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The second-order nonlinear susceptibility xc’) is calculated for a monolayer of donor-acceptor 
substituted molecules, using equations of motion which map the problem onto the dynamics of 
coupled anharmonic (exciton) oscillators. New exciton resonances, which may change in 
character from Frenkel through charge transfer to Wannier excitons, are predicted as the 
intermolecular charge-transfer coupling is turned on. 

I. INTRODUCTION 

The elementary optical excitations in molecular as- 
semblies are Frenkel excitons which describe the coherent 
migration of the optical excitation among the molecules. In 
molecular crystals the exciton states form a band whose 
width reflects the strength of intermolecular interactions.’ 
In semiconductors, on the other hand, the elementary exci- 
tations are electron-hole pairs.2’3 Depending on the strength 
of the Coulomb interactions, these pairs can either form 
bound states (Wannier excitons) which show up as a Ryd- 
berg series in the optical spectra, or move as free carriers in 
the valence and in the conduction band. Adopting the elec- 
tron-hole terminology, Frenkel excitons can be considered 
as strongly bound electron-hole pairs which are confined to 
the same molecule. Wannier excitons are more complex than 
their Frenkel counterparts since their description involves 
both the relative and the center-of-mass coordinates of the 
pair, whereas for Frenkel excitons we need consider only the 
center-of-mass coordinate.4 When molecules with electron 
donor and acceptor substituents are assembled, we have an 
intermediate situation in which the electron and the hole 
strongly attract each other, but the charges can still separate 
on a length scale of a few molecules.5*6 These intermediate- 
type elementary excitations are denoted charge-transfer ex- 
citons.7-‘3 Conjugated polymers are a beautiful example of a 
system with intermediate excitons.‘4*‘5 The nonlinear opti- 
cal response of intermediate excitons is an open theoretical 
problem. 

In this paper we develop a theory for the second-order 
susceptibility xc2) of organized assemblies of molecules with 
donor and acceptor substituents. Such systems are of consid- 
erable current interest as xc2) materials. Polled poly- 
mers’6*‘7 form a one-dimensional assembly, whereas molec- 
ular monolayers (whether self-assembled,‘68’7 
Langmuir-Blodgett,‘8.‘9 or epitaxially grown” ) constitute 
a two-dimensional system. The optical response of these sys- 
tems is primarily determined by intramolecular and possibly 
also intermolecular charge-transfer processes. Using equa- 
tions of motion,2’ we map the problem onto the dynamics of 
coupled anharmonic oscillators, which represent intermedi- 
ate excitons. We derive a general electron-hole Green-func- 
tion expression for xc2’ and apply it to two-dimensional as- 
semblies. Previous theoretical treatments of this problem 
only allowed for intramolecular charge transfer, and inter- 

molecular interactions were included through a local-field 
correction factor which represents the dipole-dipole interac- 
tions. 16,22 

In Sec. II we present the model Hamiltonian which de- 
scribes a monolayer of molecules with intramolecular and 
intermolecular charge transfer. In Sec. III we derive the 
equations of motion which map the problem of calculating 
the nonlinear optical response onto the dynamics of coupled 
anharmonic oscillators. In Sec. IV we present formal expres- 
sions for x’l’ and xc2’ using a Green function which de- 
scribes both the relative and the translational motion of the 
electron-hole pair. In Sec. V we show how the Frenkel and 
the Wannier exciton limits are obtained using the present 
Green-function expression. Finally, in Sec. VI we present 
numerical calculations and explore the role of intermolecu- 
lar charge transfer. 

II. THE MODEL 

We consider a two-dimensional assembly of donor-ac- 
ceptor substituted molecules (Fig. 1). Each molecule can be 
found in one of four possible states representing the ground 
state, a single additional electron, a single hole, or an elec- 
tron-hole pair. For the nth molecule we denote these states 
as 1 l,n), 12,n), 13,n), and 14,n), respectively. Hereafter, we 
adopt a second quantization representation of these states. 
We thus denote 1 1,n) as the vacuum IO) state, and introduce 
an electron (hole) creation operator c’, (d t ) and the corre- 
sponding annihilation operators c, and d, . We then write 

tA 9A tA 
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FIG. 1. Geometry of the donor-acceptor molecular monolayer. 
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Il,n) = IO), I2,n) 4 IO); 

)3,n) &t, IO), (4,n) =ci,dt, IO). (2.1) 
The c and the d operators are defined by the relations 

C,-lLn)wl + 13,n)h4l, 
4, = I An> (n,31 + 12~) (n,41. (2.2) 

It follows from Eqs. (2.2) that c, and d, are Pauli operators 
which satisfy the commutation relations 

A,, = WLkJ t,, IO) - O$m, IO>. (2.10b) 
Equation (2.9) can alternatively be written using the exciton 
operators 

km-~w,,%, +Bt,,) + L,,B~,B,,. (2.11) 
The dipole-dipole operator which represents the inter- 

action of the nm and the n’m’ pairs is then given by 

[C&t,] =~,,(1-2cf,c,), 

[d”,G] =%,(1-2dt,d,L 

[C”9C,] = [dn4L] = [C,,d,] = [WC] =a 
(2.3) 

