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A real-space. representation of the optical response of conjugated polyenes is developed by starting with the Pariser-Parr-Pople 
Hamiltonian, and using the Wannier representation to derive equations of motion for coupled two-site oscillators representing 
correlated electron-hole pairs. The resulting elementary excitations are shown to be intermediate between the molecular 
(Frenkel) and the semiconductor (Wannier) excitons, and clearly resemble charge-transfer excitons. The present approach allows 
a unified treatment of the optical response of molecular and semiconductor materials. 

1. Introduction 

The optical response of rr-conjugated or o-conju- 
gated molecules is of considerable current interest 
[ l-31. Extensive effort has been made towards 
measuring the linear and the nonlinear optical re- 
sponse of amorphous or crystalline conjugated poly- 
mers. Techniques employed include linear absorp- 
tion, fluorescence, reflection, second harmonic 
generation (SHG), third harmonic generation 
(THG), two-photon absorption (TPA), and pump- 
probe spectroscopy [ 4-7 1. Linear polyenes belong 
to the CZh symmetry group, and the ground state has 
an A, symmetry. The allowed one-photon transitions 
are, therefore, to excited states with B, symmetry, 
and the final state in two-photon absorption must 
have the same symmetry as the ground state. Two 
important observations were made in the studies of 
the electronic structure of small conjugated mole- 
cules. The first is the change of the relative energy of 
the 2 ‘A, and 1 ‘B, states. It has been shown that when 
the electron-electron interactions are incorporated, 
the 2 ‘A, state is below the 1 ‘B, state, whereas in the 
one-electron model the order is reversed. In addi- 
tion, it has been shown that only a few “essential 
states” make the dominant contribution to the op- 
tical response of short polyenes [ 1,4,8-l 0 1. Figuring 
out the nature of these few essential states for large 
polyenes constitutes a major open challenge in un- 

derstanding the origin of the optical response of con- 
jugated molecules. An extensive theoretical effort is 
currently directed towards the calculation and the 
interpretation of these linear and nonlinear optical 
measurements [ l-3, lo- 14 1. Both ab initio and semi- 
empirical calculations were employed in the attempt 
to identify the essential states, and predict their rel- 
ative positions. 

The conventional molecular methods evaluate the 
optical response using summations over molecular 
states, which require the calculation of the transition 
energies and the transition dipole matrix elements 
among all the molecular states. These calculations, 
though remarkably accurate, are very tedious and are 
therefore limited to relatively small systems such as 
octatetraene [ I]. Moreover, the lack of a good sin- 
gle-particle basis set makes it difticult to establish a 
simple physical picture of the optical response, even 
for systems where these calculations can be carried 
out. 

Alternatively, conjugated polyenes can be viewed 
as one-dimensional semiconductors and can be 
treated using many body Green function techniques 
[ 15-l 8 1, which focus on the elementary excitations 
(electron-hole pairs) rather than the individual mo- 
lecular eigenstates. In molecular crystals (with no 
conjugation), the pairs created by optical excitation 
are localized on the same molecule and form Frenkel 
excitons. In semiconductors they form less tightly 
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bound states, which extend over many unit cells, and 
may show up as a Rydberg hydrogen-like progres- 
sion in the optical spectrum. These are denoted 
Wannier excitons [ 15,16 1. In molecular crystals there 
are also intermediate “charge-transfer” excitons in 
which the electron and the hole are separated by only 
one or two unit cells [ 19 1. 

The main goal of this Letter is to develop an ef- 
ficient and simple method for calculating the optical 
response of conjugated polyenes by formulating the 
problem using a semiconductor electron-hole pic- 
ture, The approach has many advantages. It pro- 
vides a-clear physical picture of the optical processes, 
including the effects of the molecular structure, elec- 
tron-electron and electron-hole interactions, and 
excitonic response. Phonon effects can also be rea- 
dily incorporated in this picture [ 16- 18,201. In ad- 
dition, the method can be easily applied to large sys- 
tems since it actually becomes simpler as size in- 
creases (in contrast with the molecular methods 
where the computation effort increases drastically 
with size ) . 

