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The dielectric function and the absorption line shape of a gas of polarizable atoms are calculated using
numerical simulations and analytical approximations. The theory of self-broadening is recast in the
framework of disordered excitons. The shift, width, and asymmetry of the absorption line shape are cal-
culated and compared with recent experiments on potassium gas.
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1. INTRODUCTION

A universal concept in the physics of line spectra of
gases is that only two atoms need to be considered at low
pressures. Properties of the gas phase then follow as a
suitable cumulant expansion. This notion is so pervasive
that it is usually taken for granted. The spectral shift and
broadening are calculated using the two-particle approxi-
mation [1-5] both in the fast-collision (impact) limit as
well as in the opposite, static limit. While for a gas in
which the optically active atoms are perturbed by foreign
atoms this can be justified, we will show that this no
longer is the case for self-broadening, where at any densi-
ty many-particle effects have to be taken into account.

Spectral line shapes are most conveniently classified as
either homogeneous or inhomogeneous. A line is con-
sidered to be homogeneously broadened when the dom-
inant broadening mechanism is due to the nuclear
motions of the atoms (collisional broadening), and inho-
mogeneous if the broadening is mainly caused by a distri-
bution of transition frequencies (the static line shape) [6]
which for our model holds for particles with infinite
mass. These names refer to the line shape in the vicinity
of the center. Foreign-atom broadening in the gas phase
is usually homogeneous. It has then been natural for
researchers approaching the problem of self-broadening
from the foreign-atom-broadening end [1] to ignore inho-
mogeneous broadening for self-broadening as well.

The problem of spectral line shapes of mixed crystals is
based on the opposite view (the static limit); nuclear
motions are totally neglected and the line shape is treated
as inhomogeneous [7-9]. In these treatments the impor-
tance of having both attractive and repulsive interactions
leading to both a blue and a red wing is usually not ad-
dressed. Consequently, the spectrum of a collection of
polarizable atoms at finite (though low) density is usually
addressed in the gas phase with the neglect of inhomo-
geneous contributions and in the solid state with the
neglect of homogeneous contributions.

The experimental distinction between homogeneous
and inhomogeneous broadening can be made in several
ways. In the realm of linear optics we may either rely on
a different line shape (e.g., a homogeneous Lorentzian
profile and an inhomogeneous Gaussian profile) or use
some argument that by varying a certain variable, such as
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temperature or density, one of the mechanisms may be-
come dominant. As an example, the Doppler inhomo-
geneous profile has a width proportional to (kzT)/2
One peculiar and important point that emerges out of the
present study is that it is impossible to make this distinc-
tion for self-broadened resonance lines in the gas phase.
Both mechanisms give a Lorentzian-like line profile and,
moreover, the static and collision widths are of compara-
ble magnitude, with a fixed ratio of 8:3, respectively, re-
gardless of density or temperature. This implies that
both broadening mechanisms must be treated simultane-
ously using a unified approach. The systematic investiga-
tion of both contributions in the same theory is one of the
goals of the present article.

The only direct and unambiguous way of probing the
nature of the line shape and its homogeneous or inhomo-
geneous character is provided by nonlinear optical
methods such as photon echoes and hole burning [10]. A
theory of these phenomena for interacting atoms at finite
density still remains to be developed [8,9,11].

In Sec. II we present the Hamiltonian and introduce
the formal definition of the frequency and wave-vector-
dependent dielectric function e(k,w). In Sec. III we
separate the long-range contributions to the dielectric
function using the Clausius-Mosotti local-field approach.
In Sec. IV we present numerical simulations of the dielec-
tric function, the polarizability, and the density of states,
and provide a simple interpretation of the simulation re-
sults in the wings. Moments of the line shape are dis-
cussed in Sec. V. Collisional broadening is incorporated
in Sec. VI followed by a comparison with recent experi-
ments in potassium gas. Finally, in Sec. VII we make a
few comments on the applicability of these ideas to re-
stricted geometries (nanostructures) focusing on a two-
dimensional quantum-well configuration.

