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We report numerical simulations of the density of states and the frequency dependent dielectric 
function for optical frequencies of a polarizable Lennard-Jones atomic fluid from gas to liquid 
densities. Our simulations at high densities can be successfully interpreted in terms of 
fluctuations around a fee solid reference model. The mean spherical approximation, which is 
based on a resummed density expansion, is shown to give reasonable predictions for intermediate 
densities but is shown to fail at liquid densities. We discuss the transition from the gas phase 
limit to the liquid phase theories, and show that for liquids nuclear motions do not strongly 
affect the line shape, whereas local field effects do. 

I. INTRODUCTION 

The optical properties of simple atomic liquids such as 
rare gases have been the subject of extensive experimental 
and theoretical studies.’ The static and dynamic properties 
of the electronic excitations and their dependence on liquid 
state structure have received considerable attention. Re- 
cent interest is growing due to advances in ultrafast spec- 
troscopic techniques as well as the study of small clusters 
which allow a direct and controllable study of effects of 
exciton confinement.* 

Numerous theoretical methods have been employed in 
modeling dielectric fluctuations in condensed phases. 
These range from simple Drude oscillator models, self- 
consistent procedures derived using path integral tech- 
niques, the mean spherical approximation (MSA) and nu- 
merical simulations.3-13 The MSA is one of the most 
widely used techniques, primarily due to its simplicity. It 
was first applied to dipole-dipole interactions by Wer- 
theim,14 who obtained an analytical solution for the static 
dielectric constant E( w=O). Wolynes suggested a direct 
generalization of the MSA equation to calculate the entire 
frequency dependence of e(w).15 Recently Stratt and co- 
workers16 have calculated the absorption spectra and den- 
sity of states for a hard sphere gas using the MSA. For the 
more physical model of dipole-dipole interaction their cal- 
culations covered a limited density range, up to about half 
of the density that corresponds to a liquid. 

In this paper we report simulation results for the ab- 
sorption spectra and density of states for a Lennard-Jones 
fluid for a density range from the low density gas to a 
liquid near the triple point. We find that the MSA pro- 
duces unphysical results for even moderate (dense gas) 
densities, for which we are not yet in a regime that can be 
qualified as liquid. Most liquid state theories use the ideal 
gas as a starting reference point. Our simulations do how- 
ever compare favorably with results of an ideal solid and 
simulations for an Einstein solid. We propose a perturba- 
tion theory which incorporates disorder via small fluctua- 
tions around the solid as a simple way for modeling dielec- 
tric fluctuations in liquids. 

II. THE MACROSCOPIC POLARIZABILITY AND THE 
DIELECTRIC FUNCTION 

Our model consists of a collection of polarizable at- 
oms*’ and each atom is modeled as a four level system 
representing a ground s state and a triply degenerate ex- 
citedp state. We hereafter denote this as the s-p model. We 
assume the following Hamiltonian: 

H=fi C szBt,iB,i+j+H,“,1+Hi,t. 
ni 

(1) 

The first two terms represent the electronic (dipole- 
dipole) part of the Hamiltonian 

i=fi C J,i,,j(rmx) (B$B,j+ BkjBni> * 
n < m,ij 

In the summation, n runs over the atoms that have tran- 
sition energies R, and i runs over the internal degrees of 
freedom, i=xy,z. Bt and B are creation and annihilation 
operators for the s-p system at site n. As long as we restrict 
ourselves to linear optical properties, these can be consid- 
ered to have the standard Bose commutation relations 

(3) 

In the present model we thus represent the system as a 
collection of Drude oscillators.3 For the linear optical sus- 
ceptibilities discussed in this paper a classical theory pro- 
duces identical results. Our treatment will be quantum me- 
chanical with an eye towards the extension to nonlinear 
optical susceptibilities. The dipole-dipole interaction given 
here conserves the number of excitons (the Heitler- 
London approximation). It neglects terms of the form 
BtBt and BB whose contributions are of order J/s1 
smaller than the terms considered, and can be safely ne- 
glected. 

