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We calculate the time resolved fluorescence from a topologically disordered two-dimensional 
molecular aggregate smaller than an optical wavelength. The photon emission rate is expressed 
in terms of a configurationally averaged particle-hole Green’s function, calculated using the 
ladder diagram approximation. The exciton coherence size at a given energy is shown to be equal 
to the average oscillator strength per. state, provided the superradiance decay rate is much 
smaller than the absorption linewidth. The variation of the coherence size with molecular 
density and with exciton energy across the band is explored. 

I. INTRODUCTION 

The radiative dynamics of molecular aggregates and 
superlattices is an area of intensive current interest.id9 The 
time resolved fluorescence of molecular aggregates may 
show effects of cooperative spontaneous emission. We de- 
note the fluorescence radiative decay rate of the aggregate 
by Nesy, y being the radiative decay rate of a single mol- 
ecule and Nefi is the coherence size. The concept of a co- 
herence size was first advanced by Mobius and Kuhn3 in 
analyzing the dependence of fluorescence quenching on the 
acceptor surface density for a system consisting of an ac- 
ceptor monolayer on top of a J-aggregate monolayer. For 
an ordered aggregate in which the molecules occupy a reg- 
ular lattice (without disorder or dephasing) and whose 
size is much smaller than the optical wavelength, NeE in- 
creases linearly with N (the number of molecules in the 
aggregate). ‘7’ For inthrite size aggregates (larger than the 
optical wavelength of excitation A), Nes is equal to (A/u)~, 
a being the lattice constant and d is the dimensionality for 
d=l (Refs. 10,ll) and d=2.“,13 Grad et aLi0 have calcu- 
lated the coherence size for the radiative decay rate using 
the Haken-Strobl model14 for homogeneous dephasing. It 
was shown that the cooperativity is quenched by dephasing 
and that the coherence size varies from (A/Lz)~ for an in- 
finite aggregate with no dephasing, to unity for large 
dephasing. Spano and Mukamel’ have calculated the effect 
of static inhomogeneous broadening on the radiative life- 
time of rigid aggregates using a reduced equation of motion 
for the density matrix. They showed how the coherence 
size decreases with inhomogeneous broadening. The effect 
of exciton-phonon coupling on the coherence size was 
studied as well; as the aggregate size is increased, the co- 
herence size was shown to approach a limiting value, de- 
termined by the exciton-phonon coupling strength.’ These 
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studies suggest that disorder and dephasing destroy the 
cooperativity among molecules and reduce the coherence 
size. 

Recent experiments involving mixed monolayers of cy- 
anine dyes (J-aggregates)8’9 have pointed out the need for 
a quantitative understanding of the role of topological dis- 
order on the radiative coherence size. In this paper we 
calculate the time resolved fluorescence of this system for 
the case where no relaxation occurs between the various 
exciton states in the J-aggregate band. The radiative decay 
will be treated using an effective Hamiltonian (the super- 
radiance master equations).‘oP’5*‘6 We then use Green’s 
function techniques to incorporate the disorder.17 The 
present approach generalizes the previous treatments in 
which the calculated coherence size was averaged over all 
single exciton energies and did not carry any information 
regarding its dependence on exciton energy. Here on the 
other hand, we calculate explicitly its dependence on exci- 
ton energy. The aggregate size is assumed to be much 
smaller than the optical wavelength of excitation but larger 
than the maximum coherence size. We show that the co- 
herence size at a given exciton energy is equal to the aver- 
age oscillator strength per state at that energyI only when 
the super-radiance decay rate is much smaller than the 
inhomogeneous broadening. We calculate the energy de- 
pendent coherence size, explore its variation with the den- 
sity of molecules, and show how the maximum coherence 
size is diminished by topological disorder. For 
J-aggregates, in which the nearest-neighbor interaction is 
negative, the maximum coherence size N, is found to be at 
the band edge. We further find that N, increases with den- 
sity. 

II. GREEN’S FUNCTION EXPRESSION FOR 
FLUORESCENCE FROM A MOLECULAR ASSEMBLY 

Consider a lattice where a fraction c=N/M of the 
lattice-sites-are occupied by molecules, N being the number 
of molecules and M the number of sites. The molecules are 
assumed to have two electronic levels with a ground state 
[g) and an excited state 15) separated by the energy gap 
fin. The two states have no permanent electric dipole, and 
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Hint denotes the exciton-field interaction. Adopting the 
interaction picture with respect to the radiation field 
Hamiltonian, the electric field operator is given by 

the transition between them is electric dipole allowed. The 
molecules are coupled by dipoltiipole interactions and 
their transition dipole moments p are aligned in the same 
direction. In one experimental realization of such a sys- 
tem,8 the occupied sites contain dye molecules with an 
energy gap in the visible spectral region, while the “unoc- 
cupied” sites are filled with similarly shaped spacer mole- 
cules having a significantly larger energy gap. 