^v 
G,,F n,m. lr12 - 3(G,,*r)(S,.,..r) 

nm,n’,m’ = 
Id5 

, 

(2.12) 

where r denotes the radius vector between the centers of the 
nm and n’m’ pairs. D is given by 

It will be useful to further introduce exciton creation (anni- 
hilation) operators B L,,, (B,, ) defined by 

B,, -c,d,. (2.4) 

These operators satisfy the commutation relations 

[B,,,, ,B t,w ] = S,,,, 6,,,~ + &rn, Snn- CA + L, Lim D,,m 

+ (C,,, 5,,, - 1) G,D,,i, , (2.5) 

where LJ,,,~ = 1 - 2S,,. , and the operators C,., , D,., are de- 
fmed by C,,., =c$ c, , D,., =d k, d, . 

Using these definitions, we can now introduce our mod- 
el Hamiltonian: 

D = C {(OIB,,,,hVnm,n,m,Bt,,m, IO> - (Ol^v,,,,w lo>). 
n’m’ 

(2.13) 

The matrix element Vj$n,mt is responsible for the exciton 
transfer between the nm and the n’m’ sites 

H = Hex + ffCT + Hi,, * (2.6) 
H,, represents the exciton part of the Hamiltonian, HCT the 
charge-transfer processes, and Hi,, represents the interac- 
tion with the radiation field. The exciton part can be written 
by a straightforward generalization of the Hamiltonian of 
molecular crystals,23 

V(2) nm,n’m’ = WLk,nw B :m IO>. (2.14a) 
yc3, nm,nSmV is the difference of the matrix elements 

V(3) nm,n’m’ = (OIB,,,, ^v,,,,,,, B t,,,, B i,,,, IO) 

- WL ^v,,,,w IO>. (2.14b) 

It follows from this definition that Vi&,,. is proportional to 
the difference of permanent dipole moments in the excited 
and the ground states, which is an important factor that de- 
termines the second-order nonlinear susceptibility [see Eq. 
(3.7)1. 

We next turn to the charge-transfer part of the Hamilto- 
nian: 

He, = (+h, + D) 2 Bt,,B,, + 2 V:f,!,n+,,, 
nm nm , I 

x [Bt,,B,w +;(B’,,,B:mm+B,,B,,,,)] 

+ c CLh’ (B ‘,,,, + B,, )B ‘,w B,.,. . 
nm 
lim’ 

(2.7) 

HCT =ICcLc, -ACdLd,, +C Ue(n-m)czc, 
n ” nm 

+ C Uh(n - m)dLd, + C UC,.- ,,,cLdt,c,,d,. 
nm nm 

(2.15) 

Here ti, is the optical excitation energy of the isolated mol- 
ecule. In order to introduce the remaining terms of the Ham- 
iltonian, we consider first the dipole operator for the system 

Here I is the molecular ionization energy, A is its electron 
affinity, U’( n - m) is the matrix element which represents 
electron hopping between sites n and m, and Uh(n - m) 
represents the hole hopping between these sites. UC, _ m rep- 
resents the Coulomb interaction between electrons and 
holes. For the present two-dimensional (monolayer) geom- 
etry (Fig. 1 ), it is given by 

F= I?“,,, (2.8) 
“,tTl 

where gn,, is the dipole moment operator associated with the 
B,, electron-hole pair, 

ijn,,,=pU,,c,d, +,ucl,,c’,di + A,,ct,dt,c,d,. (2.9) 

Hew,, is the transition dipole matrix element for creating 
an electron and a hole on the nth and on the mth molecules, 
respectively, 

P nm = K@n,,B t,, IO), (2.10a) 

and A,,,,, is the difference between permanent dipole mo- 
ments in the excited and in the ground states, 

U(C) n--m = - 11 
[d2 + (n, - m,)2 + (n, - m,,)2]“2 ’ 

n = (nx,nyL m = (mxtmy), (2.16) 
where d is the intramolecular distance between the donor 
and the acceptor, in units of the lattice constant a, and 7 
represents the strength of electron-hole Coulomb interac- 
tion. Finally, the dipolar interaction with the radiation field 
is given by 

Hi,, = - C E F &,,, 
( > 

(2.17) 
“>rn 

where E[ (n + m)/2] is the electric field at the electron- 
hole pair mean coordinate (n + m)/2. 
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III. EQUATIONS OF MOTION AND THE ANHARMONIC- 
OSCILLATOR PICTURE 

The optical response of the system will be calculated by 
solving the Heisenberg equations of motion for the optical 
polarization. We start by considering the Heisenberg equa- 
tion of B,,, , 

3 -$ 4, = [ WL, ] - (3.1) 

The commutator may be evaluated using Eq. (2.5), and it 
can be expressed in terms of products of B,, and B L,,, opera- 
tors. These operators are then recast in a normally ordered 
form, i.e., all B Lm operators are moved to the right and B,,,, 
operators to the left, e.g., B + BB. In this form, the expectation 
value of an operator withj B or Bi factors will be toith order 
in the field. Since we are interested in calculatingX’2’, we can 
therefore neglect all products involving three or more nor- 
mally ordered B operators. We then get 

f$Bn- = -(ho +D-t-I-AIB,,,, - C V&w (B,,,, + B f;,,, 1 
rim’ 

