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The frequency dispersion of xt3) of conjugated p 01 y enes is calculated using equations of mo- 
tion which provide an anharmonic (exciton) oscillator picture. Quantum confinement of the 
relative electron-hole motion is shown to play an important role in determining the magni- 
tude ofx . (3) The nature of the two-photon resonance observed in two-photon absorption and 
third harmonic generation is discussed, and the electroabsorption spectrum is calculated for a 
broad range of polyene sizes with up to 160 double bonds. 

I. INTRODUCTION 

The frequency dispersion of nonlinear optical suscep- 
tibilities such as xc3) of conjugated polyenes provides a 
direct probe for the mechanism of the optical nonlineari- 
ties. This information is complementary to the off-resonant 
response, which is most relevant for optical material appli- 
cations.‘” The optical response of conjugated molecules is 
usually calculated using a molecular picture which is based 
on the molecular (many-electron) eigenstates. The molec- 
ular methods are exact in principle and Coulomb interac- 
tions and electron correlations can be incorporated with 
arbitrary accuracy, limited only by computation time. 
They can be classified into two major types, depending on 
the way they treat the optical response. The first is based 
on time-dependent perturbation theory, which relates the 
optical response to the properties of the excited states. This 
approach involves calculations of excited state properties 
(energies and transition dipoles) followed by multiple 
summations over states. Both steps become very tedious 
for large molecules. 5-16 The second type of methods are 
based on a variational and perturbative treatment of the 
ground state, in the presence of the external electric field. 
Examples are the coupled Hat-tree-Fock (CHF) the- 
OrYV ‘“*‘1*16 where the susceptibilities are evaluated by a nu- 
merical differentiation of the self-consistent-field (SCF) 
energy of molecules in the presence of an electric field, with 
respect to the field, and the coupled-perturbed Hartree- 
Fock (CPHF), also known as time-dependent Hartree- 
Fock (TDHF), 12*13*15 which is an analytical differentiation 
method. The CPHF method can be combined with numer- 
ous other quantum statistical techniques. For example, 
when the zeroth-order Hamiltonian is chosen as the Fock 
operator in the Rayleigh-Schrodinger perturbation theory 
(RSPT), the electron correlation (the error in the 
Hartree-Fock approach) can be included by the Msller- 
Plesset (MP) perturbation theory. The Rayleigh- 
Schrodinger double perturbation theory (RSPT) [also 
known as many-body perturbation theory ( MBPT)]14 
starts with the Hartree-Fock (HF) zero-order Hamil- 
tonian and treats both electron correlations and the exter- 
nal electric field as a perturbation. Coupled cluster (CC) 
calculations15 can include higher-order electron correla- 
tions effectively. 

The various methods for calculating the electronic 
structure of conjugated molecules up to the 60’s were sum- 
marized by Salem.17 More recent developments can be 
found in Refs. l-4. Two types of basis sets [the molecular 
orbitals (MO) and the valence bond (VB) orbitals] are 
commonly used, differing by their treatment of electron 
correlations. MO overestimates ionic contributions which 
VB totally ignores. The molecular orbital basis set plus 
configuration interaction is equivalent to the valence bond 
orbital basis set plus ionic configurations.4 Virtually all the- 
oretical modeling of conjugated polyenes focuses explicitly 
only on the P electrons, while the (T electrons are only 
considered in a mean field way. The commonly used free 
electron models which neglect electron correlation are the 
Hiickel model, or the Su-Schrieffer-Heeger (SSH) model 
when the electron-phonon coupling is included.18 The 
Pariser-Parr-Pople (PPP) model is often used to include 
electron correlations.4 Schulten, Ohmine, and Karplus” 
have calculated the electronic structure of small polyenes, 
using four different basis sets: ( 1) SCF-MO, which in- 
cludes only single excited configurations; (2) SCF-MO 
which also includes the double excitation configurations; 
(3) restricted valence bond basis (RV), which includes 
only the orthorgonal atomic orbital valence bond structure 
accounted for effectively by the Heisenberg spin Hamil- 
tonian, namely, all covalent structures and all structures 
generated from them by moving a single electron to its 
adjacent site; and (4) complete basis (c), for which the 
choice of starting function is immaterial. Their numerical 
results for the energy levels using these four basis sets show 
that except for the first, all other basis sets are in good 
agreement with experiment.20 Recently, Kohler demon- 
strated the importance of the double excitation configura- 
tions to the electron correlations.20(c) As another example 
of the application of the valence bond basis set, Soos and 
Ramasesha,21 using the PPP Hamiltonian, have calculated 
the electronic properties and the linear and the nonlinear 
optical (NLO) response of linear conjugated molecules 
with up to six double bonds, and obtained very good agree- 
ment with experiment.22 

A completely different approach for calculating the op- 
tical response is based on a semiconductor (as opposed to 
a molecular) viewpoint.18*23-28 This approach focuses on 
calculating the elementary excitations (quasiparticles) of 
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the system using Green’s function techniques rather than 
the complete set of eigenstates. Its advantages are the clear 
physical picture of the origin of the NLO processes and the 
inclusion of electron-electron and electron-hole interac- 
tions, exciton response, and phonon effects from the very 
beginning. Using a simple basis set or the effective mass 
approximation, it is possible to derive analytical expres- 
sions for the linear and NLO responses of the system. 
These calculations can be extended easily to large mole- 
cules. The present theory is based on the semiconductor 
approach.28 

Extensive experimental effort was devoted to measur- 
ing the linear and NLO response of conjugated polyenes, 
either in liquids, solids, or thin films. The experimental 
techniques employed include linear absorption, fluores- 
cence, reflection, electroabsorption, electroreflection, sec- 
ond harmonic generation (SHG), third harmonic genera- 
tion (THG), two-photon absorption (TPA), and pump- 
probe experiments.20’29-33 The linear absorption 
experiments yield the transition energy (i.e., the band gap) 
from the highest occupied molecular orbital (HOMO) to 
the lowest occupied molecular orbital (LUMO). The re- 
sults show that the 2 ?qg state is below the 1 ‘B, state. The 
dispersed THG spectrum for polyacetylene in the energy 
range of 0.38-1.1 eV was first measured by Etemad and 
co-workers using the free electron laser. That work shows 
two resonances below the band gap which were interpreted 
as three- and two-photon resonance. Additional nonlinear 
optical spectral measurements (including the measure- 
ments of the amplitude, the phase, and the different tensor 
elements of the second- and third-order nonlinear optical 
susceptibilities) were made for different materials.31 The 
THG and TPA spectra demonstrate that the single-photon 
or three-photon transition allowed states are different from 
the two-photon allowed state. The two-photon resonance 
shows up therefore not exactly at half of the band gap. 
Recently the optical response of polysilanes had been stud- 
ied by Koda, Hochstrasser, Kepler, Miller, and their co- 
workers.34 Polysilanes are characterized by delocalized (T 
electrons and their nonlinear optical responses closely re- 
sembles that of conjugated-r systems. Resonant and off- 
resonant ultrafast xc3) measurements such as pump-probe, 
transient grating, optical stark, and coherent Raman by 
Etemad, Thakur, Baker, and their co-workers, reveal use- 
ful information regarding the exciton dynamics in these 
systems.33 - - 

The magnitude of the nonlinear response and its scal- 
ing with size also received considerable attention. Strong 
electron correlations in virtual two-photon states have been 
argued to be the origin of unusually large nonresonant 
third-order susceptibility.’ For centrosymmetric conju- 
gated chains, the eigenstates have a definite parity of the 
‘As or ‘B, type, and the one-photon transition moment 
vanishes between states of like parity. Since the ground 
state is ‘A, it is evident that the r-electronic states in a 
third-order process must be connected in the series 
lAg-‘lBU+lAg+*Bu+ ‘AC Virtual transitions to both one- 
photon and two-photon states are necessarily involved. 
The pathway involving m  ‘A, states other than the ground 

1 ‘As state makes the major contribution to the NLO re- 
sponse. There are only few essential one-photon and two- 
photon states. The two-photon states found by Garito and 
co-workers’ contain about 60% of doubly excited config- 
urations for small size polyenes. As the molecular size in- 
creases, significant contributions from the increasingly 
large number of both ‘A, and ‘B, states result in the large 
enhancement of NLO response. Power law scaling of 
x (3) - Nb has been observed’ over a limited range of mo- 
lecular sizes N-2-10 double bonds, with an exponent b of 
about 4.6. Understanding the response of these ‘As and ‘B, 
excited states and their effects on the magnitude and the 
response time scale of large polyenes constitutes an impor- 
tant experimental and theoretical challenge. 