Our calculation of the fluorescence line shape starts 
with the following Hamiltonian: 

E(r,t)=El(t)ei(Ki’~-~lf)+E2e~(~Z’~-~2~)+c.c., (7) 

where C.C. denote complex conjugate, El and E2 denote the 
incident and the scattered modes, respectively, 

H=H&+Hint 3 (1) 

H,, is the effective Hamiltonian of the exciton system 
which includes radiative decay and can be derived using 
projection operator techniques.‘9-21 For a given configura- 
tion of molecules it reads’,” 

6 52 
lKl/ =-, lKz/ =-, 

CO CO 

and co is the speed of light. E,(t) is a classical function of 
time, and E2 is a quantum operator 

H,ff=H,,-if, 

where 

(2) 

H,,= c e,B$B,+ c ‘J(r-r’)B:Br,, (3) 
r r,r’ 

is the material Hamiltonian of the exciton system, I%&, 
denotes summation of r and r’ over all lattice sites exclud- 
ing r=r’. B,“ and B, are the creation and annihilation 
operators of exciton at site r 

E2 = c2a2Z2, (84 

Ez=c*a+e^ 2 2 29 (8b) 

where a;, a2 are creation and annihilation operators of the 
scattered photon mode (K~,o~), which satisfy the Bose 
commutation relation [a2 ,&I = 1. g21 ~~ is the polariza- 
tion direction of the scattered mode, and 

c,=-~(2&92/V)1’2, (9) 

with V being the quantization volume. Hereafter we take 
fi= 1. 

BzlO)= Id, (4) 

where IO) denotes the ground state (i.e., all sites are in 
their ground state), and 1 r) denotes the state in which only 
site r is excited and all other sites are in their ground state. 
H,, conserves the number of excitons, which is the conse- 
quence of the Heitler-London approximation.22 er is the 
excitation energy of site r which is equal to %a when site r 
is occupied and is equal to E, when site r is not occupied by 
molecules. Therefore E, is a random variable with a binary 
probability distribution,17 

The exciton-field interaction is given by 

Hint=--C (B,+Bz){[El(t) *p]ei(K1.r-‘l’) 
r 

+c2(Z2 .y)az ei(K2’r-G2f)+ [ET(t) *cl] 

xe--i(Ki’r-~lf)+~~(~22.~)a2 e + --i(q.r-z~f) 3. (10) 

The time dependent emission rate of (K~, wZ) photons 
is formally given by23 

P(E,)=cs(~~-~~>+(l-c)8(E,--EI). (5) 

By taking the Ed+ CO limit, we make the unoccupied sites 
inaccessible, and the Hamiltonian H,, then represents our 
exciton system with topological disorder,17 

xi< IHint 9 4Ta21 ) 

I?= 2 lY(r-r’) B,?B,,, 
r,r’ 

(6) 

= --i TrCai?a2 [Hint,p(t> 13. (11) 

Here p(t) is the density operator of the system (material 
and the scattered field mode), which satisfied the Liouville 
equation 

is the effective radiative damping operator. We have ne- 
glected the coupling between single exciton and two exci- 
ton states because we are only interested in the single ex- 
citon subspace. The r dependence of J( r) and I? (r ) will be 
specified later. 

$ p(t) = --i[Hp(t) --pWlltl. 

The total photon emission rate is 
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2 S(Kt ,K2A --) 
V 

b (2qJ 
(13) 

=- c e-h’rf g G,,,,(w)E(w)e’“l’r’-‘O’. 
r,r’ 

(20) 
where Q denotes the solid angle. The ?5, integration should 
be cut off 24 at o Bw2q,/aB (aB is the Bohr radius) be- 
yond which the dipole approximation breaks down. We are 
interested in the photon emission rate to the unit solid 
angle in direction &, (dn/dQ) (Kl,&,t), 

dn V OB 

ZF (2q)5 I 
d6j2i.@(K1,K2,t). (14) 0 

III. LADDER DIAGRAM APPROXIIWATION FOR THE 
GREEN FUNCTION IN TWO DIMENSIONS 

In the previous section, we expressed the fluorescence 
of a molecular assembly in terms of p-h Green functions 
[see Eq. ( 15)]. For a two-dimensional monolayer, we have 