- 2, V:?kp,,,,, (B I;,,,,, + B,.,. )B,, - C Vy,‘,,,,,,. B I,,,,, B,.,. - 3 U ‘(n - m’) B,., 
“‘t7i 

- xUh(m - m’)B,,. - lJl,“,B,, + E 
m’ 

(++nm -I- E(y) 4mBnm. (3.2) 

We next assume the following factorization for the expecta- 
tion value of a product of operators:24 

@ ;i,,w &,, > = @ :w ) (B,, >. (3.3) 
This factorization is justified in the absence of pure dephas- 
ing where the system is in a pure state. Since our main goal is 
to study the effects of intermolecular charge transfer, we 
shall treat the exciton-exciton interactions within the local- 
field approximation. We have shown earlier in our study of 
Frenkel excitons2’.24.25 that this can be accomplished using 
the following factorization: 

(B,,. B ,,,“) = (B,.,,,) %,, > y#T, 
(3.4) 

By employing this factorization (and neglecting factoriza- 
tions of the type (B,.,) (B,,. )) we have reduced the com- 
plex four-particle problem to the simpler problem of two 
interacting excitons (nm and n’m’). We shall now change 
variables from n and m to rands where r= (n + m)/2 is the 
average position of the electron-hole pair, and s=n - m is 
their relative coordinate, 

B,=,+,,24-s/z. (3.5) 

Using this notation, we have for the optical polarization 

p,s =,uFL,(B,, + Bt;) + A,B:sB,. 

We further have 

V (2) n’m’dtm = Pu,~P* us;; 
and 

yc-1, n’m’,nm =/.L~~A,U;;, 

where the function Us: is given by 

(3.6b) 

(3.7a) 

(3.7b) 

us,’ = R *(s,s’) - 3(s*R) (s’.R) 
f? 

a’[RI’ 
(3.8) 

I 
with Rsr’ - r. In the following calculations we shall ne- 
glect the dependence of US;: on the s,s’ indexes, adopting the 
approximation 

U”;“,=U”(r- r’). (3.9) 
The superscript x indicates that this is exciton-exciton cou- 
pling. 

Making use of the factorizations, Eqs. (3.3) and (3.4), 
and the new notation, and taking the expectation value, Eq. 
(3.2) becomes 

4; (4s) = -CO-L) -C Ue(~-~‘)(B,-,,2+r,2,s,) 
5’ 

- ; Uh(s’ - s) (Be-+ r/2 - s’/2,,4 > 

+E,(+u, +E,(r)A,(B,), (3.10) 
where E, (r) is the local field at point r 

E,(r)=E(r) -C U”(r--‘)ps#B,,4 + @:,d] 
fs' 

- 3 U”(r- r’)A,(B$,,)(B,,+). (3.11) 

Here 

~,rfiilR, - q/(d’ +.?)1’2 (3.12a) 
and 

Q,rw, + (D+I-A)/fi-iiy. (3.12b) 

fi2, is the molecular frequency shifted by exciton interac- 
tions, whereas e, includes also the Coulomb interactions, 
and y is a phenomenological exciton dephasing rate. Within 
the present model, (B, ) (and its complex conjugate (B Ts) ) 
are the only relevant dynamical variables necessary for the 
calculation of x’ ’ ) and x (2). The polarization is given by 

@,J =~s[(B,.s) + @:)I + A,@:s)(B,). (3.13) 
Equation (3.10) maps the calculation ofx(‘) of an N-mole- 
cule assembly, onto the dynamics of N2-coupled anhar- 
manic oscillators. In the next section we shall present the 
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solution of Eq. (3.10) in terms of the electron-hole Green with 
function. 

Jk,sC U”(r- r’)eikJ”-f’. 
f 

(4.7b) 

IV. CALCULATION OF OPTICAL SUSCEPTIBILITIES 
We shall be interested in calculating the linear and the 

second-order nonlinear susceptibilities. To that end we de- 
compose of the field and the polarization into modes: 

E’ r) = 2 Ej ( &ckY - ‘V) + $ - 9 + V) 1, 
j= I,2 

<^p>= y&T? @A 
= T x”‘(~j,kj )E’ 

(4.1) 

+ CxC2)( - a, - ke;aj,kj,,mj2kj2 )Ej,Ej2 + . . ‘3 
Ai2 

(4.2) 

The Green function G,. (wj,kj) satisfies the equation 

&f [ - (ti -Es)&*- + u=(s -s~~)e”k’2)(s- -s) 

+ Uh(s” -s)~~‘~~~“~--~‘]G,~,~ (oj,kj) = S,.. (4.8) 

When the solution of Eq. (4.7a) together with Eq. (4.6) is 
substituted in Eq. (4.4)) we obtain for the local field 