In this paper, we develop a systematic method for cal- 
culating the linear and NLO responses of conjugated linear 
polyenes by adopting the semiconductor (rather than the 
molecular) approach. Starting with the PPP model and 
using the Heisenberg equations of motion for nonlocal two- 
particle (electron-hole) dynamical variables, we rigor- 
ously establish an anharmonic-oscillator picture for the 
nonlinear optical response. Analytical expressions are ob- 
tained for the optical susceptibilities, which provide a clear 
picture for the effects of different transitions as well as 
Coulomb and exchange interactions. 

Anharmonic-oscillator modeling of optical nonlineari- 
ties have been suggested as a qualitative model since the 
early days of nonlinear optics35 and the picture has been 
derived microscopically recently for Frenkel excitons in 
molecular aggregates with localized electronic states.23 In 
an earlier study, we have analyzed the linear optical re- 
sponse of conjugated polyenes using this approach.28 In 
addition, we have established the charge-transfer exciton 
nature of the elementary optical excitations of conjugated 
polyenes which are intermediate between the molecular 
(Frenkel) and the semiconductor (Wannier) excitons.36 
The scaling of the nonlinear response with size can there- 
fore be directly related to other recent studies of molecular 
and semiconductor nanostructures.25 The issue of the uni- 
versality (material-independent) nature of the response 
raised recently37 can therefore be addressed. 

The remainder of this paper is divided as follows: In 
Sec. II, we present the two-band PPP Hamiltonian. In Sec. 
III, we derive the equation of motion in the Wannier rep- 
resentation. In Sec. IV, we calculate xc3) for the PPP 
model. In Sec. V, we present numerical calculations which 
show the dynamics of excitons and establish a correlation 
between size scaling of xc3) and quantum confinement of 
excitons. We further show the frequency dispersion of res- 
onant third harmonic generation (THG), two-photon ab- 
sorption (TPA) and electroabsorption, and discuss the or- 
igin of the two-photon resonance observed in these 
measurements. 

II. ELECTRON-HOLE REPRESENTATION OF THE PPP 
HAMILTONIAN 

The present theory starts with the Pariser-Parr-Pople 
(PPP) Hamiltonian which consists of the tight-binding 
single-electron (Hiickel) Hamiltonian with the addition of 
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Coulomb interactions.4*28 In this section, we introduce the 
PPP Hamiltonian and recast it using an electron-hole rep- 
resentation which will be used throughout this paper. We 
start with the Hiickel model Hamiltonian, 

Ho= agl I2n)p(l-S)(2n+lI+I2n)B(l+S)(2n-l1, 

(1) 

where In) represents an electron in the 2p, orbital at the 
nth carbon atom. This Hamiltonian depends on two pa- 
rameters p( 1+6) and p( 1-S) which represent the alter- 
nate couplings of the P electrons along the molecular 
chain. The eigenvalue problem H,Q,=EQ, of the Hiickel 
model for a polyene with N double bonds can be exactly 
solved. The N lower (higher) eigenstates <pok (ack) con- 
stitute the valence (conduction) band with energies e,k 
(e&), respectively. Using periodic boundary conditions 

%$=f+l)=*‘vk(l), 

the eigenvalues and eigenstates are given byAl 

(2) 

The total PPP Hamiltonian (H) for a polyene, con- 
structed by adding the Coulomb interactions between the T 
electrons to the Hiickel Hamiltonian, is finally given by 

tan f(k) I 1 (1 -S)sin(k) 
-= 

2 (l+@+(l--S)cos(k) ’ 

H=Ho+H’+Hint 9 (13) 
(5) 

k = 2rj/N, (6) 

where j= 1,2,...,N. The + and - signs in Eqs. (3) and (4) 
stand for Y=C (conduction band) and Y=U (valence 
band), respectively. fl(x) = (xl2m- 1) and E(X) 
= (x I2m) are the atomic 2p, functions creating the mth 
double bond. Using these band functions, we construct a 
new basis set of Wannierfunctions 

W”,,(X) =TN k ’ c eik”@vk(x). (7) 

It can be verified easily that the Wannier functions at dif- 
ferent sites are real and form an orthonormal basis of lo- 
calized electronic states ( W,,, 1 W,,f,m) =&,,~Snm, where 
W,.,, is localized on the nth double bond. We next intro- 
duce creation and annihilation operators corresponding to 
the Wannier basis. ct creates an electron in the WJx) 
state and d: creates a hole in (removes an electron from) 
the W”,,(x) state. The corresponding annihilation opera- 
tors are c, and d,. These operators satisfy the Fermi com- 
mutation rules 

1 Cd; I = 4m - 2&n , (84 
W,,,dt,l=4,,-2&4,. (8b) 

All other commutators [c,,dk] etc. not given in Eq. (8) 
vanish. The polyenes are thus modeled as one-dimensional 
semiconductors. tic, and dt,d, create or annihilate an elec- 
tron or a hole at the nth unit cell. The Hiickel Hamiltonian 
in the Wannier basis then reads (for a detailed derivation 
see Appendix A) 

Ho= 2 (ct,c,&,-dkd,&,,). 
“WI 

(9) 

g,,, with Y=C,U are the matrix elements of the Hiickel 
Hamiltonian in the Wannier basis 

( Wv,, I Ho I K,,n) =X,&v’. 

Using Eq. (7), we get 

(10) 

HV _ lFa C e-ik(n-m)E 
nm 

k 
N k 

Y * 

The + and - signs in Eqs. ( 11) and ( 10) stand for v=c 
(conduction band) and v= u (valence band), respectively. 
The Coulomb interaction between two electrons located at 
x and x’ is modeled using the Ohno formula4 
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Z(x-x’) = U{l+ [ (x-x’)/q%]2}-“2, (12) 

q being the electron charge and U is the on-site Hubbard 
interaction energy. 

where the Coulomb interaction part H’ reads (see Appen- 
dix A) 

H’ = 1 
nm 

f VI ( nm ) (cf;c~c,c,, + dt,dt,d,d, - 2cf;c,,dkd,) 

+ V2(nm)c~c,,d~d,, . 1 (14) 

VI (nm ) is the Coulomb and V2( nm ) is the exchange in- 
teraction between two charges in two Wannier states local- 
ized at the nth and mth double bonds. These interactions 
may be expressed in terms of the matrix element 

v( ::;:r:::) = J j- Jc&) ~*,,,wmx--‘) 
x W&,(x’) C4,,+)dx’dx, (15) 

where vj=C, u is the band index, and nj denotes the posi- 
tion of the Wannier function along the chain. When the 
overlap of the Wannier functions is neglected, Eq. ( 15) 
vanishes unless nl =n2 and n3=n4, and we get 

V2(nm>=V(~~~>=V(~~“>. (17) 

As a result of the exchange interaction V2(nm), the ex- 
cited states may become delocalized even in molecular 
crystals where the electrons are localized. This interaction 
is also responsible for the Fiirster mechanism of energy 
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transfer among organic molecules in condensed phases. 
The Coulomb interaction Vi (nm) on the other hand af- 
fects the relative motion of the electron-hole pair and may 
create bound (exciton) states. 

Hint denotes the interaction Hamiltonian between the 
molecule and the external electric field E(r,t), 

Hint=- C Pa,*E[ (n+m/2),t], (18) 
nm 

where E[( n+m/2),t] is the electric field at the position 
(n+m)/2. P,, denotes the contribution of a coherence 
between the n and m  bonds to the optical polarization and 
is given by (see Appendix A) 

Pnm =,u;,&,, - p;,d~d,, +,u:mcf;dt, +p:md,c, . ( 19 ) 
&m is the interband transition dipole 

,u:+q ~,WxW,,,Wdx, 
s 

(20) 

and CL~;, and &, are the intraband transition dipoles 

~,@b%,,(~)dx. (21) 

Since the Hamiltonian does not depend on spin, the 
electron and the hole created by the dipolar interaction 
with the external fields must carry an opposite spin (i.e., 

they form a singlet exciton). For clarity, we have therefore 
omitted the spin label in the present notation. Using trans- 
lational symmetry, it follows that Vi (nm), V,( nm), pcl’,,, 
and pTm depend only on the relative separation n - m  of the 
two bonds. Explicit expressions for these quantities will be 
given in Sec. IV following a change in notation to account 
for translational symmetry. 