We have recently developed an oscillator picture 
for the optical response of nanostructures and ap- 
plied it to molecular assemblies with Frenkel exci- 
tons [ 201 and to semiconductor particles (quantum 
dots) [ 16-181. Using these equations, the effects of 
the exciton coherence-sizes, related to the electron- 
hole relative motion and to their center of mass mo- 
tion were clearly analyzed. In this Letter, we shall 
extend these ideas to the linear optical response of 
conjugated polyenes, and show that it can be ade- 
quately described in terms of charge-transfer (inter- 
mediate) excitons. Instead of sum over all the mo- 
lecular states, we map the optical properties onto 
harmonic oscillators. In our approach the few “es- 
sential oscillators” appear naturally, the charge- 
charge Coulomb and exchange interactions are in- 
cluded explicitly, and the effects of on-site and in- 
tersite interactions are also analyzed. The present 
theory provides a unified treatment of molecular, 
semiconductor and intermediate systems and can be 
directly extended to nonlinear optics by a systematic 
incorporation of anharmonicities [ 16- 18,201. It may 
therefore allow a comparison of the optical response 
of various types of materials, which is the subject of 
an ongoing lively debate [ 2 11. The remainder of the 
Letter is divided as follows: in section 2, we present 
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the model Hamiltonian and recast it in an electron- 
hole form using a basis set of localized (Wannier) 
states. In section 3, we derive the equations of mo- 
tion and develop an oscillator picture for the linear 
optical response. Finally, in section 4, we present nu- 
merical calculations and analysis of our results. 

2. Model Hamiltonian in the Wannier 
representation 

Virtually all theoretical modelling of conjugated 
polyenes focuses explicitly only on the n: electrons. 
The o electrons are considered in a mean field way 
via a periodic effective potential. The Hiickel model 
provides a simple single-particle tight binding model 
in which we consider a chain of carbon atoms with 
a single 2p, orbital on each atom. The Hiickel model 
Hamiltonian is 

&=C In>B(l-Q(n+ll 
n 

+In>P(l+Q<n-11 > (1) 

where 1 n) represent an electron in the 2p, orbital at 
the nth carbon atom. The two parameters B( l-6) 
and /I( I+@ represent the alternate couplings of n 
electrons along the molecular chain. The SSH model 
commonly used for polyacetylenes adds phonon cou- 
pling to the Hiickel model [ 121. In this Letter, we 
adopt the Pariser-Parr-Pople (PPP) Hamiltonian 
which consists of the Hiickel Hamiltonian plus the 
Coulomb interactions between the x electrons. In or- 
der to present the PPP Hamiltonian, and recast it in 
an electron-hole language, let us start with the so- 
lution of the eigenvalue problem H,@=E@ for the 
Hiickel model. We consider a cyclic polyene with N 
double bonds, and solve the Hiickel Hamiltonian us- 
ing periodic boundary conditions. The N lower 
(higher) eigenstates Qvk ( occk) constitute of the va- 
lence (conduction) band, with energies e,k (E,~), re- 
spectively. They are given by, 

&k(x)= kNf, exp(ikm) 

X{@?(x) exp[if(k)l4@W)), 

C,k=+,8[2(1+62)+(1-62)C0$k]1'2, 

(2) 

(3) 
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tan[Mk)l= 
(l-&sink 

(1+6)+(1-6)cosk’ (4) 

k=2nj/N, j= 1, 2, . . . . N. (5) 

The + and - signs in eqs. (2) and (3) stand for 
Y=C (conduction band) and V=V (valence band), 
respectively. @l(x)= (xl2n) and @y(x)= (x)2n- 
1) are the atomic 2p, functions localized at the right- 
hand and left-hand side of the nth double bond. For 
clarity we have imposed periodic boundary condi- 
tions in the calculation of these eigenstates, 

@r/JN+ 1) = @uk( 1) . (6) 

Our model thus represents cyclic (circular) po- 
lyenes. This assumption of translational invariance 
is expected to hold better as the polyene size is in- 
creased, since the relative importance of the bound- 
ary decreases. It simplifies the following discussion, 
since it allows us to decouple the translation and the 
relative motions of the electron-hole pair. In the 
ground (vacuum) state of the Htickel model, all the 
N valence-band states Qvk are occupied by two elec- 
trons. Upon optical excitation, and electron moves 
from the ground state to any ofthe unoccupied states 
in the conduction band, creating a hole in the va- 
lence band. The lowest transition energy will be from 
the top of the valence band (HOMO) to the bottom 
of the conduction band (LUMO). This picture 
changes when the electron-hole Coulomb interac- 
tions are incorporated in the PPP Hamiltonian. The 
electron at site n and the hole at site m may form an 
exciton due to their attractive Coulomb interaction. 
The exciton is described by two coordinates: the 
overall translation of the electron-hole pair along the 
molecular chain, and their relative motion. The ex- 
citons are created coherently, but their motions and 
interactions may destroy the coherence. Their co- 
herence sizes associated with both types of motion, 
control the optical response of the system [20]. 

In order to model the exciton formation and con- 
sider the coherence size effects, it is natural to adopt 
a real-space basis set. Starting with the N Bloch states 
auk(x), we therefore construct the following Wan- 
nier functions: 

I+‘V.n(x)= 1 C exp(ikn) &k(x) , 
JNk 

n= 1, . . . . N, u=c,v. (7) 

The Wannier functions form a real orthonormal 
basis of localized states. W,., and WC,, are a valence 
band and a conduction band basis function localized 
at the nth double bond. Using this basis set, we now 
proceed in developing the semiconductor picture by 
introducing creation and annihilation operators for 
electrons and holes c$ creates an electron in the state 
WC,, and dZ, creates a hole in the state WV,, (n= 1, 
2 , .*., N). These operators obey the Fermi commu- 
tation rules 

[G, ct,l=&,-2cTnGz, 

[d,, d?,,] =S,,, -2dLd,. (8) 

All other commutators ( [c,, dm] etc.) not given in 
eq. (8) vanish. Adopting the Wannier functions ba- 
sis set, and the electron-hole representation, the PPP 
Hamiltonian [ 1 ] for a polyene with N double bonds 
and 2N K electrons, interacting with a classical ex- 
ternal electric field E(t), reads 

H= 1 [o$,,cLc, -o,‘,dLd,, + 4 V, (nm) 
nm 

x (c:cLc,c,+dLdtd,,d,,, -2c:c,dLd,) 

+ V,(nm)cLc,did,] -PE(t) . (9) 

Here I’, (nm) ( V2( nm)) is the Coulomb (ex- 
change) interaction between two charges in two 
Wannier states at sites n and m. P is the polarization 
operator 

(10) 

Strictly speaking, the molecular polarization P should 
contain also intraband transitions [ 181. These tran- 
sitions were neglected here since they do not affect 
the linear optical response and are only relevant for 
nonlinear optics. The electric field is E(t) =Eo cos wt. 
e&n (WE,) are the electron (hole) site energy (when 
n=m), and hopping energy (when n# m), 

fi&,=H”,,+&, z IvI(n’n)-v2(nn)l, (11) 

Ao~,=H~,+S,,,,,~ [V,(nn)-V,(n’n)], (12) 
n’ 

H”,, (HZ,,,) are the matrix elements of the Htickel 
Hamiltonian between two Wannier functions at site 
n and m in the conduction band ( + ) (valence band 
(-)) 
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H”.,=~~~exp[-ik(n-*)I~.*. (13) 
k 

The Hiickel Hamiltonian with periodic boundary 
conditions is thus given by 

H,=C [H’,,cf,c,-H;,dj’,,d,,]. (14) 
nm 

,u:~ is the interband transition dipole, 

P L=Qj w,,(x)xw”,m(x) dx, (15) 

Q being the electron charge. These interactions may 

be expressed in terms of the matrix element, 

V( I!:“,:;:“$,) = s j w:,,,, (x) K*,n2(X )Z(x-x’ ) 

X w:,,,(x’ ) w:,,,(x) dx’ ~ 3 (16) 

where vj is the band index and n, denote the location 

of the Wannier functions. Z(x-x’ ) is Ohno’s 
expression for the Coulomb interaction 

Z(x-x’) = U[ 1+ (x-x’)*/Q4U2] -I’*, (17) 

V being the on-site Hubbard interaction energy [ 11. 
When the overlap of the Wannier functions is ne- 

glected, we get n1 = n2, and n3 = n4, and we have, 

V,(nm)=V(~“)=V(:g;“) 

= V(Zt”“) = V(zF) 3 (18) 

Vz(nm)=V(~~~“)=V(Ef~~“). (19) 

Using the translational symmetry of the system it 

follows that V,(nm), V,(nm), w;,, CL&, and P%, 
depend only on the separation n-m of the two sites. 

3. Equations of motion: the exciton-oscillator 
picture 

As indicated earlier, the motion of excitons re- 
quires considering both their relative and transla- 
tional coordinates. With the present use of periodic 
boundary conditions, the system is translationally 
invariant and the center of mass motion can be eas- 
ily accounted for, by changing to momentum (k) 
space. To that end, starting with the definition for 
the polarization operators ( lo), we change to rela- 
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tive coordinates s= n - m and the translational co- 
ordinates, r= 4 (n + m), and define 

ys,k = -&j, exp( - ikr) 4+s,2cr--s12 , (20) 

yi,k = $i, exp(ikr) cL,12dT+slz . (21) 

The linear polarization operator can then be written 

as 

P(‘)(t)=C [~(S)Y1,:)(t)+~L(S)y!,h)+(t)l - (22) 
s,k 

The equation of motion for YS,k is derived from the 

Heisenberg equation 

es., = ; [H, ys,kl . 