II. THE HAMILTONIAN

Our model consists of a gas of polarizable atoms at low
but finite density. Each atom is modeled as a four-level
system representing a ground s state and a triply degen-
erate excited p state. We hereafter denote this the s-p
model. We assume the following Hamiltonian:

H=Hp+H tHp, . (1
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H), is the electronic (dipole-dipole) part of the Hamiltoni-
an

H,=# QB'B,

n,i

+# S Sy rum (BB, BB . @
n,m,i, j '
n<m

In the summation, n runs over the atoms, and i and j run
over the internal degrees of freedom, i,j =x,y,z. All the
atoms have the same isolated atom transition energies Q.
BY and B are creation and annihilation operators for exci-
tations of the s-p system at site n. As long as we restrict
ourselves to linear optical properties, these can be con-
sidered to have the standard Bose commutation relations

(BB} 1=8,.8; . 3)

The coupling J describes the dipole-dipole interaction
between the atoms

3r, it ; 1
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with 8 the Kronecker delta, r,,, =r, —r,,, with r, the po-
sition of atom n, and p is the transition dipole moment
that determines the magnitude of the dipole-dipole in-
teraction. It can be related to the static polarizability
by u?=ayQ /2. The dipole-dipole interaction given here
conserves the number of excitons (the Heitler-London ap-
proximation) [12]. It neglects terms of the form B'B
and BB whose contributions are of order u?/Q smaller
than the terms considered, and can be safely neglected.

H,, is the Hamiltonian of the nuclear degrees of free-
dom

2

P
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and ¥V represents the short-range internuclear interac-
tions other than the dipole-dipole forces which are in-
cluded in Hp. Van der Waals forces should be included
in ¥ as well since by invoking the Heitler-London ap-
proximation we have excluded them from the dipole part
of the Hamiltonian. ¥ (r) is important in determining the
equilibrium properties at elevated densities, and for the
spectroscopy in the far wing [13]. In this paper we re-
strict ourselves to the vicinity of the line center and to
gas-phase densities, and we put ¥V (r)=0. Finally, H;,
represents the interaction of the system with the external
electric field,

Hy=—3 P,E, , 6
n,i

with the polarization operator
Py =p,(BY+B,) . @)

Our goal is to calculate the dielectric function

elk,0)=1+4my(k,0), ®)
with the linear susceptibility tensor
X e 0)= [ “dt ([P (0),P () ]e™", 9)
where
Pk,,.=7£ﬁ—z P, (10)
. n

Hence, the time evolution of P in the Heisenberg picture
is

P(t)=exp(iHyt)Pexp(—iHt) , (11)

with Hy=Hp+H .

When applied to a realistic system such as an alkali-
metal gas we should add spin-orbit coupling to our
present model. Our results are therefore expected to give
a weighed average of properties of the two D lines of
alkali-metal gases. The present theory may be applied to
the spectrum of laser cooled atoms [14]. Extension of the
results of optical nonlinearities will require using the Pau-
li rather than the Bose commutation rules [Eq. (3)] and
constitute a complex and open challenge which will not
be considered here [11,15].

There are four length scales in the problem that need
to be considered in the analysis of the optical response.
(i) The optical wavelength. We consider densities that
are sufficiently high (many atoms in a volume of the
wavelength cubed) that the wavelength can be considered
infinite. (ii) The core radius of the atoms. As discussed
before, we consider low densities and intermediate detun-
ings so the core radius is not important. (iii) The
Weisskopf radius, which is the radius for which a particle
with thermal velocity has a collision phase shift 1. This
radius is associated with the average cross section for col-
lisional line broadening. (iv) The average interparticle
distance. The average distance of an atom to its first
nearest neighbor is

— 3
?='fdr re (4m/3)nr

—1/3

dmn | p [:;_ ] ~0.554n 173, (12)

3

where n =N /V is the particle number density. An im-
portant feature of dipole-dipole interaction is that the
nearest-neighbor distance determines the energy scale, a
typical energy is E =u?/7°. In fact, E is the only quanti-
ty determining the energy scale.

We shall hereafter consider gas-phase densities for
which the nearest-neighbor distance is considerably
smaller than the optical wavelength, yet larger than the
range of the core potential as well as the Weisskopf ra-
dius. Then we can rescale the average interparticle dis-
tance to unity for any density. As the interaction is pro-
portional to r 3, the theory is independent of density
after this rescaling, and there is no length scale left in the
problem. In particular, we cannot perform a density ex-
pansion, not even at low density as there is no parameter
left to expand in. At higher density (e.g., liquid densities)
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the problem is more complex and will be treated in a fu-
ture publication [16].

1. LOCAL-FIELD EFFECTS AND THE STATIC LIMIT

We shall first neglect the effects of nuclear motions and
consider the static limit of the model. In the coming sec-
tions we discuss the static line shape; we return to the
effect of nuclear motion in Sec. VL.

To gain some insight let us examine a regular lattice of
atoms. In this case the isolated atom line is shifted by an
energy which is the Fourier transform of J. As optical
wavelengths typically are much larger than the interpar-
ticle separation we consider the kK —0 limit. We have

J(k)=Ey(3kk—1) Ca3)
with energy '

i‘_lz_ 2__ 2

3 —Tnaoﬂ . (14)

The collective many-atom states (elementary excitations)
for a lattice are called Frenkel excitons [12]. The longitu-
dinal (transverse) excitons have a blueshift (redshift) of
2E, (Ey). Only the transverse excitons are spectroscopi-
cally active, since electromagnetic waves are transverse.
In the following we express energies in units of E.

For a disordered system one expects an analogue of
this shift, however its calculation meets some formidable
difficulties. For short-range interactions (decaying faster
than r73) the relevant internuclear separations which
contribute to the dipole correlation function are much
shorter than the optical wavelength and we can safely
make the long-wavelength (k—0) limit in our expres-
sions. However, the dipole-dipole interactions are long
range and contain a finite contribution of very far atoms
separated by a distance larger than the optical wave-
length. For this contribution the finite wavelength of
light (finite k) needs to be carefully kept. A signature of
this difficulty is that the expectation value of the potential
energy J (r) is only conditionally convergent.

Fortunately it is possible use a procedure due to Ewald
[17] to separate the long-range and short-range contribu-
tions. To derive these results we partition the dipole-
dipole interaction as follows:

Ey=

J(r)=J(r)+Jy(r), (15)
where the J; is of short range

J(r)=J (r)exp(—r/R) , (16)

and the long-range part is given by J;,
Ji(r)=J(r)[1—exp(—r/R)] . an

Here, R is a cutoff distance. The idea is now to take R
much larger than any correlation length in the problem,
so that the contribution of J; can be described using a
local-field approximation.

For an infinite cubic lattice, the short-range dipole-
dipole interaction does not produce the exciton line shift
mentioned below Eq. (14); actually, it predicts no shift at
all, and the exciton shift is due to the contributions of
far-away atoms. Since the long-range contribution in-
volves many atoms, fluctuations in the field they create
on a particular atom (i.e., the local field) are negligible,
and can be treated by a mean-field approximation
which gives the Lorentz form for the local field E,
=E+4w/P/3. The resulting procedure is to use the
short-range interaction to calculate «; and substitute the
final result in Clausius-Mosotti equation [18]

elw)—1 _ 47

o)tz 3 nay (o) (18)
with &(w) being the k —0 limit of e(k,w), which is the ex-
perimentally interesting quantity. The limit of R — o0
should be taken. c;; represents the polarizability per
atom. It is easy to show that for a Lorentzian a, the
Clausius-Mosotti equation produces a Lorentzian for €
which is shifted. We need to find

a, ylw)= fo"" dta, (e’ (19)
where
a, ;(1)={[Pg ;(0), Py ;(1)]), (20)

is the short-range polarizability. P(z) in Eq. (20) is calcu-
lated via Eq. (11) with a modified H, in which J is re-
placed by the short-range interaction J,. While in princi-
ple this still depends on R, it should converge for R — .

The exact calculation of the dielectric function in the
static limit for a system of N atoms requires the diagonal-
ization of an 3N X3N matrix. Since the random matrix
elements have diverging moments, the conventional
theory of random matrices [19] does not apply to this
case. In principle, N has to be very large, so that the box
size has a volume larger than R 3. Introducing a basis set
of exciton states

lkyY=N"123 explik-r)lny) , @1
the static (no nuclear motions) polarizability is given by

1

2
=-E——”r:: g k=0 —_—
o) > {( Y o—a—7,+io"

k=0,y>—(k =0,y

1 ,
— k=0, ) , 2
0+ Q+7,—i0% 4 ] @2
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where .?, is the matrix whose elements are J,,; ,,; for a cer-
tain realization of particles, and the overbar denotes aver-
age over all positions, for any quantity A4

-1
A=—V7fdrl-~-fdrNA : 23)
Another important quantity that can be calculated us-
ing the same matrix is the density of states
pD(co)=—1—-Im 2 <k,}' *———1,\——“—_;
3N, o—Q—J;,—i0"

X0

(24)

We shall calculate it as well, and use it in the analysis of
the dielectric function.

A few comments are now in place. The Clausius-
Mosotti equation results in a spectral shift and no
broadening. This is natural since in its derivation we
have neglected the effects of fluctuations in the long-
range contributions. To illustrate this consider a
Lorentzian form of the polarizability

, Q4+l L
— ettt ot W eB arie b o i G (25)
)= O+iT
When this is substituted in Eq. (18) we get
4u?n Q' +il'
= 4B, 2T (26)
o) 3 T (Q+iT)? ‘

with Q'=Q—E,. In this case €(w) is also a Lorentzian,
redshifted by Ey. The invariance of the line shape under
the local-field correction is a special property of the
Lorentzian form. For other line shapes local-field effects
will also alter the shape itself. The fact that the averag-
ing over the inhomogeneous distribution in Eq. (22) is
performed on a and not on € also reflects the short-range
nature of the relevant inhomogeneous fluctuations and
the neglect of fluctuations in the local field.

IV. SIMULATION RESULTS
AND THEIR INTERPRETATION

We have simulated the polarizability in the static limit,
While we called J; a short-range interaction, it is still
very long range compared to box sizes attainable in simu-
lations. We therefore treated it using periodic boundary
conditions. The limit R — o can then be taken, using
the Ewald summation, replacing the dipole-dipole in-
teraction by an effective one [20],

r+r'
R

Jrtr, @D

J,-(j'ff)(r) ERIi_r’nm 2 exp
r

where r’ runs over the simple cubic direct lattice. This
limit can be taken analytically, resulting in a rapidly con-
verging series expression for J'*/) [20]. In this approxi-
mation the large distance contribution of the dipole-
dipole interaction is partially taken into account, and the
remaining large distance effects are taken care of by the
Clausius-Mosotti formula. By imposing periodic bound-
ary conditions we make the system into a lattice with

k,y) .

many particles in a unit cell. In this language what we
have calculated corresponds to the zero wave-vector
Frenkel exciton Bloch functions.

The simulation was done by putting N =256 particles
at random positions. The density of states and polariza-
bility were calculated by numerically diagonalizing the
matrix J,(,,”Z;) and averaging the results over 500
configurations.

... Since both the real and imaginary parts are of interest

we have plotted them separately. We adopt the common

_notation

alo)=d(e)+ia"(w) . (28)

The resulting polarizability is displayed in Fig. 1. As is
clearly demonstrated in the figure, the maximum of
o''(w) is redshifted compared with the isolated atom. We
shall denote this shift by A. It also has an asymmetric
line shape with a large tail on the red side. We shall

“characterize it by its value at half-maximum to the blue

(") and to the red (I'_) side. We further introduce the
shift to the width ratio

o A
=T +r_ @9)
and an asymmetry parameter
S=t=_ L+ (30)
T4

The values of these parameters are listed in Table L
By substituting the simulated polarizabilities in the
Clausius-Mosotti equation (18) we have obtained the
frequency-dependent dielectric function which is
displayed in Fig. 2. As for a, we denote the real and
imaginary parts of € by

élw)=€(w)tie'(w) . (31)

The parameters characterizing the absorption line shape
€''(w) are listed in Table I as well.

L T LR ' T T 1 7T ‘Tl L) [ T T 7 g
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FIG. 1. Simulation results for the polarizability a,(w). Solid
line: the imaginary part a'/(w); dashed line: the real part &'(w).
Parameters describing o’ are given in Table I. The dotted line
is the density of states.
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TABLE I. The maximum A, width at positive half-maximum I',, width at negative half-maximum
I'_ in units E,. We also present the relative shift n=A/(I'y. +T_) and asymmetry ratio
S=(C_—T)/(C_+T.). _
Case A T, r. n S
agm —0.09 0.54 0.92 —0.062 0.26
olsim) o —0.098 0.948 1.257 —0.044 0.14
Qgtatic —0.462 2.09 2.09 —0.11 0
olanal) —0.462 2.88 2.88 —0.08 0
P —0.77 0.76 1.51 —0.40 0.40
Entatio +ooll —0.827 1.011 1.895 —0.285 0.304
(o) —1.462 2.09 2.09 —0.393 0
eamal) o —1.462 2.88 2.88 —0.254 0
K (Sl/zﬂp]/z )l "“028
K (Sl/).HP}/z )a ) _ _ _ "_0.285
*Experimental results of Maki et al. [25].
Using the same simulation we have also calculated the a}’(w)=% S f dr8(o—Q+J,(r))e —4mnr®/3 (33)

density of states. “The results are displayed in Fig. 1. Ob-
viously, the density of states is very different from a''(w),
contrary to what is usually assumed for static broadening
in a gas [1]. )

To get a feeling for these results let us consider a sys-
tem with only two atoms. In this case the six eigenfunc-
tions are -

lex) == (1)£[20)) (32)
with energies +J;, J;=p’r;*(—2,1,1), and i =(x,y,2)
where the x axis lies along rj,. Only the three-states
have a finite transition moment and are spectroscopically
active. The eigenfunctions of the full N-particle problem
are much more complex. Yet, Eq. (32) applies to situa-
tions where two atoms are very close, hence the energy
involved is large compared to the interaction with third
particles. Third particles mainly affect the line center
and cause only small perturbations to the wings.

The traditional expression for the absorption at a siz-
able distance from resonance (line wings) is [21]

lfllllllillllllllllj

i
We take only the spectroscopically active eigenvalues
+J; here. The subscript 2 is to emphasize that this is a
two-atom approximation.

The physical ingredients to Eq. (33) are, first, that the
interactions are pairwise additive, the energy of a certain
line is shifted from the isolated atom transition frequency
Q to Q+J(r) by the perturbation. The large spectral
shifts in the line wings primarily result from con-
figurations with very short internuclear separations,
which are rare events and can be assumed to occur one at
a time. For the line core this approximation is harder to
justify. Second, the exponential factor of Eq. (33) is sup-
posed to correct for many particle effects by taking into
account only the first neighbor. It represents the Poisson
statistics of the nearest-neighbor distribution. For large
distances we have no contribution.

ay(w), which is displayed in Fig. 3, demonstrates an
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FIG. 2. Simulation results for the dielectric function e(w).
Solid line: The imaginary part of the static frequency-
dependent dielectric function €;’; dashed line: the real part €.

FIG. 3. Solid line: the imaginary part of the two-atom polar-
izability cry’, Eq. (33). Even though for this absorption spectrum
f °_°wd 8w 8wpe(8w)=0, the spectrum appears asymmetric to
the red (negative energy). The dashed line is a Lorentzian line
with shift A, =21In(2)E, /3, and width I", =(27/3)E,, as calcu-
lated in Sec. IV.



important point; the origin of the redshift of ¢'(w). We
can understand the distinction between the density of
states and the absorption spectrum from the eigenfunc-
tions Eq. (33). Instead of summing over just the +J; we
also have to include the eigenvalues —J; for the density
of states, so that to the same level of approximation

pol@)=1[a} () +a}(—w)] . (34)

Obviously, pp(w) is symmetric.

However, as is apparent from Fig. 3, Eq. (33) is not a
good approximation at all for the line core. There are
third particles at larger distances and they will shift the
resonance line some more, by (small) positive or negative
random amounts. As there are many particles involved,
the combined effect of all but the nearest neighbor is to
contribute a random energy shift to the two particle line
Eq. (33).

We next develop an approximate expression for the N-
particle line shape. We consider the spectrum of two
atoms in a box,

o«"(b0)=73, [drd(Aa+Ty(n) . (35)

Again, we sum only over +J; as these carry the dipole
moment. It is easy to show that a"(Aw) =< 1/Aw? for a
bounded range of Aw(Aw=w—Q). For small values of
Aw < A, where 4 =4xwJ/3V with V the volume of the
box, Eq. (35) is no longer valid as then two particles are
further away than the edge of the box (we assume a
spherical box). At the high-energy end particles cannot
be closer than a certain radius, say a hard-core radius o.
In terms of energy this translates to B=J /o>. The two-
atom spectrum is then given by

P Aw)=10(Aw)p(Aw)+1O(—Aw)p(—Aw/2) , (36)

where O is the unit step function and p, is given by

-1
Aw)=C
pl( w) (ACO)Z

O(Aw— A4)0(B —Aw) . (37

C is a normalization constant. _

We shall construct the full N-body spectrum out of p,
by assuming that various perturbers are independent.
For the N-atom spectrum we then only need to convolute
P N times with itself. At this step we use an assumption
similar to that made in foreign-atom broadening, namely
that the wave function for a perturbed system is close to
the unperturbed system. As shown in the Appendix we

find )
a(t)=exp(—iA;t—T,t). (38)

An exponentially decaying «,(#) corresponds to a
Lorentzian ¢ (). The resulting final spectrum is a
Lorentzian with full width at half maximum (FWHM)

I',=27E,/3 (39)
and shift
A,=21n(2)E,/3 . (40)
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FIG. 4. Simulation results for the polarizability ;' (solid
line). The dashed line is a Lorentzian with width ', =27E,/3
and shift A, =2FE,(in2)/3 [Egs. (38)-(40)]. Only in the high-
detuning wings the polarizability «; is a Lorentzian.

Obviously, the resulting spectrum is only a Lorentzian
after we take the limit B—» c. As our simulations have
clearly shown large deviations from a Lorentzian, the as-
sumption of independent perturbations cannot be
justified. As shown in Fig. 4, the Lorentzian gives quite a
good approximation in the wings but is crude at the
center.

V. SUM RULES AND THEIR CONSEQUENCES

There is a sum rule valid for the exact N-particle spec-
trum,

[~ dswswa"(80)=(k=0l7"|k=0)=0.

When considering the o'’ integral this is not immediately
obvious. It critically depends on the line wing behavior
as the quantity integrated over is proportional to 1/6w
hence the integral is conditionally convergent. To be
more precise, we have

28mc
f—&o ddw dwa" (8w)=0, (41)

where dw, is a large, arbitrary cutoff energy. This in-
tegral does not produce O for an unshifted Lorentzian and
so0 is not a good measure of a possible shift. For the line
core, a more appropriate description of an apparent shift
is

Ga)c
J_,. dboswa”(80)=~(22/3)E, , 42)

where we have used the fact that in the wings Eq. (37) is
exact. The center of the absorption spectrum is thus shift-
ed to the red, though the first moment does not predict this
shift. This shows that the first moment is not a good
measure of the spectral shift. This subtle point is often
overlooked.

We note that the sum rule Eq. (42) immediately gives
that the absorption is symmetric in the line wings. This
agrees with experimental findings on the 1850-A line of
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mercury [22], but disagrees with experiments on cesium
[23], where a factor of two difference between the absorp-
tion strength of the red and the blue wing at identical de-
tuning was found. This intensity difference cannot be un-
derstood within the context of the present model. One
possible explanation is that this is a consequence of spin-
orbit coupling, which we have not taken into account.

If we fit the line obtained from Eq. (33) to a Lorentzian
by matching the intensities in the far wings, we obtain for
the width 2mE, /3, which equals the width calculated in
Eq. (39).

Similar sum rules hold for the density of states pp,
where

f_; dAwpp(Aw)Ao=0, (43)

as the two-particle density of states is symmetric. This
proves that even at arbitrarily low densities, the absorp-
tion spectrum and the density of states differ.

V1. NUCLEAR MOTION
AND COLLISIONAL BROADENING

So far all our calculations were made in the static limit
where nuclear motions have been neglected. We shall
now incorporate these motions in our theory. Collisional
effects on self-broadening have been studied extensively
in the past. Since there are discrepancies among the ex-
pressions reported in the literature [3,1] which differ by
factors related to state degeneracy, we give a full deriva-
tion of the cross section.

We assume that the effect of collisions is independent
of the static distribution. Then

However, in contrast to what has been implicitly assumed
in previous calculations [2], it is not possible to neglect
one of these factors since both of them decay on a compa-
rable time scale.

Collisions produce a simple exponential decay for a(t),

acoll(t)=exp( —‘Fct —iAct) . (45)

The standard expression for the collisional linewidth T,
and shift A, is [2]

T.+id,=nitr [dvof() [db2mb(1-S,,), (46)

where S ; are the 3X3 scattering matrix elements for a
collision characterized by the impact parameter b and ve-
locity v. We have S=0, exp[i f 2 08t Jy2;(t)] where
Ji;2; is @2 6X6 matrix. Though J(¢,) does not commute
with J(¢,) the time ordering can be interchanged in a first
approximation. Due to the properties of the trace, this is
exact to second order in the interaction J.
In this semiclassical approximation we obtain

—(,i®
S;;=(e )Ii,lj

I )|

with [using Eq. (32)]

f diJ

ni mj
=l€+ >¢ij<e+|_ie—>q)ij<e—l (48)
J 2 AN AA
q)ij ﬁ bz(si,j—Zbibj_vivj) (49)

where a b denotes the unit vector in the direction of b.
®;; has the eigenvalues 2J /%wb*(1,0,—1). Taking the
(1,1) matrix element of the S matrix and working out the
trace we obtain a shift that is zero and a collision width

_ 2@ 2u?
l"c——?’—n trfdu vf(v) [ db b |1—cos ;5—)7
= — ~-2
3 F f dx x(1—cosx ) . (50)

Calculating the last integral we find the collision width
and shift

o
Fc=—'E0 ’

4 (51)
A,=0.