III. EQUATIONS OF MOTION IN REAL SPACE 

Equation (19) expresses the polarization operator in 
terms of nonlocal (two-site) creation and annihilation op- 
erators. We shall introduce the following notation for these 
binary variables: 

Y;,,,=ccf;ldf;, Y,,,=d,,c,, C,,,&,c,, D,,rd;d,,, . 
(22) 

The commutation relations of these operators are given in 
Appendix B. Using these definitions, the polarization op- 
erator ( 19) assumes the form 

P,,=~~~y,,+lu~~YI;,+~CnmC,,--IUR~nm * (23) 
The Heisenberg equation k =i/ii(H,A ), together with the 
Hamiltonian (13) and the commutation relations (8a>- 
(8b) and (B 1) to (B7), results in the following equations 
of motions for Y,,,, C,,,, and D,,, 

- ~~~~~(mm’)-V~(nm’)lC,~,~Y,,+[V~(nm’)-~~(mm’)lD,~,~Y,,+V~(nm’)C,~,Y,~, 
m ’ 

+ ~~(mm’>D,t,Yn,~l> - V,(nm) Y,,+ V,(nrn) Ynm (244 

-i&Y,,= C [ (W’,,,C,t,-W”,,tC,,r) +E(t) (/Jzmf y~tn-P~f, y,l,-c,f~~f,+c,,r~~,,) 1 
m l 

+ C [-C,,~,(nm )S,~,+C,~,f~~(nm’>6,,+C,,V~(O)S,~,-CC,,V~(mm’)l +fJX,, m ’ (24b) 

-iQj,,= - ; [ (a;,,,D,r,-u;,,D,,,J +-E(t) (~~,,yf;,,-~~~~Ymrnl+Drnr~~rn-Dnm~~K,~) ] 

+ c [-D,,V~(nm)S,~,+D,~,~V~(nm’)G,,+D,,V~(O)S,~,-D,,V~(mm’)l +irD,, , (24~) 
m l 

where WC,, denotes the electron site energy (when n=m) All operators in Eq. (24) are taken at time t. The equation 
and hopping matrix elements (when n#m). W& are the for YL, is simply the Hermitian conjugate of the equation 
corresponding quantities for the hole for Y,,. The calculation of resonant experiments requires 

the inclusion of relaxation processes. In Eqs. (24), we have 
+h”,,=Hc,,+6,, C [ Vl(n’n)-- V2(nn)Mt (25a) =~ therefore added a phenomenological relaxation rate l? 

n’ which is common for the electron, hole, and electron-hole 

T%o;,=H~,+~,,C tVl(nn)-Vl(n’n)l. 
.’ 

(25b) pair variables. This parameter may represent a finite life- 
time, dephasing, or a finite spectral resolution. Equa- 
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tions (24) are not closed. They contain in the right-hand 
side new higher-order dynamical variables, namely, 
c ,+,,,Y,,, and D,,,,,,, Y,,. A rigorous way to proceed is to 
use the Heisenberg equation to derive more equations for 
these new variables. This procedure will eventually gener- 
ate an infinite hierarchy of equations. In this paper, we 
close the hierarchy by taking expectation values of Eq. 
(24) and then making the factorizations 

(Cn~rn~Ynrn)=(Cn~rn~)(Ynrn), (26a) 

Uh,,~ Y,,,> = U4,w~ (Yn,). (26b) 

Equations (26) go beyond the standard random phase ap- 
proximation (RPA) 38 since by adopting this factorization, 
we still retain the coupling between different electron-hole 
pairs. 

Equations (24) together with the factorizations [Eqs. 
(26)] form the basis for the theory developed in this arti- 
cle. They map the calculation onto the dynamics of N2, 
iV(N- 1)/2, and N(N- 1)/2 relevant oscillators repre- 
senting electron-hole pairs ( ( Y,,) ), electron coherence 
( (C,,,) ), and hole coherence ( (D,,) ), respectively, for a 
total number of N(2iV- 1) oscillators. Note that (Y,,), 
(C,,), and (D,,) constitute a minimal set of relevant vari- 
ables since the polarization depends explicitly on all of 
them. In the Hiickel model where we set V, = V,=O, the 
new operators (26) never appear, so that our procedure is 
exact and the hierarchy is closed using our N(2N- 1) 
oscillators. The linear and the NLO responses will be cal- 
culated in the up coming sections by solving these equa- 
tions perturbatively in the radiation field. 

IV. xf3) FOR THE PPP MODEL 

In the ground (vacuum) state of the Hiickel model, all 
of the N valence-band states are occupied by two electrons. 
Upon optical excitation, an electron may move from the 
ground state to any of the unoccupied states in the con- 
duction band, creating a hole in the valence band. The 
lowest transition energy is from the top of the valence band 
(HOMO) to the bottom of the conduction band (LUMO). 
This picture changes once the electron-hole Coulomb in- 
teractions are incorporated in the PPP Hamiltonian. The 
electron at site n and the hole at site m  may form a bound 
exciton due to their attractive Coulomb interaction. The 
excitons are created coherently, but their interactions may 
destroy the coherence. Their coherence size is expected to 
control the optical response of the system.23 

Hereafter we assume a homogeneous excitation (the 
field does not depend on position). This is justified when 
the field is polarized along the chain, or, alternatively, 
when the polyene size is much smaller than the optical 
wavelength. The applied electric field in a third-order 
frequency-domain measurement is then given by 

3 

E(t)= C (Eje-++c-c), 
j=l 

and the material-field interaction reads 

(27) 

Hint=-P-E(t), (28) 

where the total polarization is 

P= c P,m f 
nm 

(29) 

The excitons undergo two types of motion-related to 
their translational motion along the molecular chain and 
the relative motion of the pair. The separate treatment of 
these two types of motion is best accomplished by trans- 
forming the binary variable coordinates as follows: 

Q-f i, e-ikr4+s~2cr-s~2 9 (304 

y:,k-f jl eikrc!-s,24,s,2~ 

c&k = f i, e- ikrCt+s12Cr-s/2 , 

k,k= f i, eikrdhL~2 . 

(3Ob) 

(3Oc) 

(3Od) 

Here r is the translational coordinate and s is the relative 
motion. To exploit the translational symmetry of the prob- 
lem, we treat the translational motion in momentum (k) 
space. Using these transformed variables, the polarization 
operator is given by 

p= c bcL,( Ys,k+ Y!,k) +&,k(Cs,k+Ds,k) 1, 
s,k 

(31) 

where we have defined 

A--& ii e-ikr&+s~2,r-s~2, 
r 

(324 

&,k=d,k- + 5 e-ikrl-Lf+s/2,r--s/2~~:Sk,0+gkss,0 . 
r 

(32b) 
Explicit expressions for these matrix elements are 

1 N 
2 exp[ -i(k-k’)n’+i(k+k’)s/2] 

‘“=@ k,k’,n’=, 

x(cxp{i[f(k)-f(k’)l)-l)(n’--s)+~S,,~, (334 

1 N 
‘I=,,2 k,kt,nt=, 

c exp[ -i(k-k’)n’+i(k+k’)s/2] 

X(exp{i[f(k)-f(k’)l)+l)(n’-s), (33b) 

gk+ !, remikr. (33c) 

Setting s= n -m, we obtain for the Coulomb and exchange 
interactions 
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Vj(s) = 1/4V(s) + ( -l)‘/(4N2) C 
k,k‘,n’ 

[ Z(s/2+n’+ 1/2)exp{-i[f(k) --f(k’) + (n’+s/2) (k-k’)]} 

+Z(s/2-nn’+ 1/2)exp{-i[f(k) --f(k’) + (&-s/2) (k-k’)] ) ) +l/(4iV2) c Z(nl-n’) 
nl,n’,k,.k2.W 

xexpC-i[f(k’)--f(kl)+f(k)--f(kz)+(n’--s/2)(k-kk2)+(nl+s/s)(k’-kkl)l), (34) 

where j= 1,2. Z(s) is Ohno’s formula (12) for the Cou- 
lomb interaction. We further introduce two auxiliary quan- 
tities 

CB~=$i/d~@%k+&,O$ [vl(s’)-vZ(o>l, 

(35) 

W:= *Efi T e-ik%k+&,O~ [VI(o) - vl(s’)19 

(36) 

where e,,k are given by Eq. (4) with Y=C,U. The variation 
of p, w, Vi, and V2 with s was calculated earlier.28 

In Appendix C, we present the equations of motion for 
the PPP model [Eq. (24)] using the transformed variables 
[Eqs. (30)]. We have solved these equations of motion by 
expanding the expectation values of all operators in powers 
of the external field, and solving for ( Y,k), (C, k), (Ds,k), 
and the polarization order by order. The following calcu- 
lations were performed in the frequency domain, where the 
optical polarization is given by 

(P(W))= CCI-Ls[(Ys,k(W))+(Y~k(O))l 
s,k 

+&k( t Cs,k(a) > + (Ds,k(@) > 1). (37) 

We have adopted the definition of a Fourier transform 

1 
A(o)= 2a 

7-J 
; dt e-‘“‘A(t), (38) 

03 

where A= Ysk, CS,k, and Ds.k 
The solution of the equations of motion and the optical 

response may be expressed most conveniently in terms of 
Green’s functions representing the electron and the hole 
motions. These Green’s functions are introduced below 
through the solution of our equations of motion to first and 
second order in the radiation field. We thus have 

(Y$(o)) = c Gs,,dk~)iu,&~&, 
s’ 

(394 

(fi,y (W> > = c 2G,s~(kd t~~*-~~Sk,k~+g~-krS~~,g’ 
S’S& 

I 

xG&,--w+d -IUS,-st 

Xexp[ik(s’--s1)/21G,,,,~(o-wl>) 

X&&d&'---w&,o . (39d) 
Here the superscript denotes the order with respect to the 
applied field. The Green’s function GS,,, (k,o) describes the 
motion of a single electron-hole pair and is given by 

G ,-,f(k,w) =wz,-,exp[ -ik(s’--s)/2] 

--wi,-,exp[ik(s’--s)/2] 

+V2(S)S,r-s-[Vl(S)+~+irl~~/,,, 

(40) 
The motion of a single electron in the conduction band is 
described by the Fs,,f (k,w) Green’s function, 

Fs-;(k,w) =2w= ,,-$n[k(s’-s)/21- [VI(S) - V*(O) +w 

+ir]S,,,,+ C [ VI(S”)&~,O) - ~lW’Ms~,d. S” 
(41) 

Finally, the motion of a single hole in the valence band is 
given by the @(k,w) Green’s function 

Q,-,!(k,w)E2wsV,_~in[k(s’--s)/2]-[[Y1(s)--*(0)+w 

+ir]S,P,s+ C I: VI(S”)&,~- ~IW&,~I. s” 
(42) 

In the subsequent manipulations, we shall also use these 
Green’s functions at k=O. We therefore further introduce 
the abbreviated notation 

Gsy(w) ~G~,,r(k=O,w), (43) 