In Appendix A we derive the following Green’s function 
expression for this rate 

dn cl3 
z=Jfm (+~)~(~zvd~ do, 

s I 
do2 

x dw2tp(pl,r2,r3,r4;w1tw2) I 
Xe9.~z4e-~~2.r13~(Wl)~(W2)e-i~~2f, 

(15) 

where rij=ri-rj, ~i2-- -al-w2, K2=(fi/C,&, and E(o) 
is the temporal Fourier transform of incoming pulse E*(t) , 

where k, , k2 are the projections of K~, ~~ in the monolayer 
plane, and #(p,p’,q;ol ,w2) is the p-h Green function in 
momentum space 

(b(P,P’,%%W2) 

=; c Ipc rl ,r2,r3,r4;w1~2) 
'1&7,'3J4 

E(o) = 
s 

m &El ( t)e’(-6)f, 
--co 

(16) 

E,(t) =; s dw&-&‘(+-)‘, 
4 is the configurationally averaged particle-hole (p-h) 
Green’s function 

4(rl,r21r3,r4;~~,~2)~G~,,r2(w~>~3,r4(~2). ‘- (17) 

We use an overbar to denote the average over all configu- 
rations, and G is the single particle Green’s function 

Xexp[--i(p+q/2) .r,+i(p’+q/2) *r2 

+i(p-q/2) *r3-W-q/2) vr.41. (22) 

We have recently developed a procedure for calculat- 
ing the Green’s function for a topologically disordered in- 
finite lattice based on the ladder diagram approximation.” 
We assume that the aggregate size is large compared with 
the effective coherence size for cooperative emission, so 
that boundary effects are negligible, and we can assume 
translational invariance and apply the method of Ref. 17. 
We can check for consistency by comparing the coherence 
size calculated by this method with the aggregate size. 

We define the configurationally averaged single parti- 
cle Green function G(p,o) in momentum space as 

G,,4w)=(rl o--~e,+jo jr’). (18) 

Equation ( 15) can alternatively be recast in the form 

G(p,w) = 2 G(r-r’,w)e-iP’(r-“), (234 
r-r’ 

G(r--r’,o)=w.- (23b) 

In Appendix B we show that the photon emission rate can 
be separated into a coherent component S,, 

;; 2;13 (~~1.1U)2(~22.~)21P(K2,t) 1’9 - -=- (19) 
0 

-SC= dtq 
s s dw,G(k,,wl)~(kl,OZ)E(O,) 

Xi+(fa2)e-io12f 
where P(K2,t) is the optical polarization in k space 

= 
IS 

dwlG(kl,ol)E(ol)e-‘“l’ ‘, (24) 

P(K2,t) = C P(r,t)e-‘̂ 2-’ 
r and an incoherent component S,, 
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X 
G(q) --G*(m,) - [w2~--i~12(wl,w2)]L(q=O;ol,w2) - 

r~21-~~12~~~t~2~l~2~q=~;~,,w2~ 
E(wl)S(w2)e-i”*2f. 

The total signal is 

(26) 

We have further defined 

Uw4,~2) -; c G(p+q/2,wl)G*(p-q/2,w2), 
P 

(27) 

r12(%@2) = 
2Xpr(p)G(p,wl)G*(p,02) 

QXP,~G*(P,~ ’ 
(28) 

Here l?(p) is the spatial Fourier transform of I’( r ) , 

r(p) = 1 r(r)d’r. 
r 

(30) 

A(k) is defined as 

A(k) =-& c erker. 
r 

(31) 

When the lattice size is much smaller than the optical 
wavelength, A ( kl - k2) = 1, and the signal S, is observed in 
all directions. On the other hand, when the lattice size is 
much larger than the optical wavelength, A(kl - k,) is 
nonzero only when k2-kl, and the S, signal is highly 
directional. 

The coherent component S, in Eq. (26) can be ob- 
tained by factorizing the p-h Green function ($ = GG 
= a@. Its contribution to the signal is proportional to M2, 
and it decays in a time scale 7. which is determined by the 
longer of the two times, D-l, the inverse spectral width of 
the Green’s function G(k,,w), or W-‘, the inverse spectral 
width of the excitation pulse (i.e., the pulse duration). The 
contribution of the incoherent component S, to the signal 
is proportional to M. When r12 is much smaller than D 
and W, i.e., the radiative decay rate is much smaller than 
the absorption and excitation pulse linewidth, S’, decays in 
the radiative time scale l?,’ ( ii1 ,Wl ) . Under this condition, 
we can obtain the long time behavior of S, by setting 
w2=01 everywhere except ~~~-iI’~~(w~,w~) in the denom- 
inator. We thus have 

SIE4n-% 
I 

dwA(o)y(w)e-Y(“)‘lE(o) 12, (32) 

where 

(25) 

I 

(33) 

is the average radiative decay rate of eigenstates with en- 
ergy o, and 

x W G(a) +y(m)Uq=O;w,o)/21 
L2(q=O;o,w)y(w) ’ (34) 

Equation (32) represents the coarsed grained solution’ 
which applies as long as the radiative lifetime is much 
longer than D-’ and W-‘, thus the signal approaches its 
long time behavior immediately. This is verified by our 
numerical calculations. 

Equations (26), (24), and (32) express the time re- 
solved fluorescence in terms of the single particle Green 
function. To complete the derivation we need an explicit 
expression for this Green function. This can be derived 
using the coherent potential approximation (CPA).” We 
then have 

G(P,~) = w-i2--8(o) --J(P) +ir(p) +io 3 
1 

(35) 

where J(p) is the spatial Fourier transform of J(r), 

J(p)= 2 J(r)e+“. 
r#fJ 

(36) 

The self-energy Z(w) is determined by the self-consistent 
equation 

;z 1 (c-1) 

I) =m* _ w-n-z(w) --J(P) +ir(p) +io 
(37) 

In summary, the present procedure for calculating the 
fluorescence consists of the following steps: (i) Solve the 
self-consistent Eq. (37) for B(w) . (ii) Substitute into Eqs. 
(35), (29), and (27) to determine G(p,w), G(w), and 
L(q=O; wl, w2). (iii) Substitute into Eqs. (33) and (34) 
to get y(o) and A (w) . (iv) Substitute into Eqs. (24) and 
(32) to get S, and S,. (v) Substitute into Eq. (26) to 
obtain the signal. 

IV. APPLldATlON TO SMALL TWO-DIMENSIONAL 
AGGREGATES 

Up to this point, we have only assumed that the ag- 
gregate size is larger than the coherence size. We now 
further assume that the aggregate is much smaller than the 
optical wavelength of excitation, so that2 
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l?(r-r’) =z, 

r(P) =y sp,o, 
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(384 

A(o) =h>/y, (51) 

Eq. (50) can be rationalized by a simple physical argu- 
ment. Since the radiative decay rate of an eigenstate is 
proportional to its oscillator strength, and the linear ab- 
sorption is equal to the density of states multiplied by the 
oscillator strength, the average radiative decay rate should 
be proportional to the absorption divided by the density of 
states. In the present formulation, both the absorption and 
the density of states are expressed in terms of the single 
particle Green function. However the average emission sig- 
nal related to the average particle-hole Green function 
GG is not generally equal to the signal with the average 
decay rate. Making the factorization approximation z 
= GG, the incoherent signal vanishes. In the ladder dia- 
gram approximation and when the inhomogeneous broad- 
ening is larger than the superradiance decay rate [see Eq. 
(47)], Eq. (50) holds which implies that the decay rate of 
the average signal is equal to the average decay rate. 

where y is the single molecule radiative decay rate 

(39) 

Substituting Eq. (38) into Eq. (33) and using Eq. (35), we 
obtain 

y(w) =y~&-f(~L (40) 

where N&o), defined by this equation, is the effective 
coherence size at a given energy o, 

1 
N,&o)= 

I(@) 
- - 

l+a(w> p(w) * 

Here 

a(w) = - 
Y 

c [G(P,~) I’-, 
2ImGb) pi 

p(w) is the single exciton density of states 

p(o) = --A Im G(o), (43) 

and I(w) is the normalized linear absorption line shape [.l-dwW) = 11, 
I(o) = -$ Im G(p=O,w). (4-J) 

Substituting Eqs. (27) and (40) into Eq. (34) and using 
Eqs. (35) and (37), and setting kl=k2=0, we have 

A(o) = -1m B(w) 1 G(p=O,w) I’/(rcr). (45) 

In deriving this equation, we have used the identity 

Im G(w) =Im B(w)L(q=O;w,w) -:I G(p=O,w) /‘, 

(46) 
which is obtained by substituting Eq. (35) into Eq. (29) 
and taking the imaginary part of both sides. 

When c is not close to 1, and for w within the band, the 
super-radiance decay rate is much smaller than the inho- 
mogeneous broadening 

My/24 IIm Z(m) I, (47) 

and we have from Eq. (35) 

ImG(p,o)= ImZ(w)-~6p,o 
1 1 I G(P,~) I 2 

--Im B(w) 1 G(p,o) 1’. (48) 

Substituting this into Eq. (42)) we have 

a(w) < 1, (49) 

and therefore 

On the other hand, when MY/~> 1 Im B(o) 1, 
a(w) ~1, and N,(w) is much smaller than the average 
oscillator strength. The reason is as follows: The oscillator 
strength is proportional to the size within which the optical 
polarization of the various molecules oscillates in phase. 
This size is equal to v(w)/ImB(w), where v(w) is the 
exciton group velocity and Im Z(w) is the inverse dephas- 
ing time of exciton. When M’y/2> I Im Z(w) I, the exciton 
moves in a region much smaller than v(w)/Im 8(w) dur- 
ing the super-radiance lifetime l/My. Therefore the num- 
ber of molecules which can emit cooperatively, N.&o), is 
much smaller than the average oscillator strength. For ex- 
ample in the regular lattice limit (c+ 1 >, the self-energy 
X(w) +O. When w is close (but not exactly equal) to the 
energy of one of the eigenstates J( p#O) , we have from Eq. 
(42) 

a(w)~~w--J(p=O)+i~~/2~2/~w--J(p)~2~l, 
(52) 

and Eq. (50) breaks down. In fact Eq. (50) gives 
N&w) =M for all w except w=J(p#O) with p in the first 
Brillouin zone. This is clearly unphysical and we should 
use the more general expression Eq. (41) in which the 
correction factor a(o) is taken into account. 

V. NUMERICAL RESULTS 

In the following numerical calculations we modeled 
the aggregate-as a square lattice with unit cell vectors ax^ 
and aj. The transition dipole p is taken to be in the plane 
of the aggregate, 

&- (Z+j?). 
Jz 

We further assume nearest-neighbor interactions, so that 

J(P) = -; [cos(PR) +cos(&Q) 1. (53) 

J. Chem. Phys., Vol. 99, No. 5, 1 September 1993 

Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



Wang, Muenter, and Mukamel: Topologically disordered excitons 

I Here 2B is the bandwidth of a regular lattice (c= 1 ), 

For the present geometry the nearest-neighbor interaction 
is negative (J-aggregate). Condition (47) holds for fre- 
quencies w inside the band, provided c is not too close to 1. 
We therefore neglect I(p) in G( p,o> . From Eq. (37)) we 
have 

PO(E) 

o-E(w) --E+iO =c-1, (55) 

where pO(e) is the density of states of regular lattice (c 
=I), 

PO(E)=; c NE-fin--J(P)l. 
P 

(56) 

We shall approximate pO(e) by a simple Hubbard form 
which retains the correct analytic behavior near the band 
edges, and has no singularity within the band and gives one 
state per site,27 

I w!v Ie-Cll<B 
po(d= 2B 

[ 0 I~-fil>B. 

Substituting this into Eq. (55), we get 

Z(w) o--n--8(0) +B 
-TP o-Cl-Z(w) -B =c-1. (58) 

We have solved Eq. (58) for X(w) numerically by calcu- 
lating the complex root for a given w using Newton’s 
method.** From Eq. (50) we obtain the coherence size as 
a function of energy o. The results are displayed in Fig. 1. 
The figure shows that the coherence size attains its maxi- 
mum value at the bottom of the band, which carries most 
of the oscillator strength. This is characteristic of 
J-aggregates. For a regular lattice (c= 1) with periodic 
boundary conditions, the k=O state which carries all the 
oscillator strength is at the bottom of the band [see Eq. 
(53)]. When c < 1, the oscillator strength is distributed 
among states near the band edge. The figure also shows 
that as the disorder increases (c decreases), the distribu- 
tion of oscillator strength becomes broader, and the max- 
imum coherence size decreases. We display the maximum 
coherence size across the band N, as a function of density 
c in Fig. 2. The figure demonstrates that when the disorder 
increases (c decreases), N, decreases. The disorder thus 
destroys the cooperativity of the aggregate. In the low den- 
sity (~40) limit, N,+ 1, which means that each molecule 
radiates independently. From the figure we also see that as 
C-S 1, N,-+ CO. However the present theory only holds when 

NC<N=cM<c(A/a)2. (59) 
As N increases for a given density c, the maximum coher- 
ence size first increases linearly with N and then converges 
to some asymptotic limiting value N, (Ref. 1) which is 
determined by the density c and is independent of N as 
long as il is much larger than the aggregate size. 

