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Temperature dependence and non-Condon effects in
pump-probe spectroscopy in the condensed phase
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We analyze the effects of the coordinate dependence of the transition dipole (non-Condon dipole moment) on
impulsive pump-probe spectroscopy at finite temperatures, using expressions for the response functions
derived by the path-integral approach. We calculate the difference probe absorption spectrum and show that
the non-Condon dipole shifts the absorption to the blue and that the shift increases with temperature.

The multimode Brownian oscillator model1 2 provides a
convenient means for incorporating nuclear degrees of
freedom in optical response functions.3 9 We recently
used a path-integral approach'0 to develop exact closed ex-
pressions for the nuclear wave packets in phase space and
for the nonlinear response functions for this model."

In this paper we apply these results to pump-probe
spectroscopy. We consider an electronic two-level system,
denoted by g (the ground state) and e (the excited state),
and frequency Wego. The optically active vibration of
polyatomic molecules in the condensed phase can often be
described with a Brownian oscillator model in which the
ground state and the excited state are represented by dis-
placed harmonic oscillators. We denote the nuclear mass,
the coordinate, the harmonic frequency, and the dimen-
sionless displacement of the oscillators by M, q, wo, and D,
respectively. We would like to include relaxation of the
optically active mode. This is commonly taken into ac-
count by using the Langevin equation. However, the
quantum coherence between the heat bath and the vibra-
tional system plays an important role at low temperatures.
This effect cannot be taken into account with the classical
Langevin equation, and therefore we explicitly introduce a
model for a heat bath. The heat-bath system may repre-
sent optically inactive vibrational modes, phonons, solvent
modes, etc. We assume that the optically active vibration
is linearly coupled to a heat bath, with the coordinates, the
momentum, the mass, and the frequency of the nth bath
oscillator given by Xn, Pn, mn, and CWn, respectively. The
total Hamiltonian is then expressed as""2

H g)Hg(p,q)(g + e)He(pq)(el
[p2 mw 22 ( ___ 2+ EPn+ n 211

27m 2 \ Mn~Wn

where

2 1

2 1
He(p, q) - + _M&wO2(q + D)2 + lW eg.

2M 2

The two states are connected by the optical-dipole inter-
action

H E(t)V E(t)[1g)1(q)(e1 + e),(q)(q1], (3)

where E(t) is the laser field and g(q) is the dipole matrix
element between the two states that depends on the nu-
clear coordinate. We assume that the transition dipole
has the form

(q) = LO exp(cq), (4)

where c is the coupling constant. Typically in molecular
systems c is small (cqL << 1, where qL is the size of the
nuclear wave packet), so that pA(q) -/o(l + cq).

The optical polarization for a third-order optical process
is obtained by expanding the density matrix elements in
HI and is expressd as

P (3(t) = if dt 3 f dt2 f dtE(t - t3 )E(t - t- t3 )

X E(t - tl- t2- t3)tr[Vexp(- i t3HX)VX

X exp(- 4 t2Hx)Vxexp(- ti tlHx)Vxpg].

(5)

Here, p is the ground equilibrium state of the total sys-
tem, and we use the superoperator notation defined by

(1) AXB AB - BA, AXBxC A(BC -CB) - (BC-
CB)A, and so forth, where A, B, and C are ordinary opera-
tors. Since each VX can act either from the left or from
the right, and since P(3)(t) contains VX factors, Eq. (5)
naturally separates into 2 terms denoted by Liouville-
space paths.2 In practice we need to evaluate only half of
these terms, since they always come in Hermitian conju-
gate pairs, and, for the third-order polarization, we need

(2) four Liouville-space paths, denoted by a = 1 - 4 (see
Fig. 1).
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Fig. 1. Liouville-space paths for the third-order response func-
tions. Solid lines denote the dipole interaction V. A horizontal
(vertical) line represents an action of V from the left (right) to the
density-matrix elements. Starting with gg in the upper left-
hand corner, there are eight pathways that lead to the optical co-
herence eg or ge in the third order. Only half of these pathways
[ending in gg, (1)-(4)] are shown. The contributions of the other
pathways is the complex conjugate of those shown.

All dynamical characteristics of the system can be ex-
pressed in terms of the phase function defined by

rt rt'
g+ (t) 2 dt' dt"(qqt)),

rt It

g_(t)-=e2J fodt' dt"(q(t")q), (6)

where (qq(t)) and (q(t)q) are the position correlation func-
tions and

e=MDwo 2/h. (7)

To express the results in a compact form, we assign three
sign parameters, el, 62, and 63 (see Table 1) to each of the
Liouville-space paths. With this notation the optical po-
larization for a third-order optical process is given by"

P131(t) = i dt3J dt2 f dtE(t - t)E(t - t2- t3)

X E(t - t - t2- t) 1 2o4Rf 2+(t,t2 lt;c)
l,E2-±

+ c.c. (8)

Here the response function is given by

R E[tt2 23,(t( t2, tl]; C)

= exP1Q61f2E,(t3, t2, tl) + XQU3(3, t2, tl; c)], (9)

where

Q6f2C 3(t3, t2 ,pt) = i&eg(Eltl + 6 2 t3 ) - g-.(t) - 9

- 6163[gf6 2 (t2) - g 6 2(t2 + t3)

- g-6 (tl + t2) + g-E(tl + t2 + 10,
(10)

with

XClf2f3(t3) t2) tl; )

= c[(QW({t}))6lV26 3 + ( 2 ({t})) l
6 2 e 3 + ( 3({t}))6ie2 e3

+ ( 4({t}))f1123] + C26-2[g_.,(tl) + #-ei(tl + t2)

+ gelE2 (t2 ) + g-e(tl + t 2 + t 3) + g 1,E2 (t2 + t3)

+ geW3(t3) + 2g(0)],

W eg =- eg + A, A MD2 wo2/(2i),

(ql({Q})) el1-= -it'[e3gl6 (t1) - e3g. .. (tI + t2)
+ e3g...-1(tl + t2 + t3 )],

(q2({tD))eleV3 = is'[eg e(t,) + e3g.1.2(t2 + t3)
- 39.q.e (t2)] X

(q3({tJ))IIM13 = -if [elg.1-(tl + t2) - E9e242)

+ eMe3(t3 )]

(q4WID}))l2e3 = -i'i[e, 61-(tl + t2 + t3) -elgM%

+ E3 6g2 3 (t3)] -

(11)

(12)

+ t3 )

(13)

Equation (10) is identical to the phase of the response
function with the Condon approximation, which may be
derived by use of the cumulant expansion'; however, the
present notation is more convenient for numerical studies.

The probe absorption spectrum, obtained by dispersion
of the transmitted probe through a monochromator, is
given by' 3

S((2 - 0 2) = -2 Im E2(W2 - f) 2)P(3 )(W2 - p2), (14)

where

E2(c2 - Q2) = (2 f dt exp[i(w2 - fl)t]E2(t),

p(3) (O - (2) = (1/2 f dt exp[i(w2 - Q2)t]p(3)(t),

and fl2 is the central frequency of the probe.
impulsive pump and probe fields, i.e.,

(15)

(16)

We assume

El(t) = 015(t + T), E2(t) = 02 8(t),

where 6, and 02 are the pump and the probe areas.
the impulsive pump case, we have

(17)

For

S(w2 - Q2; T) = See((W2 - (12; ) + Sg (02 - 2; r) . (18)

Table 1. Auxiliary Parameters for Eqs. (9)-(13)

Liouville Space Path a 6 e2 63

1 + + +
2 - + +
3 -- +
4 + - +
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Here See represents the contribution from the Liouville
paths a = 1 and a = 2, which pass through the excited
state (ee) during the t2 time interval, whereas Sgg repre-
sents the contributions of the other paths a = 3 and a =

4, which pass through the ground state (pgg) during that
interval:

See(W 2 - 2; T) = 2 Re f dt3 exp[i( 2 - 2 )td]

X [R++(t 3,-,0) + R3++(t 3,T,0)], (19)

Sgg(W2 - l2; T) = 2 Re fdt3 exp[i(o)2 - f 2)t3 ]

X [R_2L+(t3,T,0) + R$L+(t_, ,0)], (20)

and we set gool = /u002 = 1.
By formulating pump-probe spectroscopy in Liouville

space, it becomes possible for us to separate the process
into three steps: First the pump beam creates a wave
packet during the t period (the doorway state). There
are actually two wave packets in the excited-state (here-
after denoted the particle) paths 1 and 2, and the other is
the ground state (the hole) coming from paths 3 and 4.
These two wave packets then propagate during the delay
time between the pump and the probe. This evolution is
the most significant information obtained from pump and
probe spectroscopy. Finally, the system interacts with
the probe, and the signal is generated. We denote the
wave packet of the particle and the hole by We and Wg,
respectively. These wave packets are given by

W`)(p, q; t) = 7 dt, dt2 E(t - t2 )

X E(t - tl - t2)(4Tr2(p2)g(q2)g)-l/2

X 2 exp{- (q2) [q - qelE2(t2) tl;

- ..p .p [- Te, 2(t2 l;c)]2Rel)(tl;c) + c.c., (21)
(P )g

where

(q2)g = e2g+(O), (p 2)g= -2M2&g+(t)
dt4 ~-(

(22)

at all temperatures. The Langevin equation used previ-
ously is valid at high temperatures. Yan and Mukamel
showed how the expression for the response function can
be obtained from the Langevin equation by including the
fluctuation dissipation theorem. However, the expression
of the wave packets was given only in the high-temperature
limit, since the semiclassical-Langevin-equation approach
cannot keep track of the quantum coherence between the
system and the noise source (the heat bath). This coher-
ence is less important at high temperatures because of the
fast dephasing but becomes dominant at low tempera-
tures. (ii) We allow for an arbitrary dependence of the
transition dipole moment on nuclear coordinates and thus
relax the Condon approximation.

Using Eqs. (18)-(20) with Eqs. (9)-(13) and Eq. (21), we
performed numerical calculations for the probe absorption
spectrum and the wave packets for different temperatures
T = 100 K and T = 300 K. Below we present the sepa-
rate contributions from the particle and the hole in con-
figuration space:

Wg(q; t) fdpW(2(p q; t).

(26)

The calculations performed for the Condon case (c = 0)
and the non-Condon case (c = 0.1 VMcool) are denoted by
(a) and (b), respectively, in Figs. 2-7 below. We assume
that the damping induced by the heat bath is frequency
independent, and it is denoted by y (Ohmic dissipation).
The phase function is then expressed as

gt (t) A({ 2- 2 [exp(-A2 t) + A2t - 1]coth (OA2)
2 ~2

___ 2

- 2[exp(-Alt) + Alt - 1]coth( 2 A)}
4'Yo0 exp(-vnt) + vt - 1 )

f3? n-1 Vn[(coj2 + V 2 )2 _ y2V 2

± iA exp(-yt/2)[ /t.2 - sin(ct) + "2 cos(ct)

(27)

-if [6~,~e. 6 (tl + t2 ) - Elige261(2)]

+ C 2 [ge(tl + t2) + ge2ej(t2)],

-iA1-'[eg-e,(t1 + t2) -l#,,j(t2)1

+ cMe-2[LE?(tl + t2) + ge2e1(t2)], (24)

R 2l(t1 ; c) = exp{-ielwegtl - g,,(tl) -ecg'e 6 (t,)
+ c 2[5t 2g. 6 1(tl) + '/2g(0)]} (25)

Here We = W+ and Wg = W_. The Brownian oscillator
model provides a picture in terms of wave packets in phase
space that can be calculated semiclassically. Using a clas-
sical Langevin equation, Yan and Mukamell derived closed
expressions for the wave packets. The equations pre-
sented here generalize these results in two respects. (i)
We use a microscopic description of the bath, which pro-
vides a consistent treatment of relaxation and dephasing

where V. = 2'7rn/l3 and

(23)

A = + i, A2 = - i,2 2 = (oo2 - 2/4)1/2

(28)

This expression interpolates between several important
limits:

Coherent motion limit ('y - 0),

(29)g+(t) = A[1 - s(0t)]coth l-J

± -[coot - sin(oot)]; (29)

qee2(t2, tl; c) =

Pe1e2(t2 tl;C) =
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Strongly damped limit (y >> wo and A- W0
2/Y),

g±(t) - [(e- + At - )cot(hfA/2)

+ 4A. e +2vt1 + i A(At + At - 1);
/3?i ,. v,(v, - A2 A

Strongly damped at high temperature
A o 2/, and IBtA << 1),

limit (y >-

(30

coo

g±(t) = -A [exp(-At) + At - 1]

PA± i-A[exp(-At) + At - 1].
A

(31)

We first show the time evolution of the wave packets of
the particle (Fig. 2) and the hole (Fig. 3) for an under-
damped mode, y = 40 cm-' at T = 100 K and T = 300 K.
The frequency and the dimensionless displacement are
given by c0 = 600 cm-' and d- DVMcol = 1.0. As is
seen from Fig. 2, the particle moves from the initial posi-

(b) non-Condon

T=l00

(c) difference

T=100

o1

T=300

Fig. 2. Time evolution of the wave packet of the particle for the underdamped
T = 300 K for (a) the Condon approximation, (b) the non-Condon interaction, and (c)

T=300

mode (the unit of q is Vhl/Mcoo) at T = 100 K and
their difference.

(b) non-Condon

T=l00

T=300

(c) difference

T=l00

T=300

Fig. 3. Time evolution of the wave packet of the hole for the underdamped mode at T = 100 K and T = 300 K for (a) the Condon approxi-
mation, (b) the non-Condon interaction, and (c) their difference.

(a) Condon

T=l00

T=300

(a) Condon

T=l00

T=300

Y Tanimura and S. Mukamel

,;�I' i Pon",

0

- -.-, _�_ __ ---I-



Vol. 10, No. 12/December 1993/J. Opt. Soc. Am. B 2267

(b) non-Condon

T=l00

(c) difference

T=l00

_i

T=300

Fig. 4. Time evolution of the wave packet of the particle for the overdamped
proximation, (b) the non-Condon interaction, and (c) their difference.

T=300

mode at T = 100 K and T = 300 K for (a) the Condon ap-

(b) non-Condon

T=l00

T=300

(c) difference

T=l00

T=300

Fig. 5. Time evolution of the wave packet of the particle for the overdamped mode at T = 100 K and T = 300 K for (a) the Condon ap-

proximation, (b) the non-Condon interaction, and (c) their difference.

tion to the equilibrium state (the bottom of the excited-
state potential) with a coherent oscillation, both for the
Condon and the non-Condon cases. This is seen from
Eq. (29). However, the hole in Fig. 3, which in the Condon
case does not change its position and shape, slightly oscil-
lates in the non-Condon case. Under the Condon approxi-
mation, the impulsive pump pulse creates a particle in
the excited state without changing the Gaussian shape of
the wave packet in the ground state. Then the shape
of the hole wave packet is also Gaussian and cannot move
in the harmonic potential. However, in the non-Condon
case the coordinate-dependent dipole operator affects the
shape of the ground equilibrium state.

Figures 4 and 5 show the time evolution of the wave
packets of the particle (Fig. 4) and the hole (Fig. 5) for an
overdamped mode y = 2000 cm-', co0 = 600 cm-', and
d = 1 at T = 100 K and T = 300 K. As is seen from
Fig. 4, the motion of the particle is critically damped in
both the Condon and the non-Condon cases [see Eqs. (30)
and (31)]. The hole motion is also strongly suppressed by
the heat bath and, even with non-Condon interaction, the
hole cannot move and shows behavior similar to the Con-
don case. The peak positions of the particle and the hole,
however, shift to the positive side for the non-Condon
case, because of the Condon dipole interaction Eq. (4). As
is seen from the figures, this shift becomes large at T =

(a) Condon

T=l00

T=300

(a) Condon

T=100

T=300
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(a) Condon (b) non-Condon

Fig. 6. Impulsive pump-probe spectrum for the two-mode case
y = 40 cm-' and y = 2000 cm-' at the low temperature T =
100 K. Here we define A = W - 2 - eg. (a) is for the Con-
don approximation; (b) is for the non-Condon interaction. In
each of these, we display the contributions of the hole, the par-
ticle, and their sum separately.

(a) Condon (b) non-Condon

Fig. 7. Impulsive pump-probe spectrum for the two-modes case
at the high temperature T = 300 K. Other parameters are the
same as in Fig. 6.

-2000

-1000

C,
UO 1000

.2000

-1000

1000[ I
0 200 400 600 800

, (fs)
Fig. 8. Time evolution of the total absorption peaks in Figs. 6
(T = 100) and 7 (T = 300). Solid curves, the non-Condon ap-
proximation; dashed curves, the Condon approximation.

300 K. The reason for the large shifts at high tempera-
tures in the case of the non-Condon interaction is as fol-
lows: before the pump excitation, the system is in the

ground equilibrium state and is localized if the tempera-
ture is low; however, it broadens if the temperature is
high. As is seen from Eq. (4), the dipole element gi(q) is a
linear function of q for small c. Since the population of
particles at large q will increase at the higher tempera-
tures, the non-Condon effect becomes larger.

We next calculated the absorption spectrum of a two-
mode system that is described by the two nuclear coordi-
nates q and q2. For the two modes we took the
underdamped mode discussed in Figs. 2 and 3 and the
overdamped mode discussed in Figs. 4 and 5. We assume
that the dipole moment has the form

I = Lo exp(clql)exp(c2q2) uo(l + c1q, + clq 2), (32)

where cl and c2 are the coupling constants, and we set
cl = 2 = 0.1\/V 7 i. The corresponding response func-
tions are given simply by the product of the single-mode
response functions discussed above.

Figures 6 and 7 show the difference absorption spec-
trum for the different delay periods between the pump
and the probe . Here we set ACO =- 2 - 2 - eg.
Figures 6(a) and 7(a) are for the Condon interaction,
wheras 6(b) and 7(b) are for the non-Condon interaction.
In each case we display the contributions of the hole, the
particle, and their sum separately. The motion of the
wave packets displayed in Figs. 2-5 is clearly reflected in
the spectrum, and we can observe the motion of the hole
and a temperature-dependent blue shift, which are both
caused by the non-Condon interaction (see also Fig. 8).
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