F+(o) =Fs,Jk=O,w) =Q&k=O,w). (44) 
The physical significance of these Green’s functions is as 
follows: Gs,,f (k,o) describes the translational and the rel- 
ative motions of an electron hole pair. By taking k=O, we 
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assume a homogeneous (uniform) distribution of the pair, 
and the translational coordinate drops out of the problem; 
G,,r (0) thus represents only the relative motion. Similarly 
F,,,(w) describes the momentum dynamics of a homoge- 
neously prepared electron (using the Wigner 
representation, 23(c) the electron momentum is the conju- 
gate variable to s).~~*~’ Q, s~ (w ) describes the momentum 
dynamics of a homogeneously prepared hole. Using these 
Green’s functions, we can derive closed form expressions 
for the optical susceptibilities. For the linear response, we 
get 

x%4 =/-da(w) +a( -@)I 
with 

(45) 

a(o) = c ~st+G,s~(~), (46) 
s,s’ 

and p denotes the molecular number density. We next con- 
sider the third-order susceptibility. For a general four wave 
mixing process with three incoming fields wl, w2, and w3, 
generating a polarization at We= w1 + ~2 + 03, we have 

=p c [Y(wbw2,d +y( -m1,+‘$,-wj)], (47) 
P 

with 

sin[k(S3-Y/2)] 

X 1 sin(ksi/2) 
s’s,sp,k 

~s~+s~IUs~~,ldL~*,k[Fo,-s~(k,wf) -Qo,,kq) 1 Ws3,s,(kw,+~2) 

The s summations run from 0 to N- 1, the k summations 
run from 1 to N, and the p summation runs over all 3! = 6 
permutations of the three incoming frequencies wl, w2, and 
w3. All the terms in Eq. (48) contain three Green’s func- 
tion factors which, from right to left, describe the evolution 
of the system following the first, the second, and the third 
interactions with the external electric field.39 In all the 
terms, the system’s evolution is described by the electron- 
hole Green’s function Gs,s, (w) between the first and the 
second interactions. The first term in Eq. (48) represents 
the contributions of interband transitions alone, with the 
electron or hole Green’s functions Fs,s, (w) or Q,,,, (w) de- 
scribing the time evolution following the second interac- 
tion with the field. The second and third terms represent 
the combination of interband and intraband transitions. 
They contain two interband transition dipoles pF1, and two 
intraband transition dipoles ,u&. In the second term, the 

system’s evolution is described solely by the electron-hole 
Green’s functions G,,,( k,w) and Gs,s,(w). In the third 
term, the system’s evolution is described by the electron or 
the hole Green’s functions after the second interaction. 
The last term, which is proportional to the intermolecular 
Coulomb interaction, represents the local field correction. 
The numerical calculations of xc3) for a polyene with N 
double bonds involve the inversion of the NxN matrices 
G,,t, Fs,,t, and Qs,,t N times for each frequency. 

In concluding this section, let us consider the nonlinear 
response of the Hiickel model for which Vi = V2 = 0. Equa- 
tion (48) then reduces to the form 

a'= 2 ~uy,~G~,,~(~) s.s' 
(49) 

and 

?&,,@2,@3) = c I c 2tcstLs~~s~+s*~s~-s~~,~~~~~~~,,s~~~*+~2)GJ)3,,(~~) 
P  ss”*s*s3s4 

(50) 
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FIG. 1. (a) Variation of the static x”‘(O) per double bond with size N 
for polyacetylene 6=0.07. (Solid line) Hiickel model; (dashed-dotted 
line) Hiickel model with cyclic boundary conditions [Eq. (2)]; (dotted 
line) PPP model; (circles) a fit with Eq. (5 1). (b) The scaling exponent 
bsd log x0)/d log N calculated using the slopes of the curves in (a). 

Here the 0 superscript denotes that these quantities are 
calculated in the absence of Coulomb interactions. The 
Green’s functions e,, and es’ are given by Eqs. (40) and 
(41) by setting the’ interactions Vi = V, = 0. Alternative 
expressions for o” and r” for the Hiickel model in terms of 
the single particle states (rather than the oscillator vari- 
bles) is given in Appendix D. That expression which will 
be used as well in the following calculations does not de- 
pend on the periodic boundary conditions and allows the 
comparison of our results with more conventional theories. 

V. CALCULATIONS AND DISCUSSION 

A. Scaling and saturation of xt3) with size ” 

In all calculations, we have used p= --2.4 eV. 6 was 
taken to be either 0.07 (polyacetylene) or 0.15 (polydi- 
acetylene) .4 In Fig. 1, we present the variation of the static 
xc3) (0) with N for polyacetylene. Shown is the PPP model 
with U= 11.26 eV (dotted curve) as well as the Hi.ickel 
model with cyclic boundary conditions (dashed-dotted). 
In addition, we show the exact solution to then Hiickel 
model [Eq. (l)] obtained by numerical diagonalization of 
Eq. (9) without imposing any boundary conditions (solid 
curve). The scaling with size of xc3) (0) in the PPP model 
was fitted with the following Pade approximant (circles): 

x’3’(o)/N=[1+(N/N;)5]/[1+(N/N,)5], (51) 

where the saturation size is N,= 13.33 and Ni = 2.94. This 
fit is also displayed in Fig. 1. We note that for the PPP 
model, xc3) (0)/N shows a rapid nonlinear dependence on 
size for small sizes, which saturates for larger sizes where 
the thermodynamics limit is obtained. The saturation is 
seen clearly by considering the slope b=d log xc3) (O)/ 
d log N shown in the lower panel. The slope drops dramat- 
ically to b= 1 at a critical size (N= 21) . It is interesting to 
note that the slope shown in Fig. l(b) goes to 1 very 
abruptly in a nonanalytical fashion.36 Equation (5 1) does 

not reproduce this nonanalyticity and varies -more 
smoothly across the critical value of N. The Hiickel calcu- 
lation behaves very differently. The exponent b reaches a 
maximum b=6.2 (numerical diagonalization) or 7.7 (cy- 
clic boundary conditions) at N=6 and then approaches 
the value of b=4 for N- 100. The Hiickel model thus does 
not saturate in the size range studied. Earlier approximate 
calculations using the Hiickel model which include only a 
partial summation over states have predicted a saturation 
at the size of N-50 [Ref. 40(a)] and N-40 [Ref. 40(b)]. 
Our exact calculation is at variance with these results. 
Comparing the dashed-dotted and solid curves for the 
slope [Fig. l(b)] shows how the effects of the boundary 
conditions decrease with polyene size, since boundary ef- 
fects are less important for larger polyenes. The figure pro- 
vides a justification for using the cyclic eigenstates, which 
offer a good qualitative picture for all sizes and lend them- 
selves more easily to analytical calculations. In all the cal- 
culations presented hereafter, we have used the solution to 
the Hiickel model with cyclic boundary conditions [Eq. 
(211. 

In order to explore the nature of the excitons in con- 
jugated polyenes, we have calculated the time evolution of 
a single electron-hole pair following an impulsive (a- 
function) excitation pulse at t=O. For simplicity, we fur- 
ther assumed that the polyene is small compared with the 
optical wavelength, so that the initial excitation is homo- 
geneous (k=O). The initially prepared (unnormalized) 
doorway state is then 

I@(t=O))=PIO)= D$J$o, (52) 
s 

P being the polarization operator (29). The probability of 
the pair to be separated. by s lattice units at time t is then 
given by 

Ps(t)=lA,(t)12/~ IPA 
s 

where 
N-l 

A,(t) E c G&k,t)w , 
S’G O  

(53) 

(54) 

where Gs,,f (k,t) is the Fourier transform of Gs,~l (k,w), i.e., 

Gs,,,(k,t) = 
s 

e-‘“‘Gs,,,(k,w)dm. (55) 

A useful measure of the degree of delocalization of the 
pair is the inverse participation ratio27s41 

K(t)=l” Cc(t). 
I 

(56) 
s 

If the pair is distributed over M sites, then P,(t) -AC’ 
and therefore K-M. In Fig. 2, we plot K(t) for different 
magnitudes of the Coulomb interaction U and sizes N. 
Panels 2(a) and 2(b) compare the behavior of N= 100 
with U=O (Hiickel) and U= 11.26 eV (PPP) model. In 
both cases, the electron and the hole are created on the 
same bond so that initially K(O) -1 independent on the 
Coulomb interaction. The subsequent evolution is, how- 
ever, very different. For the Htickel model [panel 2(a)], the 
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FIG. 2. The time-dependent inverse participation number I for poly- 
acetylenes (6=0.07) with different values of the Hubbard interaction U 
and size N. U=O is the Hiickel model; U= 11.26 eV is the PPP model, as 
indicated. 

pair is uncorrelated and the amplitude K, of the K(t) os- 
cillation is equal to the polyene size 100. For the PPP 
model [panel 2(b)], the electron and the hole become 
tightly bound (localized) and K,,, decreases to 16. We in- 
terpret K, as the exciton coherence size. In the following 
panels 2(c) and 2(d), we vary the size N (N= 14 and 4) 