The couplings J describe the dipole-dipole interatomic 
interaction 

3rnm,irnm,j 
r-Si,j >] 

nm 

Xexp 
( ) 

-2 (l-S,,>, (4) 

6062 J. Chem. Phys. 99 (8), 15 October 1993 0021-9606/93/99(6)/6062/9/$6.00 @  1993 American Institute of Physics 

Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



with S the Kronecker delta. J=p*, where p is the transi- 
tion dipole moment, is a parameter which determines the 
energy scale of the dipolar interactions. Alternatively, it 
can be related to the static polarizability a0 by J=aoW2. 
The unit of J is energy times volume. R is a long distance 
cutoff that is introduced here to ensure that the Hamil- 
tonian yields mathematically well defined results. Without 
a cutoff the expressions involving dipole sums such as Eq. 
(9) are conditionally convergent and they do not make 
unique predictions in the k-0 limit. At a suitable point in 
the calculation we take the limit R -+ CO. This procedure is 
discussed in detail in Ref. 17, where we have analyzed the 
dielectric properties of the model in the low density limit. 

Hnucl is the Hamiltonian of the nuclear degrees of free- 
dom 

Hnuc,= ; $-+ c Urn,), (5) 
n tl<?ll 

and V represents the short range internuclear interactions 
other than the dipole-dipole forces which are included in .?. 
van der Waals forces should be included in V as well since 
by invoking the Heitler-London approximation we have 
excluded them from the dipole part of the Hamiltonian. A 
typical form for Y is the Lennard-Jones potential used be- 
low. At low densities the contribution of V is negligible, 
but this is no longer the case for liquid densities. Finally, 
Hi”, represents the interaction of the system with the ex- 
ternal electric field, 

Hint= - C PniEni, 
ni 

(6) 

with the polarization operator 

Pni=pn( Bi/+ Bni) * 

Our goal is to calculate the dielectric function 

E(k,W) = 1+47?$‘)(k,o), 

with the linear susceptibility tensor 

(7) 

(8) 

J$‘(k,o) = s m dt( [Pk,i(O),Pk,j(t) 1 >e’“‘9 (9) 
0 

where 
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dipole interactions are long range and contain a finite con- 
tribution of very far atoms separated by a distance larger 
than the optical wavelength. For this contribution the finite 
wavelength of light (finite k) needs to be carefully kept. 
Fortunately it is possible to use a procedure due to Ewald” 
to separate the long range and short range contributions 
using a local field approximation for the long range con- 
tributions. This results in the Clausius-Mosotti relation for 
the long wavelength (k-0) limit of E(FC,W), E(W), 

E(W)-1 4a 
E(O) +2 

=-j-m(w), 

where a(w) is defined as 

(12) 

(r(o) =C(w> +w --o), 
with the dipole correlation function 

(13) 

C(w)= m 
s 

dtC(t)exp(iwt). (14) 
0 

In the interaction picture with respect to the nuclear mo- 
tions we have 

C(t) =exp( -iflt) 

x yzy,z (k=O,ylexp+ [ -iJidThT)] Ik=O;y). 

(15) 

Here exp, is the positive time ordered exponential, and the 
overbar denotes average over all positions with respect to 
the equilibrium distribution of particles. In Eq. ( 15) we 
have introduced a basis set of exciton states in k space 

Iky)=N-“*C exp(ik*r,)Iny), 
n 

(16) 

with 1 ny) = B&lg) denoting the state in which atom n is 
excited along the y direction. j(t) is the operator j in the 
interaction picture with respect to the nuclear Hamiltonian 

The time evolution of P in the Heisenberg picture is 

.?(t) =exp( f H,;,,t)jexp( -f Hnuc$). 