3609 

I I 

(w-@/B 

FIG. 1. Molecular density of states, absorption line shape, and coherence 
size as a function of energy for three different densities. Solid line c=O.4, 
dashed line c=O.6, and dash-dotted line c=O.g. Note that the coherence 
size is only defined within the band. The vertical lines in the lowest panel 
denote the band edge. 

If relaxation among the various exciton states in the 
band is negligible, Nes(w) can be measured experimently 
by applying a pulse whose spectral width W is much nar- 
rower than the inhomogeneous broadening of single exci- 
ton states and is much larger than the radiative decay rate, 
i.e., 

IIm W&) 1% W&y(G). 

From Eqs. (24) and (32) we have in this case 

&--4~lG&,,6) 121E,W 12, (604 

FIG. 2. Maximum coherence size NC as a function of molecular density c 
plotted on a logarithmic scale. 
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s,,8~cA(~,)y(~l)e-~(~l)~ ‘I dt’I&(t’) I’. (6Ob) 
Here ?$ is the peak position of the incoming pulse &w,). 
Since W%y(&), we see from EQ. (60) that S, decays 
much faster than S’, . After a short time delay (which is 
equal to the duration of the incoming pulse), the signal 
then decays exponentially. This allows us to measure the 
energy dependent radiative decay rate y(&) and coher- 
ence size N,,( $> . In practice, neglect of relaxation among 
the exciton states is only likely to be realistic for very low 
temperatures and relatively short times. As relaxation oc- 
curs, emission will tend to be dominantly from lowest 
states in the band and the information on the dependence 
of Neff on ?& may not be readily observable. 

When the incoming pulsejs very short (impulsive ex- 
citation), E,(t) =E,6(t) or E,(w) =El=const, we have 
from Eq. (24), 

SC= IS dolG(kl,wl)eVi”li ’ 1 El ) *. (61) 

Since 

J dolG*(kl,wl)e-‘til’=O t>O, (62) 

we have 

s,=42c* IS dolI(wl) 
I *,El(* t>O. (63) 

Here I(wl) is the absorption line shape defined in Eq. 
(44)) and we have set kl =O. The above equation shows 
that the coherent component S,(t) is simply given by the 
square of the Fourier transform of the absorption line 
shape. S, decays due to inhomogeneous dephasing (free 
induction decay) in a time scale equal to the inverse of the 
absorption linewidth which is much shorter than the radi- 
ative lifetime l/y(Ei,) when c is not too large. S, has a 
multiexponential decay in the impulsive excitation case 
[see Eq. (32)]. S,(t) and S,(t) calculated for impulsive 
excitation are displayed in Figs. 3 and 4. These figures 
demonstrate that S, decays much faster than S’,. 

VI. DISCUSSION 

We have investigated the radiative dynamics of molec- 
ular aggregates with topological disorder. The photon 
emission rate was expressed in terms of a configurationally 
averaged p-h Green’s function [see Eq. (21)], and then 
evaluated it using the ladder diagram approximation. We 
found that following an initial short time decay [S,(t)], the 
signal is characterized by a cooperative radiative decay 
[Sl( t)]. The energy dependent coherence size and the max- 
imum coherence size for different densities were calculated. 
The signal was analyzed using two limiting cases for the 
excitation pulses. (i) The pulse spectral width is much 
smaller than the inhomogeneous broadening but much 
larger than the radiative decay rate. (ii) Infinitely short 
pulse (impulsive) excitation. 

20 40 60 60 100 
Bt 

FIG. 3. The coherent emission S,(S) [normalized to S,(O) ] as a function 
of time t following an impulsive excitation for three different densities. 
Solid line c=O.4, dashed line c=O.6, and dash-dotted line c=O.S. The 
ratio of S,(O) for the three curves is 1 : 2.25 : 4.0. 

Although we have assumed Im X(w) s&Q/2 for w 
within the band in our numerical calculations, this is not a 
fundamental limitation of our theory. When this condition 
does not hold, we should solve the CPA self-consistent Eq. 
(37) instead of Eq. (55), and use Eqs. (41), (45) to cal- 
culate N&o), A(w) instead of using Eqs. (50), (51). 
Moreover, our two-dimensional numerical calculations can 
be easily extended to one- or three-dimensional aggregates 
whose size is much smaller than the optical wavelength. 
Our theory can also be applied to infinite superlattices and 
nanostructures.46’29 Considering an infinite two- 
dimensional lattice, Eqs. (26) and (3 1) show that S, is 
highly directional and can be observed only in the direction 
k, f: kl, while S, can be observed in all directions. Equation 
(38) does not hold. r(r) is given by2,24 

IO 
Bt/103 

FIG. 4. The incoherent emission S, as a function of time t following an 
impulsive excitation for three different densities. Solid line c=O.4, dashed 
line c=O.6, and dash-dotted line c=O.S. 
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l?(r)=zy (1-cos’8) 
1 

sin(kr) 
kr+ (l-3 cos2 e> 

cos(kr) sin(kr) 
x (kr)” - (I& II * (64) 

Here k=n/cs, 8 is the angle between p and r. The energy 
dependent decay rate y(w) should be calculated from Eq. 
(33) rather than Eq. (40). 

For a regular inflnite lattice (c= 1 >, S,=O and the 
signal shows up only in the direction k2 = k, . For impulsive 
excitation, the signal decays as 
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determined by the first three interactions. In the first three 
interactions, the system can interact with either the exter- 
nal field El or the scattered field E2, while the fourth in- 
teraction must be E2, otherwise the trace is zero. This 
results in 64 terms. In the rotating wave approximation, 
the number of resonant terms is greatly reduced. For ex- 
ample, the first interaction must be with El to create an 
exciton. Terms such as B~a~eiG~‘, B+ET(t)eiGlf which 
represent the creation of an exciton andkmission of a pho- 
ton are antiresonant and are thus omitted. We find that 
only six terms survive. The contribution of three of them 
are the complex conjugate of the others. So in practice we 
need to consider only three pathways (see Fig. 8 of Ref. 
23). We then get23*35 

e--2Nq)t , 

which agrees with the result of Jenkins and Mukamel.5 
Choosing kl=O, we have5”30 

3T x2 
F(kl=O)=TY a , 

0 
(65) 

where /2=cc/Q. The extension of these results to one- 
dimensional infinite lattices is straightforward. A three- 
dimensional infinite lattice is radiatively stable.30931 Allow- 
ing for retarded interactions in such crystals leads to 
polariton waves, which have no radiative damping.29-32 In 
order to retain polariton effects,29*33934 Eq. (64) needs to be 
modified to account for the retarded (i.e., nonlocal in 
time) nature of the interaction by incorporating its fre- 
quency dependence. 
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APPENDIX A 

In this Appendix we derive Eq. ( 15) by extending the 
approach of Ref. 23. Starting from Eq. ( 11) and expanding 
p(t) to the third order of Hint, we have 

xww) = Jaw dtl Jo* dtz Jo- dt3 

XLi,*(t-t,-t2-tt,)p(--)l. (Al) 

Here p( - CO ) = 100) (00 1 with 100) denotes the vacuum 
state (no exciton and scattered photon). The action of 
Liouville space operators Lint(t) and 3 (t) on any given 
operator A is defined by 

(-42) 

From Eq. (Al) we see that the system interacts with Hi,, 
four times. In the first three interactions, Hint can act either 
from the left or from the right. Whether Hi, acts from the 
left or from the right in the fourth interaction is uniquely 

I= r,,z,,, 1 dtl Jam dt2 Jom dt3 e-ioG-i’~t3 

XeiK1’r34eiKZ’r12@(t-tl-t2-t3)El(t-t2-t3) 

X(r2W iHefft21r3)(r4~ei~~(fi+t2+t3)Irl), Wa) 

II= c r’l ,r2,r3,r4 Jam dtl Jam dt2 Jam dt3 e-iGltleiE~t3 
Xe iKl’r34eiKZ’r21q(t-tl-t2-t3)El(t-t2-t3) 

X (rl ~e~i~eff(t2+t3)~r3)(~4~e~(fl+tZ) lr2), (A4bj 

III= c r’l ,r2,r3 ,r4 Jo’= dtl Jom dtz Jam dwiolfl 

~e-i(~~-4)~2~~~2~3ej~i’r24~iKz.r31~(t_t~-t~-t~) 

XEl(t-t3)(rlIe-i~~t31r2)(r4~ei~~tlIrj). (A4c) 

Here rij=ri-rj, and I, II, III corresponds to the three 
pathways shown in Fig. 8 of Ref. 23. 

Substituting Eq. (A3) into Eq. (14) and setting #ii= 1, 
we have 

dn 1 

WB 
X J dG2~;(I+II+III) +c.c. (A51 

0 

Since I, II, and III are resonant at ?j,=& we can replace 
the i3: factor by a3 and take it out of the integration, then 
setting K~=O/C~ and extend the range of Zi2 integration to 
S ? m . The Z2 integration in III gives S ( t2 + t3> which gives 
zero when the t2 and t3 integrations are performed. The i3, 
integration in I and II both give S( t3). Interchanging r, , r2 
in II, we see that the contribution to dn/dfl from II is the 
same as I. We finally have 
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dn f2’ 
z=jy-&T w1u)2(4*p)2*2~ 

0 

Substituting Eq. ( 16) into Eq. (A6) and using the identi- 
ties 

-Z&t- 1 -iI+ 
m e 

X 
s 

dt2e-i61tleiK1 . f,4eiSXz. r,,/c, -32 s 
dEi e Ei-H,,+iO ’ 

0 (A7) 

XET(t--tl--t2)E,(t--t2)(r21e-‘~etft21r3) p&t=’ dE’ 
25-i s 

eiE;f 
’ Ei-H&-i0 ’ 

X (r4j e’He+Rctlff2) Irl) +c.c. C-46) we have 

dn Cl3 
==32?rs$ (4 *p)=(~2-N2 r,,z3,r4 c dtl Jam dtz s dE; s dE; s dcq s dw2 eiK1’r34eio’2’r12/co 

- - 
XGr2,r,(Ei)~~,r4(E~)E(~l)~(~2)e i(E;--2)tlei(E;1+012)t2e-io,2t+,, 

iCl3 
=jg&l(e^1 *p)2G2*p)2 

0 
.,,z,,, I dEi s do, s dw2eiKlmr34 ei”2”12/Co 

kQ+e2> 
XG,,,,,(~~-W~~)~~,,(E~) E,--w +io eyi012’+c.c. 

2 2 

Here Wij=Wi--Wj, Eij = E; - E:, and the single particle 
Green’s function G is defined in Eq. ( 18). In deriving the 
last equality of the above equation, we have used the fact 
that Gr2,r3((z) is an analytic function of z which has no 
poles in the upper half complex plane, therefore 

s 1 
dEiGr2,,,(Ei) E;-Ei+wl-tiz+iO- - - 

= -2n-iGr2,r,(E~-021). 

Now we use the identity 

(A9) 

1 1 
=PP ~-im!3(E~--02), Ei---02+i0 EG--w2 (AlO) 

where PP denotes the principle part. Substituting Eq. 
(AlO) into Eq. (A8), we see that the contribution of the 
principal part is imaginary and is canceled when the com- 
plex conjugate is added. Substituting the second term in 
the right-hand side of Eq. (AlO) into Eq. (A8) and setting 
rl-fr3, r2+r1, r3+r2, we obtain Eq. (15). 

APPENDIX B 

In this appendix we derive Eq. (26) by using the lad- 
der diagram approximation. We start with the Bethe- 
Salpeter equation with the ladder diagram approxima- 
'tionll,25,26 

xA(P-P’) +; ; G(p+q/2,wl) 
P 

(A8) 

Xrp(PN,P’,wJl,~2). (Bl) 

Here G(p,o) and A(p) are defined in Eqs. (23) and (31). 
In Eq. (Bl), U(wi,w,) is given by the sum over all the 
single site diagrams (diagrams without crossing) .26 Iterat- 
ing Eq. (Bl), we have 

=MG(p+q/2,oJG*(p-q/2,wdA(p-p’l 

+G(p+q/2,ol)G*(p-q/2,w2) 

XG(p’+q/2,wl)G*k(p’-q/2,w;) 

X 
w%,wz) 

1--L(w%4w%@,) ’ 
032) 

where L(q;wl,02) is defined is Eq. (27). To determine U, 
we used the following Ward identity: 

1 
q--Heff+iO- u2-Ileff+iO ( 

1 + 

1 
=a1 -Wff+iO (m21-2iI=) 033) 

By taking trace and configurational averaging over both 
sides of the above equation, we have 

c. [G(~,~d--G*(p,o2~1=; c 4(p,p’,o;wl,w2) 
P P.P’ 

X I%-2ir(p’) I, (B4) 
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with summation over the first Brillouin zone. Here 

lP)=$e”*‘jr), 

is a complete basis set. Substituting Eq. (B2) into Eq. 
(B4), we have 

1 U(q ,q?) = w21-ir12h,w2) 

L(q=O;o,,w&- G(wl>-G*(w2) ’ 
u36) 

where l?12(01,02) and G(w) are defined in Eqs. (28) and 
(29). Substituting &. (B6) into Eq. (B2) and setting 
p=k,, p’=kl, and q=O, and then substituting into Eq. 
(21), we obtain Eq. (26). 
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