Using the Hamiltonian (9) and the commutation re- 
lations (8 ), we then get 

-ifi&)= -T {o”(s’-s) exp[ -ik(s’-s)] 

-w”(s’-s) exp[ik(s’ -s)] + V2(s)&+, 

- V,(s)&-,}Y:‘,b +ds)E(f)~k,O, (23) 

where VI(s), V*(s), o”(s), p(s) are given in (1 l)- 
(19) by substituting s=n-m, and p(s)=:?, 
0” (s) = 0:. The equation for Yi,k is obtained by a 
Hermitian conjugation of eq. (23). 

The solution af eq. (23) can be expressed in terms 
of the electron-hole Green function [ 22 ] 

G$(k,o)=w’(s’-s)exp[-ik(s’-s)] 

-o”(s’--s) exp[ik(s’-s)]+ V2(s)&+, 

-[v,(s)--w]~s~_,. (24) 

The linear susceptibility is then given by, 

x”‘(W) = f PL(S)PL(f 1 
S,S’ = I 

x [G,,s,(k=O, w)+G,,,.(k=O, -w)] . (25) 

The electron-hole Green function G,,, (k= 0, co) 
describes the motion of a single electron-hole pair. 
The Green function (and the linear susceptibility) 
are written here in the coordinate (real-space) rep- 
resentation, which provides a clear physical insight. 
The resulting electron-hole picture also has impor- 
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tant computational advantages, as will be illustrated 
below. For the sake of completeness let us connect 
this result to the more conventional sum over states 
expression. To that end we note that eq. (24) define 
an eigenvalue problem with eigenstates !Pa (k, x) and 
eigenvalues E,(k). Using these exciton eigenstates, 
the Green function can be recast in the form 

(26) 

Upon the substitution of eq. (26) into (25 ), the lin- 
ear susceptibility assumes the conventional form, 

(27) 

wherepa=C,y/,(k=O,s)p(s),andJ’,isthedamp- 
ing rate of the LY eigenstate. Eq. (27) is the familiar 
sum over state expression of the linear susceptibility. 

4. Calculations and discussion 

We start our numerical study by considering the 
dependence of the various coupling parameters which 
specify the Hamiltonian (eq. (9) ) on the separation 
S. In all the calculations presented below we have used 
the interaction parameters [ 1 ] @= -2.4 eV and 
U= 11.23 eV. In fig. 1 we display the electron o’(s) 
and the hole o”(s) coupling, the Coulomb interac- 
tion V, (s), and the exchange interaction Vz (s), for 
a large polyene with N=50. All calculations were 
made using typical parameters [ 1 ] for polyacety- 
lenes (6~ 0.07), polydiacetylenes (6~ 0.15 ), and 
polysilanes (S=O.33). Figs. la and lb clearly show 
that the hole and the electron have a different effec- 
tive mass. From figs. lc and Id, we note that the ex- 
change interaction is shorter range compared with 
the Coulomb-Coulomb interaction, which implies 
that the exchange interaction plays an important role 
for oscillators with small electron-hole separation s. 
As s increases, the Coulomb interactions dominate 
the optical response. In fig. 2 we display the varia- 
tion of the interband transition dipole p(s) with 
electron-hole separation S, for different values of 
system size and 6. p(s) is calculated using eqs. (2), 
(7 ) and ( 15 ) by setting S= n - m. The following as- 
sumption was further made in the calculation of p(s) 
[231 

2 
3 

3 
>- 
3 

3 
$ 

3 
s 

(4 

(b) 

6- 

,. ._ .- 
” 5 1U 15 20 

S 

25 

Fig. 1. Variation of the Hamiltonian coupling parameters with 
separation s. N= 50, all quantities are given in units of electron 
volts. Solid line: 6~0.07 (polyacetylene); dotted kO.15 (poly- 
diacetylene); dot-dashed kO.33 (polysilane). (a) w’(s) con- 
duction band coupling; (b) w”(s) valence band coupling; (c) 
I’,(s) Coulomb coupling; (d) Vz(s) exchange coupling. 

