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The nonlinear optical response of liquids subjected to a series of N femtosecond laser pulses is 
calculated using a multimode harmonic model for nuclear motions, with nonlinear coupling to 
the radiation field through the coordinate dependence of the electronic polarizability. Using 
electronically off-resonant optical fields, this multidimensional spectroscopy is shown to provide 
direct information regarding the homogeneous or the inhomogeneous nature of the spectral 
density obtained from optical birefringence measurements. Complementary information can be 
obtained using infrared pulses where the multiple time correlation functions of the nuclear 
dipole moment (rather than the electronic polarizability) are being probed. 

I. INTRODUCTION 

The interpretation of vibrational line shapes in liquids 
has been the subject of numerous experimental and theo- 
retical studies.lb3 Dephasing processes are crucial for the 
interpretation of optical processes in condensed phases. 
These processes are traditionally classified as either homo- 
geneous or inhomogeneous.ti When different molecules 
have different transition frequencies because of varying lo- 
cal environments or initial states, the spectral line shape is 
said to be inhomogeneously broadened. This broadening 
carries no dynamical information. Homogeneous broaden- 
ing arises from an interaction with a bath with a very fast 
time scale, causing rapid fluctuations in the local environ- 
ment. Since nuclear motions in liquids cover a broad range 
of time scales, it is not clear whether spectral line shapes 
can be classified as either homogeneous or inhomogeneous. 
Even when such classification is possible by virtue of sep- 
aration of time scales, it is not easy to firmly establish it 
experimentally. 

Linear optical measurements result in a line shape that 
is a simple convolution of the homogeneous and the inho- 
mogeneous contributions, and they cannot therefore distin- 
guish between the two mechanisms. Nonlinear techniques 
such as fluorescence line narrowing, hole burning, and 
photon echoes are, however, sensitive to this distinction.7-9 
Early off-resonant picosecond coherent Raman measure- 
ments were assumed to have the capacity of selectively 
eliminating inhomogeneous vibrational dephasing and re- 
vealing the homogeneous component.‘P1G’2 Loring and 
Mukamel13 have formulated the problem using a multitime 
correlation function approach and showed that this elec- 
tronically off-resonant Raman technique, which contains 
only a single time variable is equivalent to linear absorption 
and is thus nonselective in principle. They pointed out that 
only multitime techniques such as the Raman echo can 
probe selectively the homogeneous linewidth. Several ex- 
periments have been subsequently carried out in order to 
measure the homogeneous vibrational linewidth.‘“” These 
experiments were conducted on isolated intramolecular 
high frequency vibrations and employed laser pulses longer 
than the vibrational periods. As such they did not have the 
time resolution to observe directly the vibrational motions. 

The decay of the signal with the delay between the excita- 
tion and the probe pulses then reflects vibrational dephas- 
ing. 

Recent development of femtosecond techniques made 
it possible to probe intermolecular vibrations in the fre- 
quency range 0-7OO[cm-‘1 using an impulsive excitation 
with pulses short compared with the vibrational peri- 
ods.18-23 Under these conditions the time resolved signal 
can show the coherent vibrations as well as their dephas- 
ing. Experiments conducted so far including impulsive Ra- 
man, optical Kerr, and pump-probe spectroscopy have 
yielded spectral densities in the frequency range of O-500 
cm-’ which provide characteristic signatures of intermo- 
lecular nuclear degrees of freedom, both local and collec- 
tive. It is tempting to attribute the structure observed in 
these spectral densities to coherent nuclear motions, as 
suggested by instantaneous normal mode descriptions of 
liquids.2”27 However, since impulsive birefringence and 
stimulated Raman techniques have only a single time vari- 
able, the limitations of the picosecond Raman measure- 
ments apply here as well; it is impossible to deconvolute 
the inhomogeneous contributions to these spectral densi- 
ties, and higher order measurements are called for. 

In this article we employ path-integral techniques2’ to 
derive a closed form expression for the nuclear response 
function to an arbitrary order in the field, using a harmonic 
model for nuclear motions with a nonlinear coupling to the 
radiation field (i.e., through the nonlinear dependence of 
the electronic polarizations on nuclear coordinates). Inho- 
mogeneous broadening is incorporated by using a multi- 
mode Brownian oscillator model’ and assuming a static 
distribution of its parameters. As an illustration we analyze 
the possible application of a five-pulse (Pt5’) measurement 
to a model liquid with a typical optical birefringence spec- 
tral density. Adopting a correlation function terminology, 
an off-resonant Pc3’ measurement such as CARS is related 
to a two-time correlation function of the nuclear polariza- 
tion with a single propagation period and, as far as the 
nuclear dynamics are concerned, is equivalent to linear 
absorption. Higher order techniques PCs), PC’), etc., can 
provide valuable additional information. By looking at the 
joint dynamics of N evolution periods we have in effect an 
N dimensional spectroscopy. Two-dimensional spectros- 
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FIG. 1. Pulse configuration for a 2N+ lth order experiment. The system 
first interacts with N pairs of pulses, which have the same time profile 
Ej( t), but different wave vectors k, and kj and frequencies sZi and 0; for 
the jth pair of pulses, respectively. The last pulse (k,, 0,) is the probe 
that generates the signal. 

copy has proven extremely valuable in the analysis of 
NMR spectra of complex systems such as proteins.29 The 
present analysis has some close connection with its NMR 
counterpart, although the type of information obtained 
here is very different, and nuclear systems are much more 
complicated than spin systems. The present theory applies 
also to experiments conducted using resonant infrared 
(rather than off-resonant optical) laser pulses. Comments 
to that effect will be made in the discussion. 