for the PPP calculation. As long as the molecular size is 
larger than the coherence size, the amplitude is unaffected 
by N. K(t) for N=30 (not shown) is virtually identical to 
that of N= 100. However, as the size decreases further, 
exciton confinement becomes significant and K is affected 
strongly by N. The figure thus illustrates clearly the for- 
mation of a charge-transfer bound exciton with delocaliza- 
tion length K,,, which becomes more Frenkel-like as U is 
increased. The variation of the amplitude K, with size N 
and with U was shown to be remarkably similar to that of 
X (3) including the sharp nonanalytical behavior of the 
slope b’ (K,- Nb’) at a critical size N= 18.36 We further 
expect the Hiickel susceptibilities to saturate at much 
larger size due to a different (nonexcitonic) mechanism.36 

Another spectroscopic observable that is sensitive to 
exciton confinement is the band gap Eg which increases as 
N decreases, resembling the blue shifts in semiconductor 
nanostructure.25 In Fig. 3, we display the variation of the 
band gap Ek the amplitude of K( t) (K~), and logk’3’(0)/ 
Nl with molecular size N. For large N, all three quantities 
saturate at roughly the same size. The correlation between 
the exciton size and the saturation size of xc3) demon- 
strated in this figure was pointed out earlier.28S36 
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FIG. 3. The variation with molecular size of the band gap Eg (dashed- 
dotted line), the static nonlinear susceptibility logly’3’(0)/N] (solid 
line), and the participation ratio amplitude K, (dotted line) for polyacet- 
ylene (S=O.O7). 

B. Third harmonic generation 

The amplitude of third harmonic generation (THG) 
signal per double bond is given by 

STHG= 1 xc3) ( - 3w,w,o,w)/N I. (57) 
The signal is given by the square of &no. THG spectra of 
linear polyenes have been measured by many experimental 
groUpsWW and calculated using the sum over states ex- 
pression.5*6*9p21 Two major resonances below the band gap 
were found in these studies. The lower frequency resonance 
is exactly at one-third of the band gap. The other resonance 
is close to, but not exactly at half of the band edge. It has 
been argued that the former is a three-photon resonance 
and the later is a two-photon resonance.” Since the two- 
photon process and the three-photon process have different 
selection rules, they show different resonance energies. Us- 
ing the PPP model and a diagrammatic valence-bond tech- 
nique, Soos and co-workers were able to reproduce the 
experimental THG spectra of the N=4 polyene (octatet- 
raene) .** However, the origin of this two-photon resonance 
and its variation with Coulomb interactions remains an 
open question, particularly for large molecules. In Fig. 
4(a), we display the THG spectra of polyacetylene (S 
=0.07) for different molecular sizes ranging from four to 
30 double bonds for both the Hiickel and the PPP models. 
No two-photon resonance below the band gap Eg is found 
for the Hiickel model with small molecular sizes (N 
=4,10). As the molecular size is increased to 20 and 30, 
we find that the two-photon resonance frequency shifts 
below the band gap and is still higher than the midgap. 
This implies that the two-photon active A, states and the 
one-photon B, states become closer as N is increased, but 
the A, state still lies above the B, state. On the other hand, 
our calculation for the PPP model shows that this two- 
photon resonance is below half the band gap, which implies 
that the order of the A, and B, states is reversed. In the 
present formulation, this resonance comes from the elec- 
tron Green’s function F,,,+(wi + w2) and the hole Green’s 
function Qs,,s,(wl + w2). We find that the two-photon res- 
onance involves the combination of intraband and inter- 
band transitions. In all the calculations presented in Fig. 
4(a), except for N=4, we find several two-photon reso- 
nances between the band gap and one-third of the band 
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FIG. 4. (a) Third harmonic generation signal [Eq. (57)] for polyacety- 
lenes (6=0.07) with different sizes. (Solid line) The PPP model with 
U= 11.26 eV, (dotted line) the Hiickel model. The x  axis was scaled by 
the band gap which is different for both models. For N=4, 10,20, and 30, 
we found a band gap E,=3.62, 2.31, 1.88, and 1.73 eV for the PPP model 
and EB= 1.3, 1.1, 0.90, and 0.87 eV for the Hiickel model, respectively. 
The signal for the Hiickel model was scaled with respect to the PPP 
model by a factor of 27, 15, 11, and 9 for N=4, 10, 20, and 30, respec- 
tively. r=O.OS eV. (b) The two-photon region in (a) is shown with a 
higher resolution. lY=O.O2 eV. 

gap, but the most intense line is always above half of the 
band gap in the PPP model. This demonstrates the essen- 
tial states in the optical response of conjugated poly- 
enes.779,20 The essential 24, state is below the essential IB, 
state. The two-photon resonance region is shown with a 
higher resolution in Fig. 4(b). The relative energy of the 
1 'B, and 2 ‘A, states provides an important illustration for 
the effect of electron-electron interactions on the electronic 
structure. As shown by Kohler,*’ the energy of the 1 'B, 
state in the Hiickel model is lower than the energy of the 
2 lAg state, but in the PPP model, the order of these two 
electronic states may change.19 Therefore the relative po- 
sition of the lowest frequency two-photon resonance in the 
THG spectrum with respect to the band gap should be a 

3 I (4 

FIG. 5. Third harmonic generation signal [Eq. (57)] for polyacetylenes 
(6=0.07) for the PPP model with N=4, U=11.26 eV, and r=O.O8 eV. 
(a) Total THG signal calculated from E!q. (48). (b) Contributions to the 
TPG from transitions involving the interband transitions and the s- 
dependent part of the intraband transitions. (c) The contribution of the 
remaining terms [other than those shown in (b)]. 

clear signature of the effect of the Coulomb interactions on 
the relative position of the 2 lAg and 1 'B, states. 

p& [Eq. 32(b)] has two contributions & and gk. gk is 
the k-dependence part of the intraband transition dipole, 
which describes intraband translational charge transfer. In 
order to explore the role of gk in THG, we have plotted in 
Fig. 5 (a) the total THG spectra, in Fig. 5 (b) the separate 
contribution of gk, and in Fig. 5(c) the remaining terms 
which do not depend on gk The terms proportional to gk 
make more contributions to the one-photon resonance than 
to the three-photon resonance in THG. As is shown in Fig. 
5, most of the three-photon resonance oscillator strength 
comes from the s-dependent part of the intraband transi- 
tions ,$. In Fig. 6, we show that our PPP calculation is in 
very good agreement with the recent calculation for oc- 
tatetraene made by Soos and co-workers. Both calculations 
show similar two-photon and three-photon resonances. For 
comparison, ‘we also display our results for the Hiickel 
model. 

0.2 0.3 0.4 0.5 0.6 
o/Eg 

FIG. 6. A comparison of the Hiickel and PPP model calculations [Eq. 
(57)] with Soos’ PPP model calculation for THG for octatetraene 6 
=0.07, N=4, U= 11.26 eV, and r=O.O8 eV. (Solid line) PPP calcula- 
tion; (dotted line) Hiickel calculation. (Dotted-dashed line) previous 
PPP results [Ref. 22(b) 1. 

J. Chem. Phys., Vol. 97, No. 11, 1 December 1992 
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



H. X. Wang and S. Mukamel: Optical nonlinearities of polyenes 8029 

I I 

0.3 

Q 0.2 

6-4 

0.1 
L 
I I 
10 15 20 25 30 

N 

0.2 
-4 

0.1 

I I 
0 4 8 12 

U @VI 

FIG. 7. The relative energy A  = [E( m  ‘As) - E,]/E, of the most intense 
m  ‘A, state with respect to the band gap Er (a) A  for different size 
N(4-30) polyacetylenes (S=O.O7) with U= 11.26 eV. (b) A  for different 
interaction strength U(O-12 eV) with N=30. 

Using the THG spectra, we have calculated the rela- 
tive position A= [E(m ‘A,) - Eg]/Eg and the oscillator 
strength of the most intense two-photon active state m  ‘A, 

as a function of size N and the Coulomb interaction U. The 
results are displayed in Figs. 7-9. Figures 7(a) and 7(b) 
show that the m  ‘A, state is red shifted as N or U are 
increased. Figures 8 and 9 show how the relative intensity 
of the most intense two-photon resonance compared with 
the single-photon band-edge transition is enhanced by the 
molecular size and by the Coulomb interactions, respec- 
tively. 

x .Z 
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FIG. 8. The intensity of the most intense m  ‘A, resonance per double FIG. 10. Two-photon absorption per double bond for polydiacetylenes 