<~Tlxl~~i”>=x;4.jLt, (28) 

where x: is the coordinate of the left side (i= 1) or 
right side (i= 2) of the nth double bond. Fig. 2 shows 
that the electron-hole pair is mainly created on the 
same unit cell or between nearest neighbors. For ex- 
ample, taking N= 50 and LO.07, we have 
~(0):~(1):~(2)=1:0.75:1.7x10-2.Afterthecre- 
ation of the pair, the electron and the hole may move 
apart, and their motion is determined by the elec- 
tron-hole Green function. The Green function 

421 



Volume 192, number 4 CHEMICAL PHYSICS LETTERS 8 May 1992 

-4 - 

- (a> 

0 1 2 3 4 

s 

N=50 - (b) 

eo I- 

,“\ 
!i 
! i 
! i 

-6 - (b) '. 
I I I 

0 1 2 3 4 

s co (eV 

Fig. 2. (a) Interband transition dipolesp(s) of polyacetylene for Fig. 3. (a) Green functions G&O, w) with w for polyacetylene 
different molecular sizes. (b) p(s) for polyacetylene, polydiace- with N= 50 for different values of s. (b) The absorption spec- 
tylene, and polysilane (kO.07, kO.15, 6=0.33) with N=50. trumIm[x~)(w)] for polyacetylenewith N=50. SolidlineM=O, 
All curves are in arbitrary units, dotted dash M= 1,2,3. 

G&LO, o) for polyacetylene with 50 double 
bonds, is plotted in fig. 3a as a function of w for dif- 
ferent values of s (0, 5, and 20). The linear optical 
response of the conjugated polyenes is determined 
by the product of ~(s)P(s’ ) GS,Sf, as shown in eqs. 
(25) and (27). In order to illustrate the contribu- 
tion of various electron-hole separations to x( I), we 
have defined &) (0) by eq. (25) with the S, S’ sum- 
mation truncated as s, s’ ~0, 1, . ..M. &j(w) forpo- 
lyacetylene having 50 double bonds is plotted in fig. 
3b, for M=O, 1, 2, 3. It shows the finite size of the 
exciton and the few essential oscillators. The calcu- 
lation rapidly converges at M= 1, which shows that 
the elementary excitations of the systems are charge- 
transfer excitons. Fig. 3b further illustrates the use- 
fulness of the electron-hole representation, since the 
summation over eigenstates involves many terms 
whereas in s space we need consider only a few terms. 
The absorption spectra ImX(‘) (0) for both the 
Htickel and the PPP models were calculated for po- 
lyacetylene with 4, 10, 20, 30, 50, and 100 double 
bonds (N), and are displayed in fig. 4. The Htickel 

calculations were made by assuming periodic bound- 
ary conditions (eq. ( 14) ) . For small molecular sizes 
(N= 4 ), all the transitions have roughly the same in- 
tensity within the Hiickel model. As N increases, the 
intensity of the absorption builds up at the band edge. 
In the PPP model, the band edge transitions always 
have the largest intensity. From the absorption spec- 
trum, the band-gap is deduced and plotted in fig. 5. 
The band-gap in the PPP model using the parame- 
ters listed earlier in this section with periodic bound- 
ary conditions is in good agreement with Kohler’s 
recent calculation which, in turn, provides a good fit 
to the experiment [ 41. For comparison, the dashed 
line is the result for Htickel model obtained by a nu- 
merical diagonalization of eq. ( 1) without imposing 
any boundary conditions. The band-gap and the ab- 
sorption intensities strongly depend on the Coulomb 
interactions. 

In conclusion we note that the present approach is 
particularly suitable for calculating the nonlinear op- 
tical response of conjugated polyenes, and analyzing 
the role of the exciton coherence length associated 
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Fig. 4. The absorption spectrum Im [x(i) (w)] for polyacetylene with different molecular sizes. The solid line is the present electron- 
hole calculation using the PPP model, dotted line shows calculation for the free electron (Hlickel) model with periodic boundary con- 
ditions (eq. (14)). 

51 I I I I I I 1 
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1- ___--- ____---- 
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Fig. 5. The band-gap for polyacetylenes (6=0.07) versus molec- 
ular size. Solid line is Kohler’s calculation [ 4 1, dotted-dash line 
presents electron-hole calculation using the PPP model with pe- 
riodic boundary conditions, dashed line was obtained by a nu- 
merical diagonalization of the Htlckel Hamiltonian (eq. (I) ) 
without assuming periodic boundary conditions. When periodic 
boundary conditions are imposed on the Htlckel model, the band- 
gap (eq. ( 3 ) ) is 486, independent on size N. 

with the center of mass and the relative motion of 
the electron and the hole [ 17 1. This extension will 
be presented in the future. 
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