El”@. k.) = S(w. k.)E. J’ J I’ J J’ (4.9a) 

where the local-field factor S( oj,kj ) is given by 

S(aj>kj 1 
1 = 

where the lattice size is N XN, and a ikthe lattice constant. 
We shall expand all quantities (B, ), (P, >, etc. in powers of 
the electric field. We start with the linear response. Lineariz- 
ing Eq. (3. lo), we get 

1 +‘Jk, C uses+ [ Gsd (aj,kj 1 f Gss, ( - mj,kj ) ] 
ss’ 

(4.9b) 

We finally obtain for the linear susceptibility 

x’l’(aj,kj) 

=pS(mj,kj 1 

= -us’” -T Ue(~-~O(B,-s,2+s’,2,s’)“’ 

-7 Uh(s’-~)(B,+,,2--s’,2.s’)(‘)+E~)(r)~s, 

(4.3) 

XC/~s~f[Gsd(ojtkj) +Gd( -oj,kj)], (4.10) 
ss' 

wherepr l/a2 is the number density of molecules per unit 
area. 

with the linearized local field 

Et”(r) = E(r) - Cp,, Ux(r- r’) 
fr' 

X [(B,,.)‘” + (Bt,,)“‘]. (4.4) 
The linear polarization is then given by 

(prs)“‘=,~s((B,)(‘) -k (B:s)“‘). (4.5) 

The superscript in Eqs. (4.2)-( 4.5) denotes the order with 
respect to the field. Expanding (B,)“’ in Fourier compo- 
nents, we get 

We next turn to the calculation of xC2). We start with 
Eqs. (3.10) and (3.13) expanded to second order: 

(P,s)‘2’ =PU,(@,)(*) + (B!s)‘2’) 

+ A,@!s)“‘(B,s)“‘, (4.11) 

f f (&)‘2’ = - E,(B,)‘~’ 

-T Ue(~-~‘)(B,+r,2--s’,2,s.)(2) 

@,)‘I’ = 2 [bj;pl’-w + I)~‘e”-k/‘+q 
j= 1.2 

(4.6) 

Substituting Eqs. (4.6) and (4.4) into Eq. (4.3), we can 
solve for b !,’ ). The equation is expressed in terms of the elec- 
tron-hole Green function G,, (o,k), 

- 7 UhW - s) W., s/z w-,2,< jc2) 

+Ei2’(r)ps + EZ”(r)A,(B,)(‘), 
(4.12a) 

Ei2)(r) 

b $” = C Gsd (aj,kj )P< 
s’ I 

x I Ej - Jk, CPs, [ (b,d)(‘) + (b 
s1 

(4.7a) 

= -~ps.UX(r-r’)[(BfS.)(2)+ (Bi,,)‘2’] 
fs’ 

- ‘& A,.U”(r- r’)(B,,)“‘(Bi,,.)‘*‘. 

(4.12b) 
Equations (4.12) are solved in the Appendix, resulting in 
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yt2’( - wj - k3;q k, ,azkz 1 

9205 

= $.%+A )S(w,,k, )S(w,,k,) 1 As/w+ [Gdwd, )G,,. (w,,k,) + Gd,b,kJ )Gss” (w,,k,) 
n’s” 

+G,.,( -q,k,)G,.( -m2,k2) +G,,,( -m3,&)Gss”( -q&l) 

+G,,.( -w,,k,)G,.(m,,k2) +G,,,( -o,,k,W,,.(~,,k,)], (4.13) 

where wj = w, + w2 and k, = k, + k, . Equations (5.10) and (4.13) constitute our final formal expression for the first- and 
for the second-order optical response. The microscopic information regarding the dynamics of the electrons and holes is 
contained in the Green function G,, (w,k), which will be evaluated in the forthcoming sections. 

V. THE FRENKEL AND THE WANNIER EXCITON LIMITS 

Equations (4.10) and (4.13) are valid for arbitrary types of elementary excitations and interpolate all the way from 
Frenkel, through charge-transfer, to Wannier excitons. We shall now illustrate how the Frenkel and the Wannier exciton 
limits are obtained as the strength of the Coulomb interaction is varied. In the Frenkel limit we neglect the possibility of charge 
transfer. We then sets = s’ = s” = 0, 71 = U’= Uh = 0 in Eqs. (4.10) and (4.13), and obtain 

G,(d) = 
1 

-fi(w-f-lo) * 
(5.1) 

Note that this Green function is independent on the wave vector k. When Eq. (5.1) is substituted in Eqs. (4.10) and (4.13)) 
we get 

y(‘)(k,w) = 2Pi-d fro if? 
- co2 + i-2; + (2p;J2,R,/+i2) ’ 

(5.2) 

and 

,yt2’( - 03 - k,;w,k,,w,k,) 

= @Sb,,k, NW, A P(w,,k, )A,,4 
1 1 1 

(fro -%)(%3-w,) + (al -e)(ao-@,) + CR, +w,)(flo +a21 

+ 
1 1 1 

+ (f-43 +%)(&I -0,) + (f-Q3 +o,)(R, --co,) * 1 (5.3) 
(f&J f%)(f-AJ fw,) 