bond for different N(Z-30). (a) (Solid line) Intensity of the m  ‘A, reso- (6=0.15) with different sizes N. (Solid line) The PPP model (U= 11.26 
nance in the PPP model for polyacetylene (6=0.07) with lJ= 11.26 eV. eV); (dotted line) the Hiickel model. (Top two panels) 
(Dotted line) Intensity of the band gap resonance. (b) The ratio of the ~,,,~I~[X(‘)(O;O,--o,o)]/N) [Eq. (SS)]. (Bottom two panels) 
intensity of the m  ‘A, and band gap transitions. S&,=Reh(3)(ti;w - 0,0)1/N). r=O.O8 eV. 
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FIG. 9. The intensity of the most intense m  ‘A, resonance for different 
values of U(O-12 eV) for polyacetylene 6=0.07, N=30. (a) (Solid line) 
Intensity of the m  ‘A, resonance. (Dotted line) Intensity of the band gap 
resonance. (b) The ratio of the intensity of m  ‘A, and band gap transi- 
tions. 

C. Two-photon absorption 

The two-photon absorption (TPA) spectrum provides 
another sensitive measure of the two-photon state as 
pointed out by Soos and Etemad.4 The TPA signal (per 
double bond) Sr,, is defined as 

s,,,~Im[X(3)(o;w,--w,w)/N]. (58) 

In the top two panels of Fig. 10, we display the TPA 
spectra (STPA) per double bond calculated using Eq. (48) 
for polydiacetylene (S =O. 15). The spectra show a red shift 
of the two-photon absorption from the ground 1 ‘A, state 
to the 2 ‘A, state, as the electron correlations are turned 
on. The two-photon resonance is contained in the electron 
Green’s function F”,,+( w1 + 02). This is consistent with our 
calculations of THG. In the bottom two panels of Fig. 10, 
we show Sk,,= Re[Xc3’ (w;w, - w,w>/N, which is related 
to the NLO refractive index. In Fig. 11 (a), we show that 
our PPP calculation (which has no adjustable parameters) 
is in excellent agreement with experiment.32 The calcula- 

1, 1 I * I 1 
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s 
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FIG. 11. (a) A comparison of the present PPP (solid curve) model 
calculation of TPA [Eel. (58)] for polydiacetylenes (6=0.15) with ex- 
periment (Ref. 32) (circles). N=30, U=11.26 eV, I?=O.O8 eV, (b) a 
comparison of the TPA calculation for polyacetylenes (kO.07) with the 
calculation of Ref. 21(c). I?=O.O6 eV. 

tion was made for N=30. The result is, however, not sen- 
sitive to that choice and corresponds to the N- 00 limit. 
We have verified that by repeating the calculation for N 
= 100 (not shown). In Fig. 11 (b), we show that our cal- 

1 2 3 1 2 3 
WEg WEg 

FIG. 12. (Dotted line) Linear absorption [Eq. (60)] [shown on a loga- 
rithm scale log&J] and (solid line) the electroabsorption spectra Ss, 
[Eq. (61)] for polydiacetylene (S=O.15) for different sizes using the PPP 
model (U= 11.26 eV). F=O.O8 eV. 

WEg 

FIG. 13. Electroabsorption spectra Ss, [Eq. (61)] for polydiacetylene 
6=0.15 and N=lO. lY=O.O8 eV. (a) The contribution from the two 
terms in the first summation containing the electron-hole Green’s func- 
tioni:G,,r(w) in E& (63). (Solid line) the first term; (dotted line) the 
second term; (dashed-dotted line) the sum of the first and second terms. 
These terms cancel exactly. (b) The contribution from the terms contain- 
ing the single electron Fs,~p and single hole Q,st Green’s function. (c) 
Total electroabsorption, the sum of (a) and (b). 

culations of the TPA spectra also compare well with Soos’ 
calculations.2-1(c) 

D. Electroabsorption 

The difference probe absorption in the presence of an 
off-resonance low frequency pump (or a d.c. field) pro- 
vides another useful spectroscopic technique for studying 
conjugated polyenes. Electroabsorption spectra have been 
measured for various types of materials.42943 A notable fea- 
ture of this absorption is the characteristic Stark shift of 
the resonance frequency compared to ordinary one-photon 
absorption. For a polydiacetylene single crystal of DCHD, 

I I I I I 
0 0.5 1 1.5 2 2.5 

WEg 
FIG. 14. Electroabsorption [Eq. (60)] for the PPP model for polydiacet- 
ylene (6=0.15, U=11.26 eV, and 1‘=0.08 eV). (Solid line) N=lO; 
(dotted-dashed line) N=12; (dotted line) N=14. The position of the 
resonance at co/Eg= 1.25 obtained by Weiser (Ref. 42) agrees with our 
calculations for N= 14. 
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Weiser and co-workers found red-shifted resonance below 
the optical band gap Es and another electronic feature at 

SLA=Im[X(‘)(ti)]/N (60) 

about 1.25 of the band gap energy Es. The electroabsorp- and the electroabsorption signal is given by 
tion and electroreflection properties of optical materials are 
important for device applications such as optical switching. Ssp=Im[X(3)( -o,o,O,O)]/N (61) 
The total absorption signal (per double bond) is given by with xc3’( -w,o,O,O) given by 

Sabs=SLA+@EP 3 (59) 
where the En is the external off-resonant electric field. The 

xc3’( -aw;o,O,O) =6p[y(w,O,O) +y( -o,O,O)] (62) 

linear absorption is and 

Using Eqs. (61) and (63), we have calculated the electro- 
absorption spectrum of polydiacetylene with N ranging 
from 4 to 50 with Eo=25 kV/cm and polarized parallel to 
the molecular chain. The calculations are displayed in Fig. 
12, together with the linear absorption S,A which is shown 
for comparison. The red shift of the electroabsorption res- 
onance compared with the linear absorption can be inter- 
preted in term of the optical stark effect.@ The origin of the 
resonance in electroabsorption may be understood as fol- 
lows: the molecular eigenstates can be classified into A, and 
B, symmetry. The former are forbidden and the latter are 
allowed by a single-photon transition. The external electric 
field breaks the molecular symmetry, the states are mixed, 
and the selection rules are relaxed resulting in the new 
resonances. The modified states in the presence of the field 
were denoted as the dressed states.” In Fig. 13, we display 
the contribution of different terms to Eq. (63). The 
electron-hole Green’s function has two contributions that 
interfere and exactly cancel [panel 13 (a)]. The electroab- 
sorption resonances thus originates solely from the single- 
electron and single-hole Green’s functions F,,I and Q,,,,, 
which are also responsible for the two-photon resonance in 
the TPA and THG spectra. 

In order to compare with experiment, we display in 
Fig. 14 the electroabsorption spectra for polydiacetylenes 
with various sizes. The first resonance above the band gap 
is at 1.25, 1.29, and 1.34E, for N= 14, 12, and 10, respec- 
tively. The position of the band gap (EJ and the main 
electroabsorption resonance at 1.25Ea shown in Fig. 14 for 
N= 14 are in good agreement with experiment.43 Our cal- 
culation suggests that the effective molecular coherence 
size in this experiment is N= 14. The experimental spectra 
show a few additional resonances between the band gap Es 
and 1.25EK These are attributed to vibrational modes, 
which are not incorporated in the present model, although 
they can be added naturally to the equations of motion by 
including more oscillator variables. The resonances beyond 
1.5E, in Fig. 14 are related to transitions to higher A, and 

I 

B, states. No experimental data are available in this fre- 
quency region. 

In conclusion, the present approach provides a unified 
description of nonconjugated molecules, conjugated poly- 
enes, and semiconductor nanostructures, where the nature 
of the exciton changes from Frenkel to Wannier through 
intermediate charge-transfer excitons by simply varying 
the amplitude of the Coulomb interaction U and the alter- 
nation S parameters. Our calculations demonstrate that 
electron correlations and interactions play a major role in 
the nonlinear optical response of conjugated polyenes. The 
origin of the two-photon resonance in the THG and TPA 
spectra is attributed to the combination of intraband and 
interband transitions. Electron correlations alter the rela- 
tive energy of the one-electron transition allowed 1 ‘B, 
state and that of the two-electron transition allowed 2 iA, 
states by lowering the energy of the later. The position of 
the two-photon resonances obtained in THG and TPA 
spectra and the electroabsorption spectra provide a direct 
probe for this effect. 

ACKNOWLEDGMENTS 

The support of the Air Force Office of Scientific Re- 
search, the National Science Foundation, and the Center 
for Photoinduced Charge Transfer is gratefully acknowl- 
edged. 

APPENDIX A: ELECTRON-HOLE REPRESENTATION 
OF THE PPP HAMILTONIAN 

We consider the PPP Hamiltonian, i.e., 

H=H,+H’, (AlI 
where Ho is the Hiickel Hamiltonian ( 1) and H’ represents 
the Coulomb interactions. In the Born-Oppenheimer ap- 
proximation, and when the (T electrons are incorporated 