In Sec. II, we formulate the vibrational polarizations in 
the ground state using path integral techniques. In Sec. III, 
we calculate the 2N+ lth order off-resonant response func- 
tions for a single harmonic oscillator system. We then ex- 
tend these results to a multimode damped oscillator system 
in Sec. IV. In Sec. V we show how the multidimensional 
spectrum can be used to distinguish between homogeneous 
and inhomogeneous line broadening mechanisms by calcu- 
lating fifth order off-resonant signals. Concluding remarks 
are made in Sec. VI. 

II. VIBRATIONAL POLARIZATION IN THE GROUND 
STATE 

Consider a liquid system interacting with an external 
electric field. The Hamiltonian is 

H=Ho-E(r,t> v, (2.1) 
where Hc is the electronic and nuclear Hamiltonian of the 
liquid and V represents its interaction with the electric 
field. The external field consists of a train of N pairs of 
simultaneous pulses, followed by a final (probe) pulse, 
(Fig. 1) 

N 

H=f&(p,d -E2(rJMq), (2.5) 

where a(q) is the electronic polarizability. A derivation of 
this effective Hamiltonian starting with a two electron level 
system is given in Appendix A. The form Eq. (2.5 ) applies, 
however, to a system with an arbitrary number of electron- 
ically excited states. For clarity, we hereafter assume that 
the polarizability is isotropic, and do not use an explicit 
tensor notation; this can be incorporated with no major 
difficulty.20 The 2N+ lth polarization is then expressed as 

E(v) = C Ej(r,t) +-%(r,~), 
j=l 

where 

(2.2) 

Ej(r,t>=Ej(t){exp[i(Qjt-kjr)] 

+exp[i(Rjt-kJr)]}+c.c., 

and 

XR’2N+1)({Tj)), (2.6) 
(2.3) 

where the 2N+ lth order response function is given by 
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&-(r,t) =ET(t)exp[i(n,t-k,r>] +c.c. (2.4) 

Here Ej(t) denotes the temporal profile of the jth pulse. 
We assume that the pulse pairs are well separated in time. 
We further assume that the system is initially in thermal 
equilibrium in the ground electronic state. 

Femtosecond measurements conducted with laser 
fields tuned far below any electronic transition provide 
valuable information regarding nuclear motions.‘&23 Off- 
resonant measurements have the following attractive char- 
acteristics. (i) Excited state populations are limited by the 
Heisenberg relation to very short times At= l/Aw, Aw be- 
ing the off-resonant detuning. As ho is increased, these 
populations become practically negligible and the measure- 
ments probe only ground state dynamics. (ii) The time the 
system spends in an electronic coherence is also limited by 
the same Heisenberg relation, and consequently, nuclear 
dynamics can be neglected during coherence periods. In an 
experiment conducted with 2N+ 1 laser pulses, related to 
the polarizations PczN+ ’ ), we need to consider therefore 
only N (rather than 2N) time evolution periods, in which 
the system is in the ground state. The above arguments 
greatly simplify the interpretation of these measurements. 
On the other hand, simplifying assumptions such as the 
rotating wave approximation and the independence of the 
dipole moment on nuclear coordinates (the Condon ap- 
proximation) which usually hold in resonant measure- 
ments cannot be justified under off resonant conditions. 

Because of (i) and (ii), the electronic excited states do 
not play a role in the off-resonant experiments, and we can 
describe the system by an effective ground state nuclear 
Hamiltonian,7P30 where all electronic excited states have 
been eliminated, 
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can define generating functions to any order F(2N+1) (a;l), 
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FIG. 2. Time variables for the Nth order response function [Eq. (2.711. 
In the figure, r, are the times of the actual interactions with the fields and 
7, are the intervals between successive interactions. 