Equations (5.2) and (5.3) recover the well-known results16 
whereby the nonlinear susceptibility is given by the hyperpo- 
larizability of a single molecule multiplied by local-field cor- 
rection factors. Equation (5.3) can be rearranged in the 
form 

~‘~7 -03 -k,;o,k,,w,k,) 
=pS(o,,k,)S(o,,k, )S(o,,k,)4,(pd2 

3n;[n; -j(w: -w,w2)] 

x [n~-w:][n~-w:][n~-w:]. 
(5.4) 

In particular, for second-harmonic generation’6T22 
(SHG) we set 

o, = w2 = &o, = w, k, = k, = tk, = k, 
and obtain 

x”‘( - 2w2k;wk,wk) 
=pS(20,2k)S2(w,k)A,p; 

3n; 
x p-i; --4w2][s1~ -w2] . 

(5.5) 

We next turn to the Wannier exciton limit. For simpli- 
city, we consider here only the long-wavelength limit and set 
all wave vectors k, = 0. In order to obtain the Wannier exci- 
tons, we make a continuum approximation to Eq. (4.8) and 
transform it to a differential form: 

I 

[ 
-fi(w-i?J - fi2 3(%+&l)] G&(w) 

=S(s--s”), (5.6) 

where m, and m,, are effective masses of the electron and the 
hole, 

UCGue(l)z -L, ti2 
2m,a2 

UhGLJh(l)G --, 
2mha2 

(5.7a) 

m is reduced mass of the electron-hole pair 

l/m- l/m, + l/m,, (5.7b) 

and 

6, E e,/fi - ( W2ma’). (5.7c) 

Equation (5.6) is the equation for the Green function for the 
following Schrodinger equation, 

--&(-g.$+J~) - (s’, +;+d2)*/‘4~(~) 

= E,q+, 0). (5.8) 
Substitution of the solution of Eq. (5.8) in Eq. (4.13) gives 
the susceptibilities x(” in terms of a sum over eigen- 
states.‘6v26 The I index denotes both bound and unbound 
electron-hole pair states, with energies EI and eigenfunc- 

J. Chem. Phys., Vol. 96, No. 12,15 June 1992 
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



9206 0. Dubovsky and S. Mukamel: Excitons and A’(‘) of monolayers 

tions 4, (s). The permanent and the transition dipole matrix 
elements are given by 

Ar,r2 = C 44:: WI, (~1, 
5 

(5.9a) 

PI = ~fdr(S). (5.9b) 

Since we adopt the k = 0 limit, we shall hereafter delete all 
wave-vector variables from the quantities defined below, 
e.g., G, (w) =G,,. (k = O,w), etc. The Green function, 
which is the solution of Eq. (5.6), is then given by 

G,, (WI = C 
4r (shv(s’) 

I -+i(w-i=&) +E,. 
(5.10) 

Upon the substitution of this result in Eq. (4. lo), we obtain 
the following expression for x”‘: 

x”‘(q) =pS(w,) 2 
21P,12m~ + E,) 

-+i%;+ (fiilo +E,)2 
, (5.11) 

I 

and for the local-field correction factor, 

2]~,]‘(fifi, + E,) -’ 
-fi2w;+ (a=& +E,j2 1 * 

(5.12) 

Substituting of Eq. (5.10) in Eq. (4.13), we finally obtain 
the following expression for xc2): 

xC2’( - w,;w, ,w2 ) 
1 = +‘J, )s(w, )s(% 1 c ,Y,,,u,,A,,,~ 

‘I’2 [ -fi(% -ad $.&,I [ -ww, -6,) +E,*] 

+ [ --fita, -fro) +s,]l[ -+ii(w, -i=io, +EyJ -L 

1 

’ [ --fit -&-ad +&,I [ -fit -w2 -a,, +E,] 

+ [c-3 +%J, +E~J1pco, +fii,, +q] 

+ [fib +GJ +&,I [14(m, -ijo) +q 

+ pa2 +fio1 +q]l[fi(o, -i=&) +E,*] * I 

The Schriidinger equation [Eq. (5.8)] for Wannier-Mott 
excitons, for an infinite system in the continuum limit with 
d = 0, was solved by Merrifield’ in one dimension. The 
bound-state energies were found to be 

E”’ = - “0 [Ei + (R/~z,)~]“~, no = 1,2 ,.... (5.14a) 

Equation (5.14a) represents a family of odd states. In addi- 
tion, he found another family of even states with no simple 
expression for the eigenvalues. The eigenvalue problem in 
two dimensions for a molecular monolayer was solved by 
Shinada and Sugano,27 who found for the bound states 

E’*’ = - “0 R’/(n, +p’, n, =0,1,2 ,..., (5.14b) 

where R, R ‘, and E. are given parameters. The electron-hole 
pair bound-exciton eigenstates in two dimensions are given 
by Laguerre polynomials. The unbound states are given by a 
hypergeometric function. 27 Realistic molecular monolayers 
with donor-acceptor substituents are intermediate between 
the Frenkel and the Wannier limits discussed here.5~6~‘6~20 In 
the next section we present numerical calculations which 
show the role of charge-transfer excitons in the nonlinear 
optical response of molecular assemblies. 