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through an effective field, the Hamiltonian for 2iV r elec- 
tron Ho can be written in terms of electron field wave 
operators45 as 

Ho= c 
n 

-; A,+ V;(x) W(x)dx, (A2) 1 
where V;(x) is the periodic effective potential resulting 
from nuclei and the u electrons. \I, (x) is the field wave 
operator. The Coulomb interaction Hamiltonian can then 
be written as 

H’=1/2 
s 

Y+(x)Y+(x’)Z( Ix-x’[ )Y(x’)Y(x)dx’dx, 

(A3) 

where Z( 1x-x 1 ) is the Coulomb interaction between 
sites x and x’. 

2 

zwx'I)=(,,x~x',) 9 (A4) 

where q is the electron charge and E is the dielectric con- 
stant. We shall approximate the p orbitals by S functions. 
We then modify the Coulomb interactions and use the 
Ohno formula instead 

Z( Ix-x’I)=v{l+[(x-x’)/q2u]2)-1’2. (A51 

This formula interpolates between the Coulomb expression 
with e=l for large separation (x-x’) and the Hubbard 
interaction U at short distances. We next expand the field 
wave operator in the Wannier basis set (7) 

Y(x) = c [c,~c,nCx) +dt,JKqz<x) I. C-46) 

Using periodic boundary conditions for the system, 
W,,,(x) (Y=c,u) is given by Eq. (7). Substituting expres- 
sion (A6) for Y(x) into Eqs. (A2) and (A3), we obtain 
Eq. (9) for Ho and, 

H’ = l/2 2 [~~~cf,~c,~c,~v(~~~~~~~~) 
nln2"3"4 

+d d dt dt v( “1”2”3n4 
n3 n4 n1 fl2 uuvu I- 4z,c;2c,3d:4 V( ;,!!$“““‘) 

+d~,cfizd?;3d~4V(~~~~n3n2) +c~,d~2~3d~4V(~~u”,‘nsn4) I, 
(A7) 

where V( ~~~v3v2 ) (Yi is the band index) is given in Sec. II. 
Equation (14) is finally obtained by a rearrangement of 
Eq. (A7). 

In the dipole approximation, the interaction Hamil- 
tonian H’ between the molecule and the external field can 
be written as 

Hi,t=q 
s 

P(x) *E(x>t)dx, 

where the polarization operator is given by 

P(X) =q 
s 

Y+(x)Y(x>x dx. 

(A8) 

(A91 

Substituting Eq. (A6) into Eq. (AS), we obtain 

Hint=-q C [ck, [” e,(x) Wc,,(xWb,t)dx 
nm 1 JO 

’ +dnc, 
I 0 

en(x) Wc,,WxHx,t)dx 

+ c+d+ L nm s 0 
en(x) K,,(x)xEW)dx 

+ d&f;, 
s 

L 

0 
en(x) Wu,,(x)xE(x,t)dx . 1 

Where L=iVd, is the length of the polyene. 

(A101 

When the 
optical wavelength is long compared with the relevant dis- 
tance n-m, we may replace the E(x,t) in the integration of 
Eq. (AlO) by the average E[(n+m)/2,t]. We then obtain 
Eqs. (18)-(21). 

APPENDIX B: COMMUTATION RELATIONS OF THE 
BINARY TWO-PARTICLE VARIABLES 

The Fermi operators obey the basic commutation re- 
lations (8b) .~ Applying Eq. (8b) and the definition for the 
two-site variables [Eq. (22)], we obtain the following com- 
mutation relations:26’27 

[Cn,n2Jnml =G,,Ln- L?G,n,= -$?J?l”2 Y 
(Bl) 

[Dqn,, Yml = -Sn*“Yn2m, (B3) 

Pn1n2, cnl =hz2nKzp t (B4) 

I. yn,n2 CJ =sn2msnln-8n2nPnn*-8nlnCmn2 2 WI 

[ Cn,n2,Cnm] =sn2”Cnlm-Sn,mC”n2, 036) 

[Dnln2Aml =&21pn,m-~nlmDnn2 1 (B7) 

Using the transformation (D7a) to (D~c), we find that the 
Fermi operators obey similar commutation relations, i.e., 

[C&,1 =a,# -2c;,c, , 038) 

[dp,d~,l =Soo, -2dL,dp, others=O. (B9) 

Equations (Bl), (B7), and (Sb) were used in the deriva- 
tion of Eq. (24~). 
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APPENDIX c: EQUATIONS OF MOTION USING THE TRANSLATIONAL AND THE RELATIVE EXCITON 
COORDINATES 

Using Eq. ( 13) and the Heisenberg equation of motion, we get 

-i+ks,,= - c Cwf,-,exp[ -i&s’--s)/21 -w~,_,exp[ik(s’-s)/21+ V2(~Pb+,- V,(S)S,,-3Y,,,k+E(t)~~k 
s’ 

--E(t) 2 Cu,r-sexp[ik(s’--s)/21Csr,k+iFL,f+s exp[ik(s’+s)/2lD,l,k}-2E(t) c [~uj,-sSkr,k+gk-kfSsf,s] 
sf k’ 

Xsin[ (ks’-k’s)/21 YsP,k,- f s;, {2V1b’)sin[(k-k’) (S’-d2) 1 (Co,k-k~-Do,k-kp) Ys,kf+ vzb-s’) 

xexp[i(k-k’)s/2]Cs,-s,k-k,Y-s,+s,k,+ v2(s-s’)exp[ -i(k--k’)~/2]D_sr+s,k-k,Ys,-s,k,} (Cl4 

-ific,k= $ [2w:_,sin[k(s’-s)/2l-[Y,(s)-V,(O)IG,._,+ g [v,(S”)g,o-v,(S”)~~~,~]jc~,,k 

+E(t) 2 @s+s~ exp[ik(s+s’)/2] Yf’,k- puswst exp[ik( --s+s’)/2] Ys,,k}-E(t) C 2 sin[ (/&--k’s)/21 
s’ s’,k’ 

x @FL:, -$k,k’ +gk- kt 6 )%,k s,s’ (Clb) 

-itis,k= c 2w~,_,sin[k(s’--s)/2]-[vVl(s)-v,(O)]6,r_,+ 1 [v,h”)&,o- v,(f)&,s] 
s’ 1 s” I 

&,k 

+E(t) c f$s-st exp[ik(s-s’)/2] Yzt,k- psfst exp[ -ik(s+s’)/2] Ys,,k}+E(t) 2 2 sin[ (W-k’s)/21 
s’ s’.k’ 

x (&-s~k,k’+gk-k’ &,,I )&,k . (Clc) 

I 

The equation for I$ is simply the Hermitian conjugate of 
E$. (Cla). These equations are not closed once expecta- 

where pn( v) are the expansion coefficients. If we use cyclic 
boundary conditions, these states are equal to a,,& of Sec. 
II. However, the following derivation does not depend on 
any particular choice of a boundary condition and this is 
why we adopt a different notation. We next introduce cre- 
ation (annihilation) operators for electrons cL( c,) and for 
holes dra(d,), which create (annihilate) an electron or a 
hole in the a state #,, or B state #s, 

tion values are taken. Adopting the factorization 
(26)], we have 

(c-s,,&,,> = (c-s,,> (Ys,k), 

(D-s,k&,k) = (D-s,k) ( Ys,kb 

These factorizations close the hierarchy. Equations ( 

m l* 

(C2) 

(C3) 
Cl)- 

(C3) were used in the calculations of the optical suscepti- 
bilities in Sec. IV. 

APPENDIX D: SINGLE-PARTICLE REPRESENTATION 
OF xt3) FOR THE HiiCKEL MODEL 

Equation (50) provides an exact expression for xc3) for 
the Hiickel model. It is possible to recast this result using 
the single-particle eigenstates of the model. This alternative 
representation provides additional insight and will be pre- 
sented below. We start by calculating the single-particle 
eigenstates of the Hiickel Hamiltonian. The lower and 
higher N states will be denoted 4, and &, respectively, 
with energies E, and es (a$= 1,2,...,N). E, thus constitute 
the conduction band and are positive, whereas eP constitute 
the valence band and are negative. In terms of the atomic 
wave functions f’“‘(x) localized at the nth carbon atom, 
0, and & can be written as 

v=a,P, Pl) 

2N 

ca= C c^,(a>c,, 
?I=1 

(D2) 

d,= : $(P)d,, . 
n=l 

(D3) 

These operators satisfy the Fermi anticommutation rela- 
tions which are equivalent to Eqs. ( 8 ), 

[~a,&1 + =S,,+ W,,d;,l+ =$,p , (D44 

[ca,c,, I+ = Wp,ds~ I+ = k&s1 + = t c&J + = 0. 
(D4b) 

The Hiickel Hamiltonian then reads 

Ho= c E,&+ c qjdfPB-Wt), 
a B 

where 

(D5) 
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N :. 

p- c o-kf&~+&3&a) 
or,& 1 

N 

+ = &, ~ca-&m~ + 5 P&‘PP’ 
BP = 1 

(Da 

and YJ,(t) =ctdt (L B, Yp,(t)=dpc,, C,,,(t)-&,,, and 
DDp (t) =dpp. These variables -are related to the binary 
variables in the site representation Y,,, C,,, and D,, by 
the transformation 

YBa= E Z‘n(a>CAP> Y,, , (D7a) 
4m 

2N 

Cast= C ~Ca)~mCa’>C,, , 
n,m=l 

W ’b) 

2N 

Dppt= .;=I ~(8%zWW’n, .- (J37c) 

,!+r are the electronic dipole matrix elements between the 
single-particle (electron or hole) states vv’ =oLp, aa’, and 
op. The transition-dipole matrix elements p,,,,t are given 
by 2N 

,u,,,,,= 2 ndo$(v)2(v’). 038) 
n=l 

where do is the unit cell length (sum of the single and 
double bond lengths). Using Eq. (24) and the transforma- 
tion (D7), we obtain the following exact equations of mo- 
tion for the binary variables Yafl, C,,,, and Dppc 

&wDpy?+ 2 Ya,- cp,v,~,t, , 
B a’ 8’ 

CD94 
- ifi&,,, = (0, *+ir,,l)C,,t+-E(t) 

x ; (payJ~~-&kJpa~) --E(t) 

x 5 (pa”&“a -p&&d), (Dgb) 

x 2 (ppprrDprra~ -/L~II~ID~~~) - WC) 
B” 

In Eqs. (D9), we have added phenomenological decay 
rates I,p. By setting rWt = l? independent on v and v’ this 
becomes identical to the damping introduced in Eqs. (40)- 
(42). Here ~,,,,r = E,- E,,P and the equation of motion of 
Y& is given by Hermitian conjugation of the equation for 
Yap The present equations of motion thus map the calcu- 
lation of the NLO response of the Hiickel model onto the 
dynamics of coupled and driven nonlocal anharmonic os- 
cillators analogous to the oscillators of Sec. II. A semiclas- 
sical picture of these oscillators can be obtained by intro- 
ducing new variables Pos-ppaYgcr + PaPy;tJoL’ 
Pacz~ =~aa,Gm~ + P~&G f’ppl =P&‘PP~ + ,q@,~,. 
The optical polarization operator thus assumes the form 

@ lo) 
CZ’>(L P>P’ 

Equations (D9) can then be recast in terms of the polar- 
ization variables P,l by a simple linear transformation 

pW, = -o&P,+ + anharmonic and driving terms, 

vv' = aDaa', @ '. CD111 

P,,,,f thus serves as the oscillator coordinates with harmonic 
frequencies ~,f. The anharmonic and driving terms con- 
tain cubic polynomials in P,, and E(t). 

Proceeding along the same steps outlined in Sec. IV, 
these equations can be solved iteratively in the electric 
field, resulting in the optical susceptibilities x(l) and xc3). 
These are given by Eqs. (45) and (47) with 

aO(w) = c Iluap124&), a$ CD121 

Xl~~p(ol+oz>l,,cwl,)+ E a,/3,a’,a”= 1 PPcifPcz~OLf~Pa~f&afi{ [L 4Wfl -Ld(q) lI,,I(wI+wz) 
N 

I,B(wl)+[lnll3(Wf)-Inn,r(wf)lI,,p(wl+w2)l,~(w*))+ c 
a,B,B’,B” = 1 