R(2N+1)(CTjl)r (JNtr(a(q) [ il 

XeXp( -fHpTj)a’(q)],i. (2.7) 

Here aXA = [ad] represents the commutator with the 
electronic polarizability. This response function depends 
only on the ground electronic state dynamics. The laser 
pulses thus enter as an external driving force for the nu- 
clear degrees of freedom, and the coupling is proportional 
to the electronic polarizability. Since each ax can act ei- 
ther from the left or from the right, the above expression 
contains 2N terms. For example, the two lowest order re- 
sponse functions are written as 

R'3'(r,)=L ([d~,bo,)lp fi > g ' (2.8) 

R'5'(?,7.1)=4 ([[(r(t3),(r(f2)l,~(fl)lPg), (2.9) 

where (r (tj) represents the operator a(q) in the interaction 
picture at time lj=Zjzr=j7k, (Fig. 2) 

a(tj) -exp(iH&j)a(q)exp( -iHgtj). (2.10) 

We can calculate all of these terms using a Liouville 
space generating function.28 A typical term in Eq. (2.9), 
for example, can be written as 

(cr(t2)a(t3>cr(tl)~s,) =lim{B1&,&,P(a;t)}. (2.11) a-0 
Here 

a 
BjZa 6 , 

i 1 

(2.12) 

+ v’(t)q) , (2.13) 

III. RESPONSE FUNCTIONS OF A SINGLE HARMONIC 
NUCLEAR MODE 

We shall now apply our results to a model system with 
a single nuclear degree of freedom. The generalization to 
an arbitrary number of degrees of freedom is straightfor- 
ward and will be made in the Sec. IV. We thus take for the 
ground state Hamiltonian 

H,(p,q) =p2/2m + &m&d. (3.1) 

The calculation of P(a;t) is formally identical to the 
Feynman-Vernon influence functional,31 although the un- 
derlying physics are very different, since V(t) in our case is 
an external given function, that does not depend on the 
system coordinate. We then have 

F(a;f)=exp[ -& Jidr’Jtd7(V(r’) 

- V’(T’)) cos(wo(r’---r))coth 

X(V(r)+V’(r))-isin(wo(7’--7)) 

X(V(T)-V(7)) . )I (3.2) 

The generating force V(t) for the 2N+ 1 th order response 
function can be defined by introducing the sign operators 
ej , where Ej = - if aj operates on p from the left and 
Ej= + for operation from the right. Each of the possible 2N 
Liouville space paths can thus be defined by a special 
choice of ej (j= l,...,N). For the last interaction we al- 
ways set eN+r= -. Using this notation we have 

The 2N-t lth generating function is then given by 

F(2N+1)(a;(Tj}) =exp [ jy{:, i, ‘Pkc-~k( j, Tm) 

(3.4) 

with 

where C,(t) are the two-time autocorrelation functions 
of the nuclear coordinate (C+(t) = (q(t)q), C-(t) 
= (qq( t) ) ) defined by 
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*isin(tief) , (3.5) 1 
and C’ (t) is the real part of C, (t) . We finally have for the 
2N+ 1 th order response function 

R(2N+1)({7j))=lilIl z 
0 

i N c c *-’ c E,‘$“‘EN 
IS-0 e,=* 4=* EN= * 

n A . ..A Xala2 aN+ 1F(2N+ ‘) (a;{Tj}). (3.6) 

The nonlinear response function can be interpreted in 
terms of the time evolution of nuclear wavepackets in 
phase space.7V28 Each Liouville pathway has its own wave 
packet which serves as a generating function for the optical 
response. Since the response function is given by the trace 
of the wave packet, it is not essential to calculate the wave 
packets. They provide, however, a clear semiclassical pic- 
ture of the optical response. For the present harmonic 
model, these wave packets are Gaussian and are given in 
Appendix B. For more complex (anharmonic) models 
they can be calculated numerically using classical trajecto- 
ries. 

We next apply these results to two and three pulse 
experiments. From Eqs. (2.6)) (3.4)) and (3.6), the third 
order polarization is given by 

m P(3)(1) =p I do, ET(t)E:(t-~l)exp(i~ZTt-nrr) 0 
X[2cos(A~l(t--71)-Aklr)+l]R(3)(~1). 

(3.7) 

The response function is calculated using the generating 
function 

R(3)(r1)=lim L 1 E1&,B2F(3)(a;~,), 
a40fi 4,=* 

(3.8) 

with 

Fc3)(a;rl) =exp[u2u1C-.El(~1) +~(u~+&C’(O)]. (3.9) 

The fifth-order polarization is given by 

P)(r) =23 
s s 

m dr2 0 om dT1 ET(t)E~(t-72>E~(t-72-71) 

Xexp(i&t-ikTr) [2 co~(hR~(t-~~) 

-Ak2r) + l] [2 COS(AR~(~-T~-~~) -Aklr) 

+ l]Rc5)(T2,7 

where 

R(‘)(rz rr) = -1im 9 1-O 

9499 

XC’(O)]. (3.12) 

In Appendix C, we derive the same results starting from 
the 2N+ lth order response functions for a displaced os- 
cillator system. 

It is interesting to note that if a (q) depends linearly on 
nuclear coordinates, the present model is linear and all 
nonlinear response functions should vanish identically. 
This can be easily seen from the Heisenberg equation for q, 
which gives 

fj= -Jq+E(t) (3.13) 

(when a damping term ~4 is added in the right-hand side, 
this is known as the Drude model). In Liouville space this 
is a result of an interesting interference of various paths, as 
will be shown below. 