VI. CALCULATIONS AND DISCUSSION 
In Fig. 1 we display the geometry of the donor-acceptor 

molecular assembly. Molecules with donor substituents (D) 
and with acceptor substituents (A ) are assembled in a mono- 
layer, and form a two-dimensional crystal with lattice con- 

(5.13) 

stant a. The molecular length (separation of the donor and 
the acceptor units) is da. We have calculated the electron- 
hole Green function by a numerical solution of Eq. (4.8), 
and used it to calculate x”’ and xc2’. Since we expect the 
elementary excitations to be charge-transfer excitons, we 
have restricted the s summation by truncating it to 
s=Ol , ,...,M. Mis a truncation parameter which will be var- 
ied. The convergence of the calculation with M will demon- 
strate the exciton size. We further specialized to the long- 
wavelength limit and set k, = k, = k, = 0, 
w, = w2 = w,/2=w (second-harmonic generation) in all 
calculations. The evaluation of the Green function [Eq. 
(4.18) ] thus reduces to the inversion of an 
(M + 1 )* X (M + 1 )* matrix. We have adopted typical pa- 
rameters of anthracene. Since anthracene crystals have two 
molecules in unit cell, they have different types of charge- 
transfer excitons. The band structure of charge-transfer ex- 
citons, with electrons and holes in the a-b plane, propagating 
in the b direction with energy fiin, = 3.4 eV, was investigat- 
ed in Ref. 12. The Frenkel exciton bandwidth in the b direc- 
tion was estimated as - 100 meV. Therefore, for the param- 
eter V, -piJo that defines the local-field correction factor 
S(o,k = 0) we assume the value of V, = 25 meV. The elec- 
tron-hole Coulomb coupling constant 7 for anthracene 
crystal is 0.5 eV.5 There is a broad range of values for carrier 
mobility and the corresponding electron and hole band- 
widths in organic crystals.8+‘0-‘2 The electron and the hole 
bandwidth in the a-b plane of the anthracene crystal was 
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estimated to be in the range of 0.14.2 eV.*’ We have there- 
fore used the values U’ = - 0.13 eV and Uh = 0.2 eV for 
the parameters that define electron and hole mobilities. Note 
that the electron effective mass is positive and the hole mass 
is negative. The ratio Ue/Uh agrees with the estimates of 
Ref. 12. The exciton dephasing rate fiiy = 34 meV is taken to 
reproduce the linear absorption linewidth in anthracene 
crystals.5 Since the electronic wave functions in molecular 
crystals are tightly bound, we have taken the transition di- 
pole moments pu, and permanent dipole moments As to be 
finite only for the same site (s = 0) and nearest neighbors 
s = 1. We thus set y,/,u, = 0.3, hi/A, = 0.3, and 
,u,$ = A, = 0 for s> 1. Finally, we took the donor-acceptor 
separation to be equal to the lattice constant and set d = 1. 

In Fig. 2 we display the absorption line shapes 

3 

- 
0 3’3: -r/) 

Im x’ I’(w) for various values of M. For M = 0 (solid line, 
top panel) we see the spectrum in the absence of charge 
transfer. The absorption peak is then at o = fI, - V, - 7. 
Neglecting Coulomb interactions, the exciton peak appears 
on the low-frequency edge of the Frenkel exciton band, 
w = R, - V, (dotted curve). We then note the appearance 
of extra resonances related to charge-transfer excitons as M 
is increased. The calculation rapidly converges with the 

x - 

1.0 - 

1.0 - 
=i - V 

x - 4 _ 

E 
1.0 - 

7 

8 _ 

O/i20 

FIG. 2. Frequency dependence of the linear susceptibility [ Im x”‘(w) ] in 
the resonance region o-n, for different values of the truncation size Mas 
indicated in each frame. The dotted line is for M = 8, with no charge trans- 
fer 7 = U’ = U * = 0. The parameters used are given in the text. 

- 

o/n, 

FIG. 3. Frequency dependence of the linear (top frame) and nonlinear 
(bottom frame) susceptibility. Solid lines, with charge transfer; dotted 
lines, in the absence of charge transfer 7 = U’ = Uh = 0 and M = 8. For 
other parameters see text. 

truncation size. The M = 12 calculation (not shown) is very 
close to the M = 8 calculation. In Fig. 3 we display the abso- 
lute magnitude of the susceptibility responsible for second- 
harmonic generation [x2$& I = I$‘)( - 2w;w,w) I, and 
ImX”’ with and without charge transfer, over a broad fre- 
quency range, including the w-no/2 and w-n, regions. 
The linear absorption is similar to that shown in Fig. 2, with 
a single-exciton absorption line when charge transfer is ab- 
sent, and a series of red-shifted charge-transfer resonances. 
For second-harmonic generation, we notice two resonances 
in the absence of charge transfer: at the one-photon reso- 
nance frequency o-Q, and the two-photon resonance fre- 
quency w -R,/2. The amplitude of the resonance at 
w - R,/2 is approximately twice that for frequency o - R, . 
When charge transfer is turned on, both resonances change 
into a series of charge-transfer exciton lines with approxi- 
mately the same ratio of amplitudes at w - R, and w - fl,/2. 
model, with a higher spectral resolution. The charge-trans- 
fer excitons are seen at both the single photon w - Q, [Fig. 
4(a)] and the two-photon w--R,/2 [Fig. 4(b)] reson- 
ances. The variation and the convergence with M shown in 
this figure is similar to that of Fig. 2. In Fig. 5 we show the 
effect of varying various parameters on x(‘) and in Figs. 6 
and 7 we repeat these calculations for x&. We have varied 
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1 I 1 I I 
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u sx 4 -VI 
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1.0 
2.0 - 

