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Transient grating spectroscopy of exciton sound waves 
in dense exciton fluids 
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A dynamic description is developed for the motion of an exciton fluid at high exciton density. Coherent oscillatory modes of 
the exciton density are predicted provided the exciton-phonon coupling is suffkiently small. The physical mechanism is similar 
to that of sound waves in an ordinary gas. A method to probe these motions using transient grating with strong pump fields is 
proposed. The grating recurrence time is estimated to be about 100 ps for typical molecular crystals. Exciton Bose condensation 
could also be probed using the same technique. 

1. Introduction 

Most studies of exciton transport have focused on 
low density of excitons created by relatively weak 
electromagnetic fields. An extensive literature exists 
on this subject, particularly on whether exciton mo- 
tion is coherent (free particle like) or incoherent 
(diffusive) [ I ,2]. The most likely physical scenario 
seems to be that for very short times excitons move 
coherently and the motion becomes incoherent due 
to scattering by phonons and impurities. The prob- 
lem in settling this question is firstly that coherent 
exciton motion was never observed, and secondly 
theoretical analysis suggests that for a situation in 
which coherent motion should be observable, polar- 
iton related effects become important. Various es- 
timates for the exciton-phonon interaction time tphon 
differ by an order of magnitude [ 31. 

Intense electromagnetic fields can create excitons 
at high density. Many new physical phenomena then 
appear resulting from exciton-exciton interactions. 
The simplest, exciton annihilation, is the most com- 
mon in molecular crystals with Frenkel excitons, and 
is usually treated using kinetic schemes. This process 
appears even at moderate intensity and often com- 
plicates the measurement of radiative decay of ex- 
citons. It has been suggested that at high density ex- 
citons undergo Bose condensation [ 4,5 1. 

We develop here a dynamical description for an 
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exciton gas at high density, that includes collisions 
between excitons. At high exciton density we found 
that a new phenomenon may occur: deviations from 
a uniform exciton density may disappear and reap- 
pear later. The physical mechanism is analogous to 
that of sound waves in an ordinary gas. Pushing this 
analogy, a number of interesting observations can be 
made. The sound velocity is proportional to the ther- 
mal velocity of the particles, and, to first order, in- 
dependent of density. We propose that a four wave 
mixing experiment, transient grating, can directly 
probe these exciton sound waves. Combining the time 
at which the grating first vanishes with the grating 
wavelength, the thermal exciton velocity can be di- 
rectly extracted. This together with the exciton dif- 
fusion coefficient enables in principle a reliable mea- 
surement of the phonon scattering time tphon. 

The theory proposed here can be extended to a 
phenomenological treatment of the transient grating 
dynamics of a Bose condensed phase [4,5]. This is 
important as the major problem for observing the 
Bose condensation is to find a clear signature, which 
the transient grating may provide. 

2, Kinetic model 

In order to describe the dynamics of a dense ex- 
citon fluid we use an approach based on the Boltz- 

125 



Volume 203, number 2,3 CHEMICAL PHYSICS LETTERS 19 February 1993 

mtinn equation. We start by considering the one ex- 
citon phase space density f(r, v, t), the probability 
density of finding an exciton with velocity v at po- 
sition r. This probability is the Wigner transform of 
the binary exciton variable ( BT+,lz B,_sj2 ) [ 6 1. For 
simplicity we do not include polarization-dependent 
effects here. We consider four different physical 
mechanisms for the time evolution of this density. 

(1) Lifetime. This, in the time domain, will just 
be an additional prefactor multiplying the final sig- 
nal. We will not consider it here, based on the ob- 
servation that the time scale under consideration is 
generally shorter or at least of similar order of mag- 
nitude as the exciton lifetime. 