The simplest model which yields a finite nonlinear re- 
sponse is when the electronic polarization has an exponen- 
tial dependence on the nuclear coordinate, i.e., 

a(q) =a0 exp(q). (3.14) 

In this case, the response functions are obtained by simply 
setting aj=u in Eqs. (3.9) and (3.12) and no derivatives 
are necessary. Expanding in powers of u2, the lowest two 
terms in the third and the fifth order response functions are 
given by 

and 

x [C’(7,)+C’(T2)+C’(7*+~2) 

), (3.10) 

c c 
,=* ez=zt 

X E1E#*di283F (5)(a;.r2,7-1), (3.11) 

+p(o)l+--, (3.16) 

where C’(t) and C”(t) are the real and the imaginary 
parts of C, (t), respectively. The absence of an u3 term in 
R(‘) reflects the destructive interference that eliminates the 
nuclear response for the linear model a = aouq. Similar ex- 
pressions for the seventh order response functions are 
given in Appendix D. Since C”(t) is temperature indepen- 
dent and a is a small parameter (typically uq<O. 1 ), the 
temperature dependence of Rc3) and Rc5’ is expected to be 
weak. The response functions for a general form of the 
polarizability (not necessary exponential) are given in Ap- 
pendix E. 

In the classical fii-0 limit, we have 
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C’(f) =s COS(Wof), 
0 

(3.17) 

&‘(f)=& . 1 a 
sMo0f) = -2kBT af --C(t). 

0 

f&(p,a) = ; &+i m&q,‘+ ; 
I 

(Pskj2 
s 

3 k 
4(4J2 +F x”k- ( 

49s 2 
) II m~(o~>2 ’ (4.7) 

By tracing over the nuclear and the bath coordinates, we 
obtain the distribution function for the sth mode in the 
form28 

The classical correlation function C,,(t) is equal to C’ (t) . 
Using Eq. (3.17), we obtain a classical approximation for 
R(~N+ 1) 8,32 

IV. HOMOGENEOUS VS INHOMOGENEOUS 
MULTIMODE BROWNIAN OSCILLATOR SYSTEM 

The generalization of the previous results to a multi- 
mode harmonic system is straightforward. Consider the 
ground state Hamiltonian 

H&q) = T ~+~~~~d , 
s 

with the electronic polarization 

a(q) =a0 exp( 5 4%). (4.2) 

Here qs are the primary oscillators that couple directly to 
the electronic polarizability. They can represent local or 
collective coordinates. A, is the coupling constant for the 
ath oscillator. The dimension of A, is chosen to be m-l, 
therefore, a is a dimensionless coupling parameter. In this 
case, the generating functions are expressed as 

F(2N+‘)(u;{T}) = J-j F~2N+‘)(a;{T}>, 
s 

where 

(4.3) 

F(2N+1)(a;{~}) =exp s [a2j:$;l $, CG( ikq 

(4.4) 

The correlation function for the sth mode is now given by 

C;(t)= j-doP(ti)[cos(~f)coth(‘$) 

hi sin(wf) , 
1 

(4.5) 

where 

P(w) = (rlsmmx~--wJ. (4.6) 

We next assume that each nuclear mode is coupled to 
an environment consisting of a set of bath harmonic oscil- 
lators with coordinates Yk and momenta pi.33-35 The inter- 
action between the system and the kth bath oscillator is 
assumed to be linear with a coupling strength tik The total 
Hamiltonian is then given by, 

WsYs(@) 
p(w) =& (02-w2)2+&2(&J) ’ s s 

where 

I* 

(4.8) 

y,(w) s c (csk)2 
k 2mi(&>’ 

S(w-cog. (4.9) 

The corresponding generating function is obtained from 
Eq. (4.4) by replacing Eq. (4.6) by Eq. (4.8). Assuming a 
frequency-independent damping ysys( w > = ys, which repre- 
sents a Gaussian white noise on the nuclear system, we 
may rewrite Eq. (4.8) as 

r, JY@) -+J(d-I= c %.f(w%,y,), (4.10) 
s s 

where r~{~~,w,,y,} represents the parameters of the 
model, namely, the strength of the interaction (vs), the 
frequency (w,), and the relaxation rate (Ye) of the .sth 
mode and 

1 
f(w4,yJ =- 

WY* 
2rf (w:--02)2+co2~* 

(4.11) 

The coupling strength is given by 

a$3. 
4 

(4.12) 

This model can be used to describe specific coordinates 
whether local (e.g., intramolecular) or collective in na- 
ture.8 Even if we do not have a clear idea of the nature of 
the modes of the system, it can be used as a convenient 
parametrization. In the liquid phase,8P16P25-27,36 the distri- 
bution of the values of {~s,ws,ys} may reflect different 
slowly interconverting local environments. Similar prob- 
lems of inhomogeneity are of current interest in the studies 
of dissipative kinetics observed in charge transfer in the 
photosynthetic reaction center.37’38 To emphasize the para- 
metric dependence on l-‘, we change the notation J(w) to 
J(o;~) and R’2N”‘({7j)) to R(2N+‘)({rj},r). The cor- 
relation functions are then given by 

c,(t;r) = 
I 

do J(w;r) 
[ 
cos(wt)coth ‘A 

( ) 2 

hi sin(of) . 1 (4.13) 