Collision self-broadening is usually interpreted in terms
of a cross section o,=wb3, b, being the Weisskopf ra-
dius, defined as the impact parameter for which a particle

with thermal velocity has a phase shift 1. Setting
I'.=no_ vy we get
2 1/2
by= 2 , (52)
Vtn

where the thermal velocity is vy, =(kz T /m)'2, with kg
the Boltzmann constant, T the temperature, and m the
mass of the particles.

Collisional broadening does not depend on the temper-
ature or the mass, which is quite remarkable. Even more
remarkable is that it is proportional to the Lorentz shift
E,, which is completely of static origin. We find that
there is no small parameter to expand in, and a separa-
tion of the broadening process into “static’ and “dynam-
ic” contributions is somewhat artificial.

At this point we can add the collisional contribution
via Eq. (44) to our previous calculation of the static po-
larizability a,. Our most rigorous result will be to com-
bine it with the simulations. The resulting a and € are
given in Fig. 5 and the relevant parameters describing
these lines are tabulated in Table I. In Fig. 6, which may
be regarded as the most rigorous result of this paper, we
compare a' and €’ to demonstrate the importance of
local-field effects.

If we use the analytical expression for a, [Eq. (38)] we
obtain a more crude approximation

Q+A,+il
o’ —[Q+A,+iT]?

alw)=2u? (53)

and

elw)=1+

4p2n2 Q+A+il

54
3 T ?—(Q+A+IT) S
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FIG. 5. Comparison of the simulated absorption without col-
lisional broadening (solid line) and with collisional broadening
(dashed). (a) The polarizability Eq. (44); (b) the dielectric func-
tion.

with a width that is a combination of static and collision
widths

2r 7

3 4

I=I,+T,= E0=111—2”E0 , (55)

and a shift which is the combination of the Lorentz shift
and a new, static shift

A=A, +E;=(1+21n2)E, . | (56)

These parameters are listed in Table I as well for compar-
ison with the simulation results. Previous calculations
[3,1] have not taken into account the [21n(2)/3]E, shift,
but predicted a collision width of 3E,, which is very close
to our result and to experimental results.

O.SI‘IIII‘I\DIIIIIIIIII

o
M

(e(w)-1)/8", oE,/p*
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FIG. 6. Simulation results for the polarizability o’ (solid

line) and € (dotted line) where we included the collisional
broadening [Eq. (44)].

The absor?tion of potassium gas in the density range
5% 10°-10"" (cm)~? has recently been studied [24,25] us-
ing selective reflection from a vapor. The reported shift-
to-width ratio, which is almost identical for the two D
lines, 7=0.28. We find #=0.285 in our simulation and
n=0.254 from our analytical theory (see Table I).

We shall now discuss additional effects that may possi-
bly be of relevance. First of all we have neglected fine-
structure splitting throughout. Our results are therefore
expected to give a weighed average of properties of the
two D lines of alkali-metal gases, while high-resolution
experiments resolve the individual lines. We next consid-
er the issue of length scales. The local-field shift is caused
by the interaction with many atoms that are about an op-
tical wavelength away. For a selective reflection experi-
ment [26] as performed by Maki et al., [24,25] it is well
known that the electric field penetrates the gas a distance
that is of the order of one wavelength [25], so for selective
reflection the local field is not fully developed. In particu-
lar the shift of the absorption line depends on the posi-
tion in the medium. It appears that this effect will cause
an additional broadening and a decreased line shift. A
rigorous calculation must solve in full detail the local
field; a is a meaningful microscopic quantity, € is less so
as either it is not the macroscopic € when we are near the
surface, or it is experimentally inaccessible when it is in-
side the medium. The introduction of polaritons [15] is
needed to describe the propagation properties inside the
medium.

Another point is related to higher density effects. The
relevance of the nearest-neighbor distances was discussed
in the previous sections. Deviations from the dipole-
dipole interaction are of relevance for high density. This
has two consequences for the spectrum. (i) The random
shifts become different, and (ii) the equilibrium properties
of the fluid have to be calculated, making the spectrum a
problem in liquid state theory. This is only important at
very high density.

There is a question regarding the static and dynamic
aspects of the problem. A unique property of the dipole-
dipole interaction is that the static line gives a Lorentzian
form in the tails, which is also the result of the dynamic
theory. For one thing, this implies that the static and dy-

‘namic effects cannot be separated, and also that there is a

density for which collisions are no longer completed be-
fore being interrupted by third particles. This occurs
when the average interparticle distance is less than the
Weisskopf radius. An estimate of the density at which
this becomes important for Potassium at room tempera-
ture is 10'® cm™3. This is the only quantity where the
mass and temperature enter. For higher densities we ex-
pect the collisions to become even less important com-
pared to static broadening. Additional effects neglected
in our treatment are Van Der Waals forces as well as
short-range deviations from the dipole-dipole interac-
tions, i.e., contributions from higher multipoles. Both of
these approximations are reasonable at low density.