(2) Free, coherent (unperturbed) exciton mo- 
tion. If we have only free exciton motion then ob- 
viously we have 

f(r, u, t)=f(r-2X, v, I) . (1) 

Here we have treated r and u as classical, continuous 
variables. This will be a good approximation as long 
as we are probing relatively slow and long wave- 
length effects. We also assume that the excitons have 
a certain isotropic effective mass. 

(3 ) Impurity and phonon scattering. Due to scat- 
tering by impurities and phonons f(r, u, t) will 
change. In the BGK [ 71 or strong collision model an 
exciton with initial velocity v is assumed to be scat- 
tered to an arbitrary final velocity v’ with a proba- 
bility proportional to the thermal velocity distribu- 
tion. The temperature of this distribution is the 
temperature of the phonons which equals the crystal 
temperature. 

Combining the last two effects we find the time 
evolution 

+&n(d j dv’f( r, v’, I))-fk v, o] > (2) 

where f, is the thermal (Maxwell) velocity 
distribution, 

fm(v)= (~T)d’2exp(-mv2i2kT) , (3) 

to consider only one dimension, the dimension along 
which the grating is created. In eq. (2) ,J is the ex- 
citon-phonon scattering rate. This model is quite 
close to a model studied by Knoester and Mukamel 
[6]. The collision term in eq. (2) is such that the 
total number of excitons is conserved. that is 

$ dvf(r,v,t)=O. I (4) 

(4) At high densities collisions between excitons 
become important. We assume that these collisions 
conserve total momentum but not energy. Further- 
more we assume that f is close to equilibrium and 
that deviations are relatively small, so that the ex- 
citon-exciton collision rate does not depend on the 
density of excitons at a certain position. These as- 
sumptions greatly simplify the calculation while we 
still retain the most interesting physics; the sound-like 
waves. A collision term that conserves both the ex- 
citon number and exciton momentum is the BGK 
like term 

where ,u is the collision rate. It is proportional to the 
exciton density. Momentum conservation of this 
collision term can easily be shown by studying an 
equation similar to eq. (4). 

3. Solution of the BGK-like model 

We now perform a Fourier transform with respect 
to the positions, and a Fourier (Laplace) transform- 
ing with respect to the time variable 

&k, 0) 
m 

= 
I I 

dr dtexp[-i(kr+wt)]A(r, t) , (6) 

0 

to arrive at the kinetic equation in d dimensions. Here, as in the remainder, we need 
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(iw-ivk+l+p)T(k, Y, w) 

= (~+~)fm(a) s du’ T(k, v’, w) 

+,uufm(v) I dv’ $$vy(k, v’, w) 

+f(k, rJ, l=(I), (71 

where as in the remainder, v is the component of v 
along k, as this is the only relevant component. We 
assume the initial condition for f( k, v, t=O) = 
exp( ikr)fm( v). The solution to eq. (7) is the BGK 
form 

(8) 

where A and B are determined by the initial condi- 
tion, and can be found by a simple calculation. We 
obtain 

n(k,m)E dvf(k,u,w) 
s 

to(l-Ptd+Pt: 
=[l-(n+~u)r,l(l-~t;,)-(n-c~)~r:’ (9) 

with 

(10) 

In terms of the plasma dispersion function 

Z(z)= 
1 a, 

J=I 

dtexp(-t2) 
x t-z * 

-m 
(11) 

We have 

(12) 

5 =i + w-iV+P) 5. 

’ k k ’ (13) 

t =w-iU+c1) 
2 k r* . (14) 

Standard representations exist for the plasma dis- 
persion function [ 81, which can be evaluated using 
numerical techniques. Eq. (9) has to be numerically 

Fourier transformed in order to find the time-do- 
main response. 

4. Approximate solution 

Following Kamgar Parsi and Cohen [ 71 we now 
obtain an approximate analytical solution which is 
complimentary to the exact solution presented ear- 
lier and provides a good insight on the occurrence of 
the exciton-sound waves. For high wavevector k the 
exciton density decays rapidly and hence the motion 
is coherent so that 

n(k, t) =exp[ - (kBT/2m)k2t2] . (15) 

We would like to derive an (approximate) solution 
which will hold for small wavevectors. This can con- 
veniently be found by making a polynomial as- 
sumption forf(k, v, t), that is we assume that at all 
times 

(16) 

We are most interested in the exciton density c,(t) 
= n (k, t )_ Under this polynomial assumption the 
time evolution equation transposes to 

(17) 

with the time evolution matrix 
c 

0 0 

L 

0 l+P 
, 

(18) 

For the time dependence of the exciton density we 
find 

n(k,t)= i a,exp(-ylt), 
i= I 

(19) 
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where yi are the eigenvalues of L, and the aj are de- 
termined by the initial conditions. If the eigenvalues 
of L have imaginary parts, oscillatory behavior of 
n( k, t) may be present. 

5. Application to transient grating 

In a classic experiment Rose, Righini and Fayer 
(RRF) [ 91 measured the exciton diffusion coeffi- 
cient of anthracene in a transient grating experiment 
[IO]. In the transient grating setup we first apply a 
pair of time-coincident resonant strong pulses with 
wavevectors k,, k2 that sets up an exciton grating with 
wavevector kc = k, - k2. Some time later, a weak off 
resonant probe pulse with wavevector k3 is applied 
that is diffracted by the remnant of the grating of the 
first pulse to produce a signal with wavevector 
k,= k3 + kc. The intensity of the diffracted signal is 
proportional to S(t) = 1 n ( kG, t) 1’. With respect to 
the issue raised here, it is important to note that RRF 
observed a diffusive behavior. We assume that the 
first pulse generates a certain exciton density (pop- 
ulation) n(r). The main assumption is that after the 
creation of the grating coherences between different 
excited molecules are not important. Then we can 
use the theory of the previous sections. 

In fig. 1 we compare the exact solution to the ap- 
proximate solution as well as the free flight result, 
eq. ( 15 )_ We found that for kc p the 3 x 3 matrix of 
section 4 gives a fair approximation and that for k> ,Y 
eq. ( 15) gives a fair approximation to the exact 
solution. 

In fig. 2 the eigenvalues are plotted for different 
values of the parameters. For k=O we always have 
three real modes and the grating appears diffusive 
(fig. 3a) The diffusion coefficient is 

D= k,T/mA . (7-O) 

For appropriate parameters we find oscillations in 
n (k, t ) and hence in the grating (fig. 3b and also fig. 
la). These parameters are in a region where the ap- 
proach of section 4 gives a good approximation of 
the dynamics. For large k the free flight dominates 
and eq. ( 15) is accurate (fig. 1 a). An interesting 
question is obviously: when does the signal show 
macroscopic coherent oscillations. For this we refer 
to fig. 4 where in a contour plot the minimum of n (k, 
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Fig. 1. (a) The Fourier transform of the exciton density as a func- 
tion of time for the parameters given. The transient grating signal 
is proportional to 1 n (k, t) I*. Solid line: the exact solution of set- 
tion 3, dashed line: the approximate solution of section 4. The 
most notable feature is the oscillatory behavior which provides a 
sensitive probe for the exciton velocity. In this figure the time 
scale was expressed in unit of (r~/k,T)“~/k (m effective mass, 
T temperature, kB is the Boltzmann constant, and k is the wav- 
evector of the grating). Physically reasonable values for the pa- 
rameters are given in section 6, I= 1 corresponds to 100 ps. (b) 
Here the approximate solution is no longer a good approxima- 
tion as the wavevector is too large. The high wavevector result 
eq. ( 15 ) (dot-dashed line) gives a quite reasonable approxima- 
tion. 

t) is given. Obviously for an oscillation to take place 
the minimum has to be negative (although the signal 
is proportional to 1 n (k, t) 1’). 

6. Discussion 

The smallest achievable optical grating spacing is 
half the optical wavelength, hence of the order of 1 
urn. According to Knoester and Mukamel [3] the 
exciton-like polaritons in naphtalene have a group 
velocity of 2~ lo3 m/s. We use this value for the ex- 
citon velocity u= (kgT/m)‘/‘, The exciton diffusion 
coefftcient of anthracene has been measured by RRF 
tobe1_+0.2~10-~m~/s(atl.gK) [9].Combining 
these two numbers we find that the exciton-phonon 
scattering rate v2/D for these molecular crystals is 
about 4 x lo9 s-l. According to the findings of sec- 
tion 5 the grating recurrence may appear if the ex- 
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Fig. 2. (a) The eigenvalues of the matrix L in units of p. The solid 
lines are the real parts and the dashed line is the imaginary part 
of the eigenfunctions, only the negative branch is plotted. 
Only when the imaginary part is nonzero can oscillations be 
expected. In this figure the wavevector is expressed in units of 
p(kJ/m)“‘. (b) shows that the branching features of (a) are 
not universal. 

/A = 5, A = 0.2 (b) 

3 6 9 12 15 
t 

Fig. 3.(a) The time evolution at high interaction rates of the de- 
viation from equilibrium of the exciton density. Here k= I and 
time is expressed in units (m/kB~)‘/2/k. Solid line: exact solu- 
tion. Dashed line: a single exponential, rt (k, 1) =exp( -Dkrt) 
where we used eq. (20) for the diffusion coefficient, for these 
parameters D=O.2. (b) For small exciton-phonon coupling we 
find many oscillations before the grating disappears altogether. 

Fig. 4. Contour plot showing the minimum of n(k, f ) as a func- 
tion of the exciton-phonon coupling 1 and the exciton-exciton 
scattering rate p in units (kJ/m)% For an average exciton 
velocit); v= (kJ'/m)'/* this figure suggests that the grating re- 
currence can be observed whenever 1< uk and pr vk. 

citon-phonon interaction rate A< vk% 10” SK’. A 
reasonable estimate for the exciton-exciton scatter- 
ing rate is ,u = nva, where n is the exciton density and 
a is the scattering cross section. This cross section 
will be of the order of the surface of a molecule, as 
an order of magnitude estimate we take a= 0.1 nm2. 
The criterion p> vk then becomes n> 5 x 10 I9 cm-‘. 
This is achievable. A possible complication is that at 
these densities exciton-exciton annihilation [ 113 
may become important in three-dimensional mate- 
rials, and seems to rule out exciton-sound waves in 
two-dimensional structures [ 12 1. In conclusion: ob- 
serving coherent oscillations in the grating signal is 
in principle feasible. 

The most uncertain quantity in all these estimates 
is the exciton thermal velocity. We are not aware of 
direct measurements of this quantity. However, ac- 
cording to Ikehara and Itoh [ 13 ] the momentum re- 
laxation rate for transverse excitons in CuCl is of the 
order of lo9 s-l, and these excitons propagate over 
a distance of more that 20 urn. This supports the 
conclusion that recurrence of the grating can be re- 
alized in organic or semiconductor exciton systems. 

An intriguing question is whether the transient 
grating provides a clean signature of a possible ex- 
citon Bose condensation, which is believed to exist 
under appropriate circumstances [ 4,5 1. The for- 
malism set up in this article is well suited for a phe- 
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nomenological treatment of this problem. In the the- 
ory of liquid helium neutron scattering it is found 
that second sound [ 141 - a clear signature of Bose 
condensation - contributes very little as there is a 
prefactor of (c,/cv- 1) multiplying its contribution, 
which is very close to zero. We do not have infor- 
mation about the ratio of specific heats c,/c, for a 
Bose-condensed exciton fluid, however for an ideal 
Bose gas cp=cv, so observing second sound may be 
very difftcult. However exciton-phonon couplings 
may make second sound visible again. Further re- 
search is needed on this interesting point. 
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