The dependence of r on nuclear configuration intro- 
duces an inhomogeneous contribution to the response 
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function. That dependence can be taken into account by 
averaging over the distribution function of the parameters 
s(r), i.e., 

R(2N+1)({~))= Sdr s(r)R(2N+1)({T);r), (4.14) 

where 

= 2N-I 
a0 

0 

f N c 2 *” c ElE2”‘EN 
E,=f Q’?t EN= * 

Xexp a [ 

N+l 

+;a2 C c'(o;r) . 1 (4.15) 
j=l 

By using Eqs. (3.15) and (3.16), this gives for the third 
and the fifth order response functions 

Rc3)(r1) =f ag2 
s 

drs(r)cyT1;r), (4.16) 

and 

Rc5)(T2,T1) =i a& 
s 

dr s(r)c"(7,;r)[c"(T,;r) 

+cv-1+72m, (4.17) 

where we have neglected terms higher order in a2. 

V. IMPULSIVE EXPERIMENTS 

The fifth order off-resonant experiment may be used to 
distinguish between the homogeneous and the inhomoge- 
neous contributions to the spectral density observed in bi- 
refringence Rc3’ experiments. Consider the following form 
for the birefringence (Kerr) amplitude 

Rt3)(T,) =2 &p2 fi s dr s(r) s da J(o;r)sin(tir,), 

(5.1) 

where 

g3)(0) z 
s 

dq ei”‘lRc3) (TV) 

WAICI 

=w ~B:-w~)~+o~~] 

+ 
mA2C2 

27r[ ( B2,-w2)2+02C2] * 
(5.2) 

Here Al, B,, C,, etc., are chosen to represent the experi- 
mental birefringence spectral density of CH3CN of these 
parameters (in [cm- ‘1) are given by (see Fig. 3)20 

A,=O.Ol, BI=50, C,=lOO, 
(5.3) 

A,=0.04, B2=350, C,=25. 

0 

0 (cm-‘) 

FIG. 3. The spectral distribution Rc3’(w) of CH$N obtained from the 
optical Kerr experiment (Ref. 20). 

Rc3) depends on the homogeneous J and inhomogeneous S 
components only through the combination 

s 
drs(rm0;r). (5.4) 

There are therefore infinite number of choices of inhomo- 
geneous distribution S( I’) and homogeneous spectral dis- 
tribution J(o;r), that give the same optical Kerr signal 
(Fig. 4), 

1’3’( z-1) = lR’3’( T1) 12, (5.5) 

where Rc3) is given by Eq. (5.2). Hereafter we adopt the 
two extreme choices; (i) a purely homogeneous two oscil- 
lator case, where the spectral density is attributed to the 
two oscillator modes 

s(r,,r2)= Ii S(rla-A,)S(o,-B,)S(y,-C,), 
or=1 

(ii) purely inhomogeneous one oscillator case, where a 
single harmonic frequency is inhomogeneousely distributed 

I--.-< -, 0 1 2 3 4 L 

T, (ps) 
FIG. 4. The optical Kerr signal Ic3’( T,) for the system of Fig. 3. This 
experiment is not sensitive to the homogeneous or inhomogeneous nature 
of the spectral density. 
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FIG. 5. The time domain 2D signal IC5’( T, ,T2) for the pure homoge- 
nezws case (i) using the spectral distribution of Fig. 4. 

S(rl)=lim6(171-1)6(y,+~)[A,f(wl;B*,C~) 
E--O 

+A2f(q;B2,C2)1, (5.8) 

J(w;rl)=rllf(w;ol,yl). (5.9) 

As can be seen from Eq. (5. I), the third order signal, 
which corresponds to the optical Kerr (birefringence) ex- 
periments, is identical for the two models. This is in agree- 
ment with our previous analysis to the effect that we can- 
not distinguish between homogeneous and inhomogeneous 
contributions from experiments based on the third order 
response function. 

Let us consider now the fifth order signal. The fifth 
order off-resonant response function is given by 

34 

R(5)(T2,TJ =y s dr s(r)cy72;r) [cy71;r) 

+cv1+~2m, (5.10) 

or alternatively, 

4 
R(5)(T2,T+$a$z4 

s 
dr s(r) 

X dw’J(o’;r)sin(o’72) 1 
X is do J(w;r) [sin(wrt) 

+s~M~*f72))1 . 
I 

(5.11) 

For impulsive pump probe experiments, such that 
Er(t)=8(t-Ti-T2), E,(t)=a(t), and E,(t)=S(t 
- Ti) for the fifth order, we can perform the time integra- 
tions over rj. Then the total signal intensity related the 
square of the polarization is given by (up to a proportion- 
ality constant) 

FIG. 6. The time domain 2D signal I”‘( T, ,T,) for the pure inhomoge- 
neous case (ii) using the spectral distribution of Fig. 4. 