Using the Clausius-Mosotti procedure we can pretend that 
the sample is smaller than the wavelength of light. We may 
then set k=O and calculate the polarizability a. Subse- 
quently Eq. ( 12) corrects for this approximation and ap- 
plies to macroscopic systems which are much larger than 
the optical wavelength. Equation ( 15) is our basic formal 
expression and is the starting point for the present article. 

P(,)=exprT)Pexp(q), (11) 

where Ho is the Hamiltonian H without the interaction 
term Hi”, . 

111. THE STATIC LIMIT: NUMERICAL SIMULATIONS 
AND COMPARISON WITH THE MSA 

The numerical evaluation of the dipole correlation 
function meets some formidable difficulties. For short 
range interactions (decaying faster than rm3) the relevant 
internuclear separations which contribute to the dipole 
correlation function are much shorter than the optical 
wavelength and we can safely make the long wavelength 
(k-+0) limit in our expressions. However, the dipole- 

We have recently studied the optical response of the 
present model at low (gas phase) densities.” In this limit 
the frequency dispersion of the dielectric function has a 
roughly equal contribution from static (inhomogeneous) 
fluctuations in density and from dynamical collisions (ho- 
mogeneous), regardless of the nuclear mass and tempera- 
ture. It is commonly believed that spectral line shapes in 
liquids are inhomogeneously broadened,3-” and can there- 
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fore be calculated by the complete neglect of nuclear mo- 
tions (the static limit). In this and the next section we 
calculate the dielectric function in the static approxima- 
tion, assuming infinite nuclear mass. In Sec. V we shall 
estimate the effects of nuclear motion and examine the 
applicability of the static limit. 

When nuclear motions are neglected we set HnUcl=O. 
The time ordered exponential becomes an ordinary expo- 
nential and the Fourier transform Eq. (14) can be per- 
formed resulting in 

C(o)=f c 1 

37r y=x,y,z w-Cl-.f+iO+ 
(18) 

where .? is the matrix whose elements are Jni,mj for a given 
realization of particles. The exact calculation of the dielec- 
tric function in the static limit for a system of N atoms 
requires the diagonalization of a 3NX 3N matrix. This is a 
much simpler problem compared with evaluating the time 
ordered exponential. 

There are significant advances in the theory of random 
matrices which allow to draw some general conclusions 
regarding the distribution of eigenfunctions and the statis- 
tics of energy spacings.” However these results are not 
directly applicable to the present model since the random 
matrix elements have diverging moments. 

Another important quantity that can be calculated us- 
ing the same matrix is the density of states 

pdw) =&Im x,y&, (k,yl w-f-):j_io+ lkJ) * , I 
(19) 

We shall calculate it as well, and use it in the analysis of 
the dielectric function. 

We have simulated the poltrizability in the static limit. 
By introducing the cutoff R, J represents only the short 
range part of the dielectric interaction. Yet it is still very 
long range compared to box sizes attainable in simulations. 
We therefore treated it using periodic boundary conditions. 
The limit R + CO can then be taken using the Ewald sum- 
mation by replacing the dipole-dipole interaction by an 
effective one, l8 

ATs)((r) = lim R-m F exp( -$)Ji,j(r+f), (20) 

where r’ runs over the simple cubic direct lattice. This limit 
can be taken analytically, resulting in a rapidly converging 
series expression for # eff).18 In this approximation the large 
distance contribution of the dipole-dipole interaction is 
partly taken into account by the summation over the peri- 
odic replicas, the remaining large distance effects are taken 
care of by the Clausius-Mosotti formula. By imposing pe- 
riodic boundary conditions we map the system onto a lat- 
tice with many particles in a unit cell. 

In the calculations reported below we focus on the 
imaginary part of the polarizability a and the dielectric 
function E which are directly responsible for the linear ab- 
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n* = 0.85, T’ = 0.8 

Aw/E, 

FIG. 1. The linear (polarizability) absorption spectrum E”(O) (solid), 
S(w) ” (dotted), and the density of states ijd( o) (dashed) for a Lennard- 
Jones liquid. This simulation is for 256 particles and nuclear motion is 
ignored. The isolated molecule transition frequency is at Ao=O. Com- 
pared to the low density results of Fig. 2, the spectra are narrower (in 
units of Ec) due to the atomic core repulsion. 

sorption. The real parts can be obtained through the 
Kramer*Kronig relation. We adopt the common notation 

a(w) =a’(w) +icd’(w), 

and 

E(W) E&(W) +i&‘(w). 

We further introduce the parameter 

(21) 

(22) 

4?i- 2%- 
I&=- nJ=- n&2, 3 3 (23) 

which represents the energy scale of the dielectric fluctua- 
tions, n=N/V being the atomic number density. In the 
following we express energies in terms of Ec. We present 
our results in dimensionless units, so 

a”(o)E(J 
Z’(w)= J , 

and 

(24) 

PD(W> =pdwWo. (25) 

In the simulations we used a molecular dynamic 
(MD) program to generate liquid state configurations for 
N=256 particles, then the matrix J was calculated and 
diagonalized using a library routine. The density of states 
and absorption spectrum was averaged over 250 configu- 
rations. The particles interact through the Lennard-Jones 
potential V(r) = 4eLI[ (r/a,) - l2 - (r/au) -“I. The den- 
sity is reported in dimensionless units, n* = no&, and the 
reduced temperature is T* = k,T/e, . 

In Fig. 1 we have plotted simulation results for the 
polarizability Z’, the absorption spectrum E”, and the den- 
sity of states for a Lennard-Jones liquid. For comparison 
we display the same quantities calculated at a very low 
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FIG. 2. Same as Fig. 1, but now the zero density limit is displayed. The 
energy is in units of &=4anJ/3. The low density limit is discussed in 
Ref. 17. 

density in Fig. 2.” At low density the present model tends 
to a limiting form that is independent on density apart 
from the energy scale Ec. 

The following exact sum rules follow from the prop- 
erty of the dipole-dipole interaction (k = 0 1 JI k=O) =0, 

s do&“(w) =R, (26) 

and 

s dmx”(w)=R--I&. (27) 

For a liquid the absorption is strongest near the density of 
states band edge, the spectrum is asymmetric, and the sum 
rule then predicts that the maximum is shifted more than 
just Ec. This feature is apparent in the simulations, pre- 
sented in Fig. 1. 

Many features in the liquid are completely different 
from their low density counterparts. The high energy tails 
are completely absent due to the repulsion of the core. The 
density of states for a liquid is very different from the 
absorption spectrum, while for a gas at least in the tails 
they are the same. Local field effects, i.e., the difference 
between a” and E”, are much more important for a liquid, 
causing a substantial asymmetry of the absorption. 

In Figs. 3-6 we report our simulation results at several 
densities and compare them with the predictions of the 
MSA. The MSA is reasonable at intermediate density 
n*=0.3 (Fig. 4), which is about the critical density. Here 
the system is a dense fluid. At all other densities the MSA 
produces less than satisfactory results. Obviously the 
MSA, which is a theory based on a resummed density 
expansion does not produce an adequate framework for the 
interpretation of dielectric fluctuations. It should be added 
however that the MSA reproduces the exact first moment 
of the density of states.12 In the next section we show that 
a fee solid does provide an adequate reference for analyzing 
these results. 
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FIG. 3. Same as Fig. 1. Simulations results for a W gas (a) compared to 
the MSA for a hard sphere fluid (b) at a similar density. At this density 
we deal with a slightly dense gas. At this density the simulated spectrum 
is (still) similar to the low density spectra, Fig. 2. 

IV. INTERPRETATION OF THE STATIC SIMULATIONS 
USING A FCC SOLID REFERENCE 

To gain further insight let us consider a regular lattice 
of atoms. In this case the isolated atom line is shifted by an 
energy which is the Fourier transform of J. As optical 

, I I I, I / 1  I, I I I I ,, / I, 

0.6 - n’ = 0.3, T* = 3 (a) _ 

1 L ,.L. 
: : i \ 

0.4 - 
; : 

: 

1 /I-i;) 
j 

0.2 - 
J 

0.2 - t 
o-5 -5 -2.5 -2.5 0 0 2.5 2.0 5 5 

WE, 
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0.6 - 

FIG. 4. Same as Fig. 1. Simulations results for a LJ gas (a) compared to 
the MSA for a hard sphere fluid (b) at a similar density. 
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1 n* = 0.5, T* = 3 (a) - 

-2 -1 0 1 2 3 

WE, 

FIG. 5. Same as Fig. 1. Simulations results for a LI gas (a) compared to 
the MSA for a hard sphere fluid (b) at a similar density. At this density 
we deal with a moderately dense gas. The MSA produces reasonable 
results for the density of states, but unphysical results for the absorption 
coefficient. a” becomes negative as well (not shown). 

wavelengths typically are much larger than the interparti- 
cle separation we consider the k-0 limit where we have 

J(k) =Eo(3/% 1). (28) 

The collective many atoms states (elementary excitations) 
for a lattice are called excitons.” The longitudinal (trans- 

12 

9 

6 ‘\ \ ,/‘-“ \ 
Jx: i 

L---l 
0’ \ / ‘-. . i 

I---------- _..._.. _______..________.. I . . . . . . . . . _ . . . . . . _---..._... 

0.6 

1 
tl11111111111111111’1’11”‘11 

-1 0 1 2 3 4 
0.3 

FIG. 6. MSA for a hard sphere fluid at liquid state density. The solid line 
is the absorption spectrum, which becomes negative and therefore is un- 
physical. The dashed line is the density of states that follows from one 
solution the MSA equation, the dot-dashed line is a different solution. 
The continuation at the crossing point follows from the real parts of the 

d 
0 ‘-1 0 1 z 

WE, 

n* = 0.85, T’ = 0.8 1 

FIG. 7. The density of states j?Jo) for an ideal fee solid (solid) com- 
pared to the density of states of a liquid (dashed). 

verse) excitons have a blue (red) shift of 2Eo (E,). Only 
the transverse excitons are spectroscopically active, since 
electromagnetic waves are transverse. 

In Fig. 7 we plotted the density of states for a fee solid, 
obtained using the expressions given in Refs. 21 and 22, 
and compare it to the simulation results of Fig. 1 for a LJ 
liquid. The qualitative agreement is quite remarkable. We 
clearly see the transverse and longitudinal modes in both 
calculations. It seems reasonable to adopt the fee solid as a 
zero order reference and to develop a perturbation theory 
to hopefully model the dielectric function of a liquid. The 
idea of comparing a liquid to a solid is not new, and it has 
been applied to dielectric fluctuations by Stratt.23 

In Figs. 8 and 9 we compare the density of states and 
absorption of a liquid with a disordered solid where the 
particles have a Gaussian distribution around their fee lat- 
tice positions, as in the Einstein solid. These simulations 
were performed in a way similar to the liquid simulations, 
but now the positions of the particles were generated by 

n* = 0.85, T’ = 0.8 - 

Green function. There is no way to choose the “most physical” solution 
and have a continuous absorption spectrum. The failure of the MSA at 
densities which are comparable to liquid densities rules out its role as a 
reference theory. 

FIG. 8. The density of states p,(o) for a Gaussian (Einstein) solid with 
standard deviation 0.090, (solid) compared to the density of states of a 
liquid (dashed). The wiggles in the fee simulation are finite size effects. 
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I <$i2’ I k=O) I 2 
co-Ei2)+-ie ’ (34) 

where gC2) and Ec2) are the eigenfunctions and eigenvalues 
of the 2 x 2 matrix 

Am/E, 

FIG. 9. Same as Fig. 8, but for the absorption spectrum E”(W). 

taking the fee positions and adding a random number 
drawn from a Gaussian ensemble. We used the value of the 
Lindemann parameter,24 the mean square displacement, as 
a fitting parameter. Matching the spectra we found that its 
fitting value essentially equals the Lindemann criterium for 
melting, the mean square displacement averages to 10% of 
the nearest-neighbor distance. 

We next develop a simplified approximation for the 
dielectric function which illustrates that a perturbation 
from the solid is reasonable. We are interested in the po- 
larizability 

a”(w)=lim1121m(k[G(w)Ik), 
k-0 p 

and the density of states 

(29) 

p(w)=; $Im(klG(w)jk), 

where 

(30) 

Gb)=-&, 
and 

H= Lattice + A* (32) 

In terms of the eigenfunctions and eigenvalues of a random 
N X N matrix we have 

a”(o) =i Im(k=O[ G(o) 1 k=O) 

=-JImI: 
I (tCAlk=O) I2 

A w-Ek-ie * 

xA =E,/J. (4Q) 

We assume that J is a random variable with 
Gaussian distribution and standard deviation u, P(J) 
= (2nd) --1’2 exp( - J2/2d>. Using this we find for the 
polarizability a, 

(33) az(w) =f(d-J), (41) 

and for the dielectric function In the simulations presented in Figs. 8 and 9 we have used 
a numerical diagonalization. 

We now propose a simplified scheme which captures 
the essential physics of the system. We shall approximate 
a”(o) by 

E( k=O) 

T(klAlk=O) (35) 

The parameter T is taken to be a random variable, and 
E(k) is the energy of the state perturbing the k=O state. 
The approximation at this point is that only one state per- 
turbs rather than many. This is an ingredient to the exten- 
sion to many perturbing states described below Eq. (44). 
While the 2 X 2 approximation is clearly an oversimplifica- 
tion, it has the following attractive features: (i) It produces 
tractable results, (ii) For large Ao=w--E. it predicts 

which is a feature observed in a number of simulations.” It 
should be stressed that this Aam2 dependence has a com- 
pletely different origin than the gas phase tail.” Here it 
follows as a property of perturbation theory, while in the 
gas phase it crucially depends on the r-’ nature of the 
dipole-dipole interaction. Finally (iii) if E(k) = E( 0) and 
A is Gaussian, the 2X2 approach predicts a Gaussian line 
shape, in accordance with conventional pictures. 

We now propose an improved approximation, taking 
into account that many small fluctuations contribute to 
the final line shape. For notational convenience we set 
E(k=O)=O, r(kIAlk=O)=J, and E(k)=E. The 2x2 
matrix 

(37) 

has the eigenvalues 

E2 
E,=$ z +J2 LO 1 

l/2 
, (38) 

and eigenfunctions 

with 

~2(w) =f(w,-Eo), (42) 

where the subscript 2 reminds us that these correspond to 
a 2 level model, and 
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O 

WE, 

FIG. 10. The polarizability of a two level model 4, Eq. (41) with 
d=%. The dip is unphysical and signifies the absence of third particle 
effects. 

f(aE,)= sdJP(J) j-dEp,(E) 

x [;+s(Am) y ($+J2)-“2]-1 

x(l+[g+s(Ao)[ l+(&E)‘i’“i’)-‘, 

(43) 
where Aw=w- E,, ps is the density of states for the ref- 
erence solid, AE= E- E, = Aw - J2/Ao, and s( ho) is the 
sign function, s(Ao)=l if Ao>O, and s(Ao)=-1 if 
Aw<O. 

The density of states is given by 

p2b) = s dE,p,W)f(dl). (4) 

As is shown in Fig. 10, &’ has the same unphysical dip 
at E. as the gas phase pair atom approximation.” We pro- 
pose an improvement similar to the gas phase. We assume 
that many small, independent perturbations exist, adding 
up to the total perturbation, that is, 

C(t) ,e--ifyp) ~-e-‘ye’J”‘) (&53’). . . 

=e -i*r[Cz,,wlN, (45) 

where we keep c?N constant. To obtain actual results we 
Fourier transformed Eq. (41), took the iVth power and 
transformed back. For aN= 1. (nJ)2, and iV large we ob- 
tained Figs. 11 and 12 for the density of states and E. 

V. EFFECTS OF NUCLEAR MOTIONS 

We now consider the effects of nuclear motion. The 
nuclear motion will be treated classically. We then have a 
semiclassical procedure where the electronic degrees of 
freedom are quantum mechanical and the nuclei are 
classical. 
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WE, 

FIG. 11. The density of states obtained from Eq. (45) with C following 
from Eq. (44) (solid) compared to simulation results for a liquid 
(dashed). 

The positions and velocities of the atoms are assumed 
to follow classical equations of motion 

d 
;I; r,(t) =v,, 

f v,,(f) =F,, (46) 

Fn= - c V,Vr,,>, m 
where V(r) is the ground state interaction for which we 
use the Lennard-Jones potential. 

We now approximate 

exp+[ -iJidr.!(r)]-exp[ -iJidrj(T)], (47) 

4- n’ = 0.85, T’ = 0.8- 
, 

r: 
I \ 

WE, 

FIG. 12. The absorption spectrum E”(O) following from Eq. (45) 
(solid) compared to simulation results for a liquid (dashed) at the same 
state point as Fig. 11. 
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so we replace the time ordered exponential by an ordinary 
exponential. This is in fact the lowest order approximakion 
in an adiabatic expansion,” where we assume that the J(t) 
at different times commute 

[J(r=O),J(t)] =o. (48) 

This semiclassical assumption enables us to make con- 
siderable progress. It is here that the matrix nature of J 
shows up. For low density it is a good approximation, as 
then only binary interactions (presumably) are relevant 
and then Eq. (48) is always satisfied. It should hold for 
short times as corrections are of higher order in time. 

For short times the particles do not move over large 
distances and we can make a gradient expansion of J, so 
that 

&r)=j(O)+A&t), 

with 

(49) 

A&>= c Jofd7v.(T)vJ(o). 
n 

We then have 

(50) 

C(t) =e-infC,(t)CJt), (51) 

where C, is an NX N matrix describing the static broaden- 
ing 

C,=exp[ -i,F(O>t], (52) 

and the dynamics is described by the NX N matrix C,, 

Cd(r)=ew[iJ~~~l J: dTs u,,c,)v,&o)]. (53) 

To the second order cumulant expansion we obtain 

x c c (U,i(7)U,,j(7~))(V,3(0)Vn~jj(0)) . 
ni n’j I 

(54) 

We performed a molecular dynamics simulation in or- 
der to evaluate the gradients of J. A typical result for a 
liquid is given in Fig. 13. A remarkable feature is that the 
gradient seems to depend on the energy of the particular 
state. Also the gradient of J seems to be inversely propor- 
tional to the density of states at that given energy. Even 
though the gradient squared varies considerably for the 
optically active frequency range, the f4 dependence will 
ensure that for a reasonable estimate we can replace 2p,p by 
a number that is independent of p, considering Fig. 13 we 
take ilps= 5W*/d in the following discussion. 

Performing the thermal velocity average we find for short 
times 

1 i =exp 

where exp denotes the exponent of the matrix lpp~. We 
have 

;i,t = c Vn3p,pJn3p’~,p* , 
ni,p” 

The most interesting question is how all of this works 
out for a real liquid such as argon. Argon can reasonably 
be described by a Lennard-Jones liquid with parameters 
Ed= 119.8 K, a, =0.3405 nm. Furthermore the mass is 
39.95 a.u.=6.634~ 1O-26 kg, the polarizability a= 1.6411 
x lo-” m3. We are here mainly interested in order of 
magnitude estimates, and for the isolated atom transition 
frequency &, a reasonable number is 10 eV. For these 
numbers the electronic dephasing time (inverse linewidth) 
te, = l/J- 5 fs. The gradient of the energies gives us a time 
scale after which the motion becomes important &,,t 

(56) = ( 8m/kBTil,,) “4 and for argon this is 50 fs; the effect of 
the nuclear motion is therefore irrelevant for linear optical 
properties of liquids. For a gas, the nuclear motion gives 
rise to collisional broadening which is of comparable mag- 
nitude as the inhomogeneous broadening.” 

where p runs over a basis of the optical degrees of freedom 
t-hat may bz different from (ni). Since, by assumption, 
J(0) and A.i commute, both commute with /2. If we take a 
basis in which J(0) is diagonal, we need only to consider 
the diagonal elements ,%p,p. Explicitly in terms of the eigen- 
functions $‘p’ nr 9 

FIG. 13. The gradient squared of J, &, [Eq. (57)] as a function of the 
eigenvalue up for the same system as in Fig. 1. 
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The first conclusion is that motional corrections are 
proportional to e-“, compared to a eAat2 dependence 
which is typical for a static linewidth. Nuclear motions are 
therefore either irrelevant, or they dominate and the cross- 
over between these two extremes is abrupt (varying, say, 
the mass). 

The theory developed here points out that systems in 
which nuclear motion is important should be weakly inter- 
acting and made of light atoms. In order to observe the 
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nuclear motion in an optical experiment one has to go to 
nonlinear experiments, such as the photon echo.26*27 Our 
theory suggests a ewK’ decay rather than the simple expo- 
nential decay which is a characteristic of conventional ho- 
mogeneous broadening. This should be observable in a 
photon echo experiment. 

In the present discussion we have made the semiclas- 
sical approximation Eq. (48)) which is fundamental to our 
treatment, the gradient expansion and the short time 
straight line approximation. The last approximation is jus- 
tified for liquid argon; tmot is quite a bit shorter than the 
mean free time, which is -0.2 ps. The straight line ap- 
proximation can be easily improved, which may be useful 
for systems that are interacting more weakly than argon. 
We make a cumulant expansion of the last “exp” of Eq. 
(51). The first cumulant is proportional to Ar and is zero 
by symmetry. The second cumulant is proportional to 
Ar,Ar,,,. This cumulant is a complex many body quantity 
and evaluation of its dynamics is hard. To estimate it we 
keep the diagonal, i= j contribution. In terms of the ve- 
locity autocorrelation function p(t) = ( u,u,( t) ) we then 
find 

IS 
t 

exp dtt C ArnitlVnJJ(O> 
0 ni 1 

=exp[ -~~p,p.~omdr,p(t~)(~r’-r,~+~~)]. (58) 

For short times the integral over 1, is proportional to 
k,Tt4/4m, for times longer than the velocity correlation 
time it crosses over to a 2 Dt3/3 dependence, where D is the 
self-diffusion constant. The self-diffusion constant appears 
here due to the fact that we retained the i= j contribution. 
The t3 dependence we believe to be generic, that is inde- 
pendent of the diagonal approximation. 

Recently a number of articles have appeared that pro- 
posed to use a phonon description for the dynamics of 
liquids.28,29 In this approach, which is rigorous for short 
times, phonons are defined as “instantaneous” normal 
modes. While we have shown in this paper that the solid is 
a good reference for the optical properties, this does not 
necessarily prove the usefulness of a solid reference for the 
nuclear dynamics. For one thing in order for the instanta- 
neous normal mode picture to be meaningful, the modes 
have to be sufficiently long lived (at least a few vibrational 
periods). Whether this is the case is still an open and im- 
portant question. Alternatively it is possible to formulate a 
theory that incorporates nuclear dynamics through colli- 
sions. A careful analysis shows that even for liquids it is 

very reasonable to talk about collisions.30 This approach 
has many advantages, it is consistent, and it produces very 
reasonable nontrivial predictions. 
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