1.0 

0.7 0.8 0.9 1 1.1 0.35 0.4 0.45 0.5 0.55 0.6 

o/a, wm, 
FIG. 4. Frequency dependence of the nonlinear susceptibility Ix& 1 for different truncation sizes IU, as indicated in each frame. Solid lines, with charge 
transfer; dotted line, in the absence of charge transfer 7 = U’ = Uh = 0 and M = 8. (a) The single-photon resonance region o-C&, (b) The two-photon 
resonance region 0 -C&/2. 

1.0 

zi 
-s-t 

E 

0.5 

I I I 

FIG. 5. Frequency dependence of the linear susceptibility [ Im x”‘(o)] in 
the resonance region o- sl, for different values of the parameters 71, d, V,, 
UC, and U”. (a) Uses the basic parameters discussed in the text. Q, = 3.4 
eV, I$,= -25meV,r]=0.5eV, UC= -O.l3eV, Uh=0.2eV,d=1. 
(b) Same as (a) except that we neglected charge transfer and set 
7 = U’ = U” = 0. (c) Same as (a) except that we increased the donor- 
acceptor separation and set d = 5. (d) Same as (a) except that we reduced 
the exciton bandwidth, setting I’,, = - 2.5 meV. 

0.8 - 

2 -VI 
x - 

0.6 - 

b 

0.4 - 

0.2 - 

1 a 

;.‘; 
/J$(fi& ,..‘.., ,f \,: \ ~.,,_,..._,.......... :~$ :... $ . . . . . . . . I” ,,,,,,..,,,t,,_, ,i; .,.. i 

0.8 1 0.9 

ola, 

1.1 

l.“l---- -7 

FIG. 6. Frequency dependence of the nonlinear susceptibility (lx&& 1) for 
the same set of parameters 1, d, V,, UC, U h (M = 8, y = 34 meV) used in 
Fig. 5. Shown is the single-photon resonance region o-Cl,. 
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b 

0.4 0.5 

o/n, 
0.6 

FIG. 7. Same as Fig. 6 but in the two-photon resonance region o--s1,/2. 

$:jo includes the sum in Eq. (4.13)) whereas f( o) is the 
local-field correction factor. In the last two figures, we dis- 
play separately the two factors contributing to the nonlinear 
susceptibility: ]Tk$I and 1 f(w) I, as well as the total Ix&& I. 
Calculations were made in the vicinity of the single-photon 
resonance (Fig. 8) and the two-photon resonance (Fig. 9). 
We note that the local-field factor (f(w) ( has a minimum at 
the frequency where the other term @& ( has a maximum. 
This rest&s in a spectral redshift of Ix;& 1 with respect to 
la&~ I- 

In conclusion, we note that there are several other tech- 
niques which are particularly suitable for monitoring inter- 
molecular charge transfer. Photoinduced charge-transfer 
processes can be identified by following the strong depend- 
ence of the absorption line shape on an applied electric 
field.” This technique, known as electroabsorption, is relat- 
ed tax”‘. Analysis of saturation spectroscopy (another~‘~’ 
-related technique) in molecular aggregates has also sug- 
gested the existence of intermediate excitons.29 In addition, 

the key coupling parameters of this problem, i.e., the elec- 
tron-hole coupling constant (T), electron ( lJe) and hole 
( U h, mobilities, the Frenkel-exciton bandwidth ( V. ), and 
the donor-acceptor distance d. Changing the charge dynam- 
ical parameters (7, U4 and Uh) affects the charge-transfer 
exciton structure, whereas varying V, results in a spectral 
shift of the exciton band. All of these features may be ration- 

I 
I I 

a 

sjo8_=;I 

0.4 

I I I 

0.8 0.9 1 

o/s2, 
1. 

9209 

1 

FIG. 8. Influence of the local-field correction factorf(o) [Eq. (6.2)] on 
the frequency dependence of the nonlinear susceptibility (],&$]) in a 
monolayer with (bottom frame) and without (upper frame) charge trans- 
fer. (a) Ix& ]; (b) ) f(o)] X 10; (c) ]X:zG ). Shown is the single-photon 
resonance region w-n,. 

alized from Eqs. (4. IO) and (4.13). The role of the local- 
field factors is illustrated in Figs. 8 and 9. To that end we 
recast Eq. (4.13) for, second-harmonic generation in the 
long-wavelength (k = 0) limit in the form 

j&& ( - 2w;o,o) E&g)( - 2o;w,o)f(w), (6.1) 

where 

f(w) rS2(o)S(2w). (6.2) 

pk&‘d includes the sum in Eq. (4.13), whereas f(w) is the 
local-field correction factor. In the last two figures, we dis- 
play separately the two factors contributing to the nonlinear 
susceptibility: I?;$ I and 1 f(o) I, as well as the total Ix&o 1. 
Calculations were made in the vicinity of the single-photon 
resonance (Fig. 8) and the two-photon resonance (Fig. 9). 
We note that the local-field factor I f(o) I has a minimum at 
the frequency where the other term )f$ ) has a maximum. 
This results in a spectral redshift of jx$$ I with respect to 
I/s& 1. 