P’(T*Jy= IR”‘(T,,T,) 12. (5.12) 

R(‘) depends on J(o;r) and S(r) separately and not 
merely through the combination Eq. (5.4). This opens up 
the possibility of observing the difference between the ho- 
mogeneous and the inhomogeneous contributions to the 
spectral density obtained from birefringence Rc3’ experi- 
ments (Figs. 5 and 6). The two models Eq. (5.6) together 
with Eq. (5.7) or Eq. (5.8) together with Eq. (5.9) have 
dramatically different predictions for R(‘). This is illus- 
trated in the following numerical calculations. For (i) the 
pure homogeneous and (ii) the pure inhomogeneous cases. 
As seen from the figures, the fifth order (3-pulse) signal is 
very different for the two cases. The Ic5’( TIT,) signal 
constitutes a two-dimensional spectroscopy with two inde- 
pendent time periods during which the nuclear coherence 
evolves. 

A different perspective on these results can be obtained 
by performing two-dimensional (2D) Fourier transforma- 
tion, as follows:29p39 

1(5)(01,w2) = 1 c dT1 jam dT2 eimlTifiozr2 

2 

xI(‘)(T,,T2) . (5.13) 

Calculations were made using a two-dimensional fast Fou- 
rier transform (FFT.) routine on a 256 by 256 grid. Figures 
7 and 8 show, respectively, the 2D Fourier transform of (i) 
the pure homogeneous (Fig. 5) and (ii) the pure inhomo- 
geneous cases (Fig. 6). In Fig. 7, we observe peaks whose 
positions are determined by the products [sin(w,T,) 
+sin(tibT2)][sin(w,T,) +sin(wbTi)] and [sin(W,T2) 
+sh(wJdlCsin[o,( T,-t T2)l+sin[q,(T1 + T2)]}, how- 
ever, since their spectral width at (w, ,ti2) = ( f 50, f 50) 
[cm- ‘1 are broad (3/a= 100 [cm- ‘I), we cannot distinguish 
them from the zero frequency peak at (w, ,w,) = (0,O). In 
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NG. 7. The frequency domain 2D signal Z”)(w,,o,) corresponding to 
Fig. 5. 

the purely homogeneous case, one can observe coherent 
modes of the ground states as shown in this figure. 

Figure 8 represents the pure inhomogeneous case, 
where we can rewrite the response function as 

-cos[w~(T,+2Tz)l~. (5.14) 

Thus the response function consists of functions of the 
form ITT,-Td, g(T,+Td, j(Tl+Td, and MT,). 
Since we performed the Fourier transformation over T,, 
T2>0, the contributions of f( T1-- T2) and k( T,) are 
large compared with the contribution from g( T, + T,) and 
j ( T, + 2T2) and show maxima along the lines or = --a2 
and 02=0. The distribution of the ground state mode fre- 
quency can be observed on these lines as the peaks at 

FIG. 8. The frequency domain 2D signal Z’5)(w,,o,) corresponding to 
Fig. 6. 

(~r,0~)=(*0~,0) and (~~,w~)=~(oL,,--wJ. The 
functions g( T, + T,) and j( Ti +2T2) also show small 
peaks at (wI,w2) = f (wb,ob) and (~~~02) = f (ob,206), 
however, the contribution from w, cannot be distinguished 
from the central peak. 

In summary, the two models, which have an identical 
1D (birefringence) spectrum clearly show very different 
2D spectra. Realistic situations of the liquid spectral den- 
sity are expected to be intermediate between these purely 
homogeneous and inhomogeneous cases. J( w;I’) and S(r) 
may thus be probed separately by performing higher order 
measurements, in addition to the optical Kerr experiment. 

VI. DISCUSSION 

In this paper, we calculated the nuclear response func- 
tion for an off-resonant experiment employing optical 
pulses, by starting with the effective Hamiltonian Eq. 
(2.5), and showed how the multidimensional spectrum can 
be used to distinguish between homogeneous and inhomo- 
geneous line broadening mechanisms. We can derive the 
same result from the expression of 2N+ lth order non- 
Condon response functions for a displaced two-level oscil- 
lator system (see Appendix C). This model can be used to 
describe electronically resonant as well as off-resonant 
measurements, and in the off resonance limit it coincides 
with our effective Hamiltonian approach. 

