small,
Chem. Phys. 128, 157 (1988); G.M. Gale, F.
Valiée & C. Flytzanis, Phys. Rev. Lett. 57, 1867
(1986); D. Frohlich, S. Kirchhoff, P. Kohler &
W. Nieswand, Phys. Rev. B40, 1976 (1989); V.N.
Denisov, B.N. Mavrin & V.B. Podobedov, Phys.
Rep. 151, 1 (1987).

J. Knoester & S. Mukamel, J. Chem. Phys. 91,
989 (1989).

1.J. Hopfield, Phys. Rev. 112, 1555 (1958).
V.M. Agranovich, Ah. Eksp. Teor. Fiz. 31, 340
(159); [Sov. Phys. JETP 10, 307 (1960)).

V.M. Agranovich & O.A. Dubovsky, Pisma Zh.
Eksp. Teor. Fiz. 3, 345 (1966); [JEPT Let. 3,223
(1966)).

V.M. Agranovich & S. Mukamel, Phys. Letr.
A147, 155 (1990).

J.M. Turlett, Ph. Kottis & M.R. Philpott, Adv.
Chem. Phys. 54, 303 (1983).

L.C. Andreani & F. Bassani, Phys. Rev. B41,
7536 (1990); E. Hanamura, Phys. Rev. B38, 1228
(1988).

F.C. Spano & S. Mukamel, J. Chem. Phys. (in
press).

V.M. Agranovich, A.M. Ratner, M. Salieva,
Solid State Commun. 63, 329 (1987); V.M.
Agranovich & T.A. Leskova, Solid State Com-
mun. 68, 1029 (1988); Proc. US-USSR Condensed
Matter Symposium (Irvine, 1990).

J. Knoester & S. Mukamel, Phys. Rep. (1991) in
press.

J. Knoester & S. Mukamel, Phys. Rev. A39, 1899
(1989); J. Knoester & S. Mukamel, Phys. Rev.
A40, 7065 (1989); J. Knoester & S. Mukamel,
Phys. Rev. Adl, 3812 (1990).

I.E. Dzyaloskinski & L.P. Pitaevski, Ah. Eksp.
Teor. Fi=. 36, 1979 (1959). [Sov. Phys. JETP 9,
1282 (1959)).

V.M. Agranovich, L.N. Ovander & B.C. Toshich.
Zh. Eksp. Teor. Fiz. 50, 1332 (1966). [Sov. Phys.
JETP 23, 885 (1966)].

V.V.Obukhovsky & V.L. Strizhevsky, Zh. Eksp.
Teor. Fiz. 50, 135 1332 (1966) [Sov. Phys. JETP
23, 91 (1966))).

V.M. Agranovich & YuV. Konobeev, Fi-.
Tverd. Tela. 5, 2544 (1963) [Sov. Phys. Solid
States S, 1858 (1963)].

M. Born & K. Huang, Dynamical Theory of
Crystal Lattices, Oxford, London (1954).

D.P. Craig & T. Thirunamachandran. Molecular
Quantum Electrodynamics, Adademic Press,
London (1984).

A_A. Abrikosov, L.P. Gorkov & 1.E. Dzyalosk-
inski, Methods of Quantum Field Theory in
Stiatistical Physics, Prentice-Hall, Englewood
Cliffs, New York (1963).

R.F. Loring & S. Mukamel, J. Chem. Phys. 87,
1272 (1987).