VII. DIELECTRIC RESPONSE IN TWO DIMENSIONS

There is currently a great interest in confined systems
in lower dimensionalities. It is now possible to fabricate
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nanostructures where the atoms are confined to two di-
mensions [27]. For atoms physisorbed on surfaces at low
concentration the calculations in two dimensions may
also be of interest.

The long-range behavior of dipole sums, which is a
very difficult problem in three dimensions (3D), is much
less pathological in 2D and, consequently, the behavior is
qualitatively different and the relative importance of the
various scales mentioned earlier is quite different in two
dimensions.

First, and most importantly, there is no need to intro-
duce the local field, as the long-distance behavior of the
dipole sums is convergent so rather than the Clausius-
Mosotti equation (18), we now have,

elw)=1+4mnaolw) . (57)

In addition, there is a difference in density dependence of
the static and dynamic linewidth. Hereafter, we focus on
the static contribution and neglect collision effects which
are not important for a monolayer with fixed atomic posi-
tions. -

The two-dimensional structures with the transition di-
poles along the surface (for an aggregate this would be a J
aggregate) are most similar to our three-dimensional cal-
culations as the static shift can be both positive and nega-
tive. As an approximation we take the nearest neighbor
fully into account, and convolute the resulting spectrum
p®) by a Gaussian characterized by the average E, and
standard deviation w,.

Explicitly, we have for the nearest neighbor,

_ 2UKE, 17
P (Ba)=— e

with E, =(nw)*?u?, k=1 for E >0, and k=2 for E <0.
The probability distribution of finding a particle other
than the nearest neighbor at distance r is

ny(r)=n(1—e ™"y, , (59)

—l',(EZ/AwP/l

where N is the atom surface density. The expectation
value of the energy is

(V(NY=E,=—VunE,. (60)

The second moment {[V(r)—E,]*) diverges as well as
([V(r)—Eg|}. To have some sort of measure of the
width of the Gaussian we use the absolute value of V (r),

(|V(r)|)=3V7E,

{61)

. E?
=V/(2/m)w exp [—— 252

]+lEgIerf[wﬁ

where erf is the error function. We find w =4.806E 2
Combining these results we- get
Aw'—E,
— |, (62
w

g

a(Ao)=p? [ AP (Ao —Ad' )W

where ¥ is a Gaussian

(58)
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FIG. 7. The absorption spectrum in two dimensions, where
the transition dipoles lie along the surface. We find a shift
A=—3.07E,, widths ', =6.35E,, and ' —6.7E,, so that the
relative shift n=—0.235 and the asymmetry is $ =0.027.

o [ E, (Aw'—E,

2
2wg

— 2y—1/2
=(2mwy)

exp

W
(63)

The resulting absorption spectrum is presented in Fig. 7.
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APPENDIX: CALCULATION OF THE STATIC
GAS-PHASE SPECTRAL SHIFT

In this appendix we derive Eq. (38). For technical
reasons we use different cutoff factors as those used in p;,
e~ 4/8% for large distances (small Aw), and e ~2%/2 for
short distances. We take the limit B— o in the end,
since we are interested in the line center. These cutoff
factors give instead of Eq. (37)

1 _A4A_Aw
(Aw)?

pilAw)=C exp O(Aw) . (A1)

Aw B

A practical way to perform the convolution mentioned
in Sec. IIl is by means of Fourier transforms. The
Fourier transform of p, is

Fy=[ 7 dAwpy(Aw)e it

_ 2Kz )tz K (z)
32K |(zq) ’

A

where K, is a modified Bessel function [28], z,
=2(idt+A4/B)'?, z_=2—2iAt+ A/B)'?, and
zy=z,(t=0). We have to the order in z that we need



1

Z2 z
1n2+7 2

2 (A3)

zK (z)=1+ + -,

where y is Euler’s gamma. Since the Fourier transform
of the convolution is the product of the Fourier trans-
forms, we finally obtain the Anderson-Talman expression

[2]

o, (t)=Fy(t)=eM"

(A%
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with
Mt)=N[F,(t)—1]

=1%E0(i17]t|+t1n2)+0(1/B)+@(A2N). (A5)

As A =E,/N the limit N — « is well defined. Equations
(A4) and (AS) are identical to Eq. (38).
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