~~~~~~~~~~~~~~~~~ [rpllabf) 
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where 

I,Q,t(o) =(ti-~Ey-EyP+ilYWI)-‘, v,v’=a,j?. (D14) 

If we use periodic boundary conditions, Eqs. (D12) and 
(D13) coincide with Eqs. (49) and (50). This equivalence 
is not transparent since the equations are written in a dif- 
ferent representation. The first term in Eq. (50) corre- 
sponds to the first term in Eq. (D 13). The remaining three 
terms of Eq. (50) correspond to the second term in Eq. 
(D13). Each term in Eq. (D13) corresponds to a specific 
excitation pathway. The interaction with the external field 
can be either from the left (ket) or the right (bra) side of 
the density matrix. When two interactions act on the same 
side, it is possible to produce a two-particle excitation. The 
two-particle excitation contribution is contained in the first 
term when a’ =a and p’ =p. 

The present expression for xC3) [Eqs. (49) and (D12)] 
together with Eq. (47) contains 32 terms each containing 
a fourfold summation over single particle electron (a 
= l,..., N) or hole (b= l,..., N) states. With permutations 
over the fields, the actual number is 32x6= 192. The sus- 
ceptibility xC3) is expressed in terms of multiple summa- 

I 
N 

(D13) 

tions over single-particle (electron and hole) states. In con- 
trast, the conventional expression for xC3) contains eight 
terms, each containing a fourfold summation over molec- 
ular eigenstates (with field permutations the number is 8 
X 6 =48) .35146 The molecular eigenstates which contribute 
to x(3) include the ground state, together with single- 
exciton and two-exciton states. The number of these states 
is 1, N2, and N2(iV- 1)2, respectively. In contrast, there 
are only 2N single-particle electrons and hole states. The 
present oscillator-based expression is thus much more 
compact and easy to use, particularly for large molecular 
sizes N where the conventional sum over molecular eigen- 
states expression becomes very tedious. Finally, we note 
that in the static limit, i.e., when all the frequencies w=O 
and in the absence of damping (setting I,, =0), Eq. 
(D13) contains several diverging terms such as I,,(O) in 
which the denominator vanishes. However, when all these 
terms are carefully combined, the divergencies cancel ex- 
actly (as they should) .46 Equation (D13) then reduces to 
a simpler form 

-p@?‘p@aa~pa~pf (%fp’ +Wc,r,)/(W,,,W,rB,0~~~~8) 1 

-CLga’CLa,al-Laal~,“B(W,,B+W,,,)/(W,,~f~8) I- (D15) 

I 

Equation (D 15) was used in Figs. 1 and 3. 
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