In conclusion, we note that there are several other tech- 
niques which are particularly suitable for monitoring inter- 
molecular charge transfer. Photoinduced charge-transfer 
processes can be identified by following the strong depend- 
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1.0 

0.5 

- 
1 

0.5 - a 

0.55 

gested the existence of intermediate excitons.29 In addition, 
direct measurements of photoconductivity can be used for 
identifying charge-transfer transitions.30 The combination 
ofx(2) measurements analyzed in this article with these tech- 
niques may be used to explore the role of charge-transfer 
processes in the optical response of molecular assemblies. 
The rapid progress in the fabrication of molecular nano- 
structures, such as monolayers and thin films,” stimulates 
an increasing interest in the microscopic understanding and 
the manipulation of primary photochemical events such as 
charge transfer. An important aspect of the present formula- 
tion is that it interpolates between the molecular and the 
semiconductor pictures,3’ and can therefore be used for a 
detailed comparison of different types of nanostructures in- 
cluding semiconductor quantum dots,32 polled and conju- 
gated polymers,‘4*‘5 and molecular assemblies. 
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FIG. 9. Same as Fig. 8 but in the two-photon resonance region w-&,/2. 

ence of the absorption line shape on an applied electric 
field.28 This technique, known as electroabsorption, is relat- 
ed to~‘~‘. Analysis of saturation spectroscopy (another xc3’ 
-related technique) in molecular aggregates has also sug- 

APPENDIX: CALCULATION OF xt2) 

In this appendix we present the derivation of Eq. (4.13). 
We start with Eq. (4.11) and expand (B,s)‘2’ in Fourier 
components resulting in 

@J(2) = b~,(&,i(k-‘d’ + r,~,W,” --kJ+-d). (Al) 

When Eq. (Al) is substituted in Eq. (4.12) we obtain the 
following equations for amplitudes b $L: 

- ,-,J = 0 bs’k’ -a b”’ * ” s gk, _ -& Ue(S--S))eickd2)(s’--s)br~~~ --J Uh(s’ -&‘kd2’cs-“‘b~;q 

- PsJk, c Pss [b ::I!, + 5 :,li’,’ 
s’ 

] - ,Us Jk, 1 A,* C 6 ?,>: ‘b I,::; + 1 E;, S(aj, ,kj, ) Ash :,>i C.42) s’ iti2 iti2 
and a similar equation for b , ~ ii)*. Using the Green function G,,, (w,k) [Eq. (4.8) ] we solve these equations resulting in 

b”’ =xG,(o,,k,)[ -,&Jk, .&~~db:?,)k, +6$$;) -,+J+,d’ & s’ s* 

+ 1 E’,S(mj, ,kj, IAt C G<s* (mj2,kj2 )Ej2S(uj2,kj2 1~s” 
id2 I- 1 9 (A3) 

where 

t:-2’-& E;,Ej2S(mj,hj, )S(mj2,kj2 1 z Gs*s, ( - *j, ,kj, )Gs*+ (aj2,kj2 )~s,~s~* (A4) 

We next expand (P 2’)) Eq. (4.11)) in Fourier components 
(p,jc2) =ai,cz;ei(kr--Wd) + p&" -k--d). 

(A51 

Upon the substitution of Eqs. (A 1 ), (A3), and (A4) in (4.11)) we obtain the following for the amplitude [ Eq. (A5) ] : 

a”’ =pu, T G,( s.k, w,,k,) 
i 

-&Jk, c [/+ (bj2& + f+f;;) + A,.t:f’] 
s” 

+ C Ej,S(aj, ,kj, )A, 1 Gdsa (aj2vkj2 )Ej2S(aj2,kj2 )~s* 
iti2 S. I 
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-t P.$ C Gss, ( - w,,k, 1 
5’ 

- ~5, J,c, C [pus. (b 6$, + I, :,r;“,‘, 
s” 

9211 

+ A,t:‘)] I + C Ej,S(mj, ,kj, IAs* C Gtis” ( - mj2,kj2 )E;,S(aj,,kj2 )~su 
Ah s” 

+ As C Ej,Ej2S(aJl ,kj, )S(aj2,kj2 1 C Gss, ( - aj,,kj, )Gss, ( - aj2,kj2 )~s,~s,* (A61 
Jdi v2 

Substituting Eq. (A6) and (A5) in Eq. (3.6a) and using the definition ofx”’ [ E q. (4.2)], we finally obtain Eq. (4.13). 
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