We assume that the material part of Hamiltonian Eq. 
(2.1) has the form 

ffo= Ig)~&M)(gl + le> [f4(p,d +oegl (el 

(6.1) 

where Hs( p,q) is given by Eq. (4.1) and 

fUp,q) = F &+l m&(qs- Ds12 . 
i s 1 

(6.2) 

The constant D, represents the displacement of the .sth 
oscillator mode. The dipole interaction between the system 
and the electric field E(r,t) is 

V= Ig)p.(q)(el+ leMd(g19 (6.3) 

where the transition dipole matrix element is a function of 
the nuclear coordinates and denoted by p(q) (non- 
Condon dipole interaction). We take it to be in the form, 

(6.4) 

By expanding the density matrix in powers of the field 
amplitudes, the polarization to 2N+ lth order can be ex- 
pressed as 
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= s m &iv+l EZ(r9t-t2N+1) 
0 

X [ ,el Jam dt2j Joa dbj- 1 

2N+ 1 
2 tk 

k=2j--1 )I 
xR(2N+‘)(t). (6.5) 

Here the 2N-+ lth order non-Condon response function is 
given by 

@N+l)(t)+N+2 (-J2N+'5 Jdrxrj 

xexp[Q,(t;r> +X,(t;r) I, (6.6) 

where Q,( t;r) is the Condon contribution of the response 
function, whereas X,(t;r) is the non-Condon contribu- 
tion. The sum over a is taken for all possible Liouville 
paths to 2N+ lth order. Explicit expressions of Q,(t;r) 
and X,(t;r) for different Liouville paths are given in Ap- 
pendix C. The contribution of Q,(t;F) is larger than 
X,(t;l?) in a resonant case, whereas the opposite is true for 
the off-resonant case. The function Q,( t;l?) consists of the 
function g, (t;l?), which is a double time integration of 
C, (t;lY) plus oesf, whereas X,(t;T) consists of C, (t;r) 
itself. 

Although the present analysis focused on off-resonant 
measurements employing optical pulses, this is by no 
means the only method for obtaining this information. An 
alternative route will be to use infrared pulses to probe the 
vibrational transitions directly.40 In this case we should 
replace the E2( r,t )a (q) coupling in our effective Hamil- 
tonian by E( r,t)p (q), p(q) being the transition dipole mo- 
ment. We can therefore use the present formation by sim- 
ply replacing the multitime correlation functions of a(q) 
by the corresponding correlation functions of p(q). By 
assuming that ,u(q) has an exponential dependence on q 
we can then use all the present results. Performing these 
experiments in the infrared has some advantages since we 
need lower order nonlinearities (an infrared photon echo is 
a P(3) process whereas the Raman echo is PC’)). On the 

other hand, infrared detection and ultrafast technology is 
less developed than its optical counterpart. Moreover, de- 
spite the formal similarity in the description of off-resonant 
optical and resonant infrared measurements, in practice 
p(q) and a(q) may couple to different types of motions 
since the dependence of a(q) on q is not only through 
p(q) but also through the excited state energies. A recent 
comparison of correlation functions of ,u and a in liquid 
water and water clusters shows major differences.32 Thus 
the two modes of performing the experiment are comple- 
mentary. 

ACKNOWLEDGMENTS 

We wish to thank J. Buontempo, R. J. D. Miller, 
V. Chemyak, M. Cho, and G. Fleming for most useful 
discussions. The support of the National Scientific Foun- 
dation and the Air Force Office of Scientific Research is 
gratefully acknowledged. 

APPENDIX A: DERIVATION OF THE EFFECTIVE 
HAMILTONIAN FOR A TWO-ELECTRIC 
LEVEL SYSTEM 

In this Appendix, we demonstrate how one can deduce 
the effective Hamiltonian Eq. (2.5) starting from a dis- 
placed oscillator model. Denoting the ground and the first 
excited electronic levels of the system by lg) and I e), re- 
spectively, we can write the Hamiltonian in the form, 

H=Ho-E(r,t) V. 

Here 

(Al) 

HO= Ida, @I+ I4 [fUp,q) +wegl @I, W) 
and H,(p,q) and H,(p,q) are the adiabatic Hamiltonians, 
where p and q represent the coordinates and momenta of 
the nuclear degrees of freedom. The interaction between 
the system and the electric field E(r,t) is assumed to be of 
a dipole form, 

v= Idp(d(el+ l+(q)(gl, (A3) 

where the transition dipole matrix element is a function of 
the nuclear coordinates and denoted by p(q) (non- 
Condon dipole interaction). 

By expanding the density matrix in powers of the field 
amplitudes, the polarization to 2N+ lth order can be ex- 
pressed as 

=( -f)lNil Joa dtzN+l ET(r,t-ttZN+I) [ !I Jom df2j Jam dt,,Ej(rJ- 2: tk) 

XEj r,t- ( kx:, tk)]tr[ y[ ‘E’ eXP( -iff'tj) Yx]&J7 
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where we introduced the superoperator notation 
AXBXsAB-BA and exp[tiX]B=exp[iA]Bexp[--iA], 
for any operators A and B. Since each Vx is a commutator 
that can act either from the left or from the right, the above 
expression contains 22N+ ’ terms. Each term corresponds to 
a distinct Liouville space path. The electronic state of the 
system is initially ]g) (g] for all paths. During the odd time 
periods fZk+ i the system is in an electronic coherence 
le)(sl or Id{ I h e , w ereas during the even time periods fZk 
it is in an electronic population ]g) (g ( or 1 e) (e) , where 
1 <k(N. For off-resonant excitation, Ri and CIJ Q wq, the 
pulses cannot create real electronic excitation I e) (e I and 
all paths containing at least one 1 e) (e I period can be ne- 
glected. The remaining terms represent Raman processes 
whose Liouville paths only involve ]g) (e) , I e) (gl and 
(g) (g I . For off-resonance laser fields, we can further make 
the following approximation for the contribution of the 
optical coherence periods ]e) (g] and Ig)(e( 7: 

i2 co 

( )I 

-- 
fi 0 

dt,j-1 Ej(r,~)~(r,r-t2j-1)(g( VI4 

X e exp 
(I ( 

*f&t2j-* 
)I > 

e @I Yld 

(A51 

whereAkj=kj - kj,Afijsfij - QJand 

aj(q)Ep$ (2 ‘-), 
Oq+flj+Wq-C.lj 

(A6) 

is the linear polarizability tensor. For clarity we hereafter 
assume that the polarizability is isotropic, and do not use 
an explicit tensor notation; this can be incorporated with 
no major difficulty.20 

For off-resonant excitation, the 2N+ lth polarization 
is then expressed as 

P(2N+1)(t)=2N+1ET(t)exp(iflTt-~kTr) 

x ( ,fil Jam dTi ‘?( ‘- kij ‘k) 

X[2COS(A~j(t-~jTk)-Akjr)+l]] 

XR’2N+1)({Tj}), 

C-47) 
where the 2N+ lth order response function is now given 
by 

R(2N+1)({Tj}) s z ( i)Ntr[d41[ iJ 

XeXp( -fH,X7,)nX(d]&). 

Here a ’ A = [a ,A] represents the commutator 
electronic polarizability, and we have neglected 

with the 
the weak 

dependence of aj on the frequency Rj and assumed ai 
=a (q). This response function depends only on ground 
electronic state dynamics and is equivalent to considering 
the following effective ground state nuclear Hamiltonian 
where the electronic excited state has been eliminated, 

C-48) 

H=H,(p,q) -E2(r,tb(s). (A9) 

APPENDIX 6: PHASE SPACE DISTRIBUTION 
FUNCTIONS FOR 2Mh ORDER OPTlCAL PROCESSES 

We can calculate the density matrix elements relevant 
for the 2Nth order off-resonant optical processes by per- 
forming a path integral. Since the calculation is similar to 
Ref. 28, we only present the results. In the Wigner repre- 
sentation defined by 

1 
W(2N) (p,q,t) 3G 

s 
‘WI 

the nuclear wave packet corresponding to a given Liouville 
space path is given by 

’ yz& .,z* e2zt ‘-a ,,z, elE2’.‘E~~~2”‘~N+~G(2N)(p,q;8;{~j}) . I I (=I 

I 

Here the generating function for the phase space wave where 
packet is given by 

1 1 
G’2N’(p,q;a,{Tj)) =A exp -m (q--Q(t,a) I2 

[ 

q(t,a)= i C j=l aJ (‘(‘- f, Tk)9 

1 
-m (p-F(w) >’ 

1 
F ‘2N’(a;CTj3), 

B(t,a)=Mil ajee,(t- ,$, Tk), 

(B3) (q2)d’(0), (p2)=-M2~(0), 

(B4) 

CBS) 
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and 

Ar25-~@%?7. u36) 

APPENDIX C: CONNECTION WITH ELECTRONICALLY 
RESONANT NONLINEAR RESPONSE FUNCTIONS 

In this paper, we calculated the off-resonant non- 
Condon response function by employing the effective 
Hamiltonian Eq. (2.5). This derivation, does not require 
specifying a potential surface of the excited state. We can 
obtain the same results from a general expressions of the 
non-Condon response function for a displaced harmonic 
oscillators system, which applies to resonant as well as 
off-resonant spectroscopy. 

We consider the system described by the Hamiltonian 
Eq. (6.1) with the dipole interaction Eq. (6.3) and calcu- 
late the 2N+ lth order response function 

/ ;\ 2N-t1 
@N+l)(t) E -f 

t I 

xt,iV[ ‘iil’ eXp( -~Wxtj)Yx]Pg)~ 

(Cl) 
The response function contains 22Nf’ terms denoted Liou- 
ville space paths. They come from taking 2N+ 1 commu- 
tators with the dipole operator V in the evaluation of the 
density matrix. The electronic state of the system is ini- 
tially lg) (gl for all paths. In each path the system under- 
goes 2N-t 1 evolution periods denoted chronologically by 
tI ,t2,-,t2N+ ,. The paths differ by which electronic density 
matrix element exists in each of these periods. Mathemat- 
ically, we can represent the path by 2N+ 1 indices Ej, 
which are chosen as follows: When the density matrix dur- 
ing the jth period tj is in the state pgg, pee, peg, and pge, 

TABLE I. Possible Liouville paths and the corresponding auxiliary pa- 
rameters E, for calculating the response function to fifth order. In the 
table (gg), (ee), (eg), and (ge) represent the density matrix elements 
Pgg J Pee ) Peg t and pge, respectively. The complex conjugate paths to 1-16, 
which can be obtained by setting es= - (ge), are not shