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Four-wave mixing signatures of exciton Bose condensation 
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We propose a transient grating experiment in order to observe exciton Bose condensation. We show that for typical pz 
in semiconductors the velocities of first and second sound are comparable, resulting in a characteristic behavior of the 
the longitudinal modes. 

The possibility of observing Bose condensation of 
excitons has been a long-standing objective [ 11. Since 
exciton parameters (scattering length, mass, etc. ) are 
very different from those of He or spin-aligned hy- 
drogen, and can actually be varied in various semi- 
conductor or molecular materials, this effect could 
provide an important insight regarding the dynamics 
of quantum Bose liquids. As excitons have a finite 
lifetime, creating persistent superconductors is im- 
practical even for long-lived excitons (e.g. triplet ex- 
citons or biexcitons). 

Several experiments on highly excited semicon- 
ductors have been carried out in the search for Bose- 
Einstein condensation of excitons. Attempts focused 
on the predicted narrow emission lines in the lu- 
minescence spectrum of strongly pumped CuOz [ 21. 
The expansion rate of an exciton gas was measured 
by observing the spatial distribution of the exciton 
gas as a function of time [ 3 1. Later in a numerical 
study this was interpreted as evidence for a state with 
zero viscosity [4]. The interpretation of these ex- 
periments is not straightforward for several reasons: 
(i) The expansion rate should drop as the exciton 
droplet expands and the density decreases. Also there 
should be a transition to a normal state after some 
time. (ii) At the edge of the drop the density of the 
exciton fluid drops to zero, hence there should be a 
normal layer at the edge of the drop, causing friction. 
This may prevent the observation of a sharp tran- 
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sition. (iii) One should worry about whet1 
possible to observe superfluidity of a gas that 
expanding [ 51 - according to the Landau 
there is a maximum velocity difference beta 
normal and superfluid components. For hi& 
locity differences the superfluidity breaks do 
for helium the actual breakdown velocity i 
lower due to the appearance of vortices. ( 
perfluidity presupposes a hydrodynamic I 
tion, while for a freely expanding gas a more N 
kinetic description in terms of elementary 
tions (particles) seems more appropriate. n 
cently it has been argued that an enhanced 
erate four-wave mixing signal observed 
presence of strong pumping may suggest Bc 
densation [ 6 1. It is fair to say that while all 

experiments may provide some evidence f 
densation, no unequivocal experimental opt 
nature has been predicted or found. 

In this Letter, we analyze the use of time- 
nonlinear optical techniques for probing the 
its of excitons at high densities. We show th; 
cific four-wave mixing technique, transient 
[ 7 1, reveals a number of characteristic feat 
lated to the exciton sound waves [8] whit 
provide unambiguous evidence for Bor 
densation. 

We use the standard Hamiltonian 

H= F E ajlak + 4 C Vqa~+,a~_,akap. 
km 
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dependent of q, a being the scattering length, and set 
fi = 1 throughout. 

As far as the equilibrium properties go, there are 
two dimensionless numbers characterizing the state, 
the density p z nA $, with density n = N/ V, and ther- 
mal wavelength AT= (2x2/mkJ)‘/2. The other di- 
mensionless parameter is the interaction scattering 
length xrpa/l=. Of these the parameter x is partic- 
ularly interesting as it is large for helium but can be 
varied over a wide range for an exciton fluid by 
changing the density. It is the expansion parameter 
of the many perturbation theories [ 9,10 ] upon which 
we base our treatment. We consider a weakly inter- 
acting gas. For the normal phase the thermodynamic 
quantities are well known [ 111. For instance for the 
pressure P we have 

P+g,/,(r) + f nz . 

T 
(2) 

The second term on the right-hand side is the lowest 
order in density correction due to the interaction 
[ 11,121. z is the solution to n;i:=g,,,(z) with 
g,(z) = C, z”/na. For the sound velocity we obtain 

cf= -- bT%mtz) +2n a 
m 3g3j2tz) m2’ (3) 

For the Bose condensed phase we use the lowest- 
order Bogolyubov theory in which quasi-particles 
have energy [ lo,13 ] 

. (4) 

For N,, we use a mean field theory, which is an ex- 
cellent approximation as long as we are far (say a 
factor 2) from the critical density. Then N,, follows 
as the solution of the following self-consistent equa- 
tion N= N,,+ N,, with the number of particles in the 

normal phase 

Nn=v (zn)3 I 

d3k w(k) [co2(k)+N~a2/m2]-*/Z 
eSoCk)_ 1 

7 

(5) 

where we take only the thermal depletion of the 
ground state. When we are far away from the phase 
transition, No/N is close to unity, for a weakly in- 
teracting fluid. 

culation of the thermodynamic functions thrc 
partition sum is straightforward, we have e.g 
entropy 

s = kgv 5F_xwx) 
np dx’ ( > 

where 

The ground state contribution to the prest 
to be taken into account separately [ 9 ] ; aps 
the thermal contribution of quasi-particles 
the contribution due to wavefunction overh 

The factor 2 difference between the two tern 
from the fact that the condensed particles a: 
the same state. This overlap contribution c 
substantial difference between the sound vf 
of the normal and superfluid phases, even mc 
a factor fi in a transition regime where dIv 
large, yet No is small. 

To describe the time evolution of the excit 
sity deviation 6n(k, t) we need to consider 
gitudinal “normal” velocity u,,(k, t), the 101 
nal superfluid velocity u,(k, t) and the devi; 
the local temperature from its average 6T(ll 
addition, since we do a kinetic theory we als 
duce additional variables, the (kinetic) stres 
c(k, t) and the temperature current JT(k, t: 

Since the long mean free path of quasi-par 
a superfluid phase may destroy the observal 
sound waves, we model the dynamics by the 
ing coupled kinetic equations, which genera 
standard helium hydrodynamic equations [ 

:6n(k, t) =ikn,u,(k, t) +ikn,u,(k, t) . 

Here n, and n, are the normal and superflu 
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eaf(k)_2+e-B(k) ’ 
0 

(10) 

and n, = n - n,. Furthermore 

cw 6n(k, t) 
m%v.(S t)=ikG ~ 

T n 

Wk t) - 

T 

-mp,v,(k, t)+ikma(k, t) . (11) 

This equation defines a( k, t). For the superfluid ve- 
locity we have 

d . dP &z(k, t) 
mzv,(k, t)=lkz T n 

+ik 
( 

_ _TS+_Tdp 
I> 

ST(k, t) 
nV ndT, T ’ 

and for the temperature deviation 

%-$8T(k, t)=i 
kc 

:S+ yFT 
I> 

v,(k, t) 
n 

+ik 
( 

_ :S+ ZZVdP 
I> n dT, vr(k, t) 

(12) 

-p,+T(k, t)+ik&(k, t) . (13) 

This equation defines the temperature current JT( k, 
t). Finally for the current we have 

-$o(k, t)=ikXv,(k, t)-vuo(k, t) , (14) 

and 

i_lr(k, t)=ikYGT(k, t)- vJJT(k, t) . (15) 

The terms proportional to the p describe the effect 
of the acoustic (lattice) phonons, the terms propor- 
tional to v are caused by quasi-particle-quasi-par- 
ticle scattering. To lowest-order approximation 
va v. = n,xa2ii, where a is the scattering length, and 
D is the average velocity which can be estimated to 

1 OD 02= - 
s 6n2m3 dke”‘k’_2+e-“‘k’ * 

0 

Pk6 

The exciton-exciton interaction introduce 
parameter, the wavevector 

bsna’. 

It should be pointed out that N,JN is not 
n,/n, as the latter is the “dynamic” normal 
as defined by Landau [ 9 1. We use the Ianda 
throughout. We have taken the classical flui 
X= 2 Y= !C2. For a classical fluid D2= k,T/, 

For a typical experimental condition in C 
havem=3m,, [14],n=10’gcm-3 [2].As1 
pulse that creates the excitons also heats up 
tice the temperature of the exciton gas may 
high. For the scattering length we take two tj 
exciton Bohr radius, a= 1.4 nm. If we take 1 
for the temperature we obtain p= 20 and x= 
are in an intermediate regime, quite differe 
superfluid helium. 

The proposed transient grating experimel 
with a strong laser pulse that creates the excite 
We then apply a pair of time-coincident I 
pulses with wavevectors k,, and k2 that se1 
exciton grating with wavevector kc = kl - k2. 
fixed time delay, a weak off resonant probe pt 
wavevector k3 is applied that is diffracted 
remnant of the grating of the first pulse to : 
a signal with wavevector k,= k3 + kc. The i 
of the diffracted signal is proportia 
S(t)= ISn(k,, t) 12. 

We solve eqs. (9)-( 15) with the initial cc 
6n (k, t= 0) = 1, and the other variables ze 

signal amplitude 6n ( kG, t) can then be expa 
the six modes 

6n(kG, t)= 2 cjexp(ivjkGt-ck&t) . 
j=l 

There are four eigenmodes with eige 
+ ivj( k) -rj( k) k2 corresponding to first soun 
2) and second sound (j=3, 4), and two 4 
modes with Uj=O. rj is the damping (tra 
coefficient. In the following calculations we 
exciton-phonon interactions so j&T= 0. 

In fig. 1 we oresent the velocities of first : 
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Fig. 1. The sound velocity as a function of density. The dotted 
line indicates the transition density. The two lines correspond to 

first sound, a density mode (solid) and second sound, a temper- 
ature mode (dashed). This identification follows from a study of 
the eigenfunctions. At these densities only first sound can be ob- 

served in a transient grating experiment. This figure suggests that 

the velocity of density oscillations is discontinuous at the super- 
fluid transition and that second sound, not first sound, is to be 
considered as the extension of normal sound. 

continuity of the sound velocity at the transition may 
be due to our use of a mean field description and may 
be rounded off in reality. We notice a large decrease 
in the velocity of first sound when we cross the tran- 
sition density. While there is a sound mode with 
roughly the same velocity in the normal and super- 
fluid phases, it does not correspond to density os- 
cillations in the superfluid phase and hence cannot 
be observed in a transient grating experiment. The 
drop in the sound velocity is the first signature of 
Bose condensation that can be obtained from a tran- 
sient grating experiment. 

The two sound modes for higher density are pre- 
sented in fig. 2. For a highly degenerate fluid (x large) 
such as helium we have the well-known expressions 
for the sound velocities. For first sound 

n, dp VT=-- 
mndn,’ (19) 

and for second sound 

(20) 

In the coupled equations we find a curve crossing. 

30 60 90 120 150 

P 

Fig. 2. (a) The velocity of the hydrodynamic modes vj as a func- 

tion of density for much higher density than presented in fig. 1. 
Dotted: lowest-order approximation eqs. ( 19) and (20). Dashed 
and solid: two of the eigenvalues obtained by diagonalizing the 

6x6 matrix eqs. (9)-(15). (b) The decay rate rj of the two 
modes displayed in (a) in the hydrodynamic regime as function 
of density. The decay is in units (keT/m)‘/*/ko. In addition there 

are two nonpropagating modes (not shown). 

The mode with the lower damping turns out to be 
the density mode that shows up in the grating. There 
is a density range near the crossing (p=70 in fig. 2) 
where the damping of both modes is comparable. 

The physical origin is the following. For a weakly 
interacting fluid x is very small. Then dP/dn is very 
small, for an ideal Bose fluid it is actually zero, so 
that density waves (first sound) is nonpropagating. 
On the other hand, for a strongly interacting fluid 
first sound is faster than second sound by a factor 
fi, and for a certain parameter the velocities of first 
and second sound become comparable. At this state 
point density oscillations are damped. This is the 
second signature of Bose condensation. 

The temporal profile of the grating response is 
shown in fig. 3 for three state points. The times at 
which the grating vanishes produces a direct mea- 
surement of the sound velocity. In figs. 3a and 3b the 
grating response has an oscillating envelope, dem- 
onstrating the presence of two sound modes. In fig. 
3c the mean free length is too large to observe second 

459 
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p = 5, x = 1.5 (a) 

t’ 

Fig. 3. The grating signal for suitable phase points and waveveo 

tor ~o/$=O.OOS. The state point in (a) corresponds to 
n = 6 x 1 OL9 cmm3, and T= 85 K. For these values the wavevector 
correspondstok=2(pm)-‘.Thetimeisinunitsk(ka~/m)-‘12 

corresponding to about 60 ps. The beats in (a) and (b) reflect 
the coexistence of two sound waves. In (c) the mean free length 
is too large for second sound to exist. For a normal fluid the grat- 
ing decays like in (c ) . 

sound. These results suggest a third experimental 
probe of Bose condensation. We have thus three 
characteristic signatures of Bose condensation in a 
transient grating experiment. 

The light mass of excitons (close to the electron 
mass) makes it easier to observe Bose condensation 
compared with atomic systems (spin-aligned hydro- 
gen or He). However, their finite lifetime is a serious 
limitation. Certainly excitons have to be sufficiently 
long lived to allow for the transition. Optically for- 
bidden triplet excitons or biexcitons [ 6 1, which are 
longer lived, are therefore preferable. Exciton anni- 
hilation processes which are faster at high exciton 
densities pose an additional difficulty. Nevertheless, 
densities of 10 l9 cmb3 were achieved in CuCl with- 
out this becoming a problem [ 2 1. For anthracene 
densities of the order of 1O23 cmm3 are needed to ob- 

serve exciton fusion [ 15 1. The formation of the con- 
densate has attracted considerable theoretical atten- 
tion [ 16 1. For a system not too far from equilibrium 
the exchange between normal and condensed parti- 
cles is very rapid. This is based on the observation 
that the effective Hamiltonian is not number con- 
serving, and using the Bogolyubov eigenfunctions it 
can easily be shown that there is an oscillation be- 
tween quasi-particles with momentum q and -q that 
has a frequency es. While this exchange is collision- 
less, due to the distribution of frequencies there is a 
dephasing and we expect the exchange to take place 
on the timescale of t,=filk,T, which is of the order 
of picoseconds. One could therefore observe Bose 
condensation even if the particles have a finite 
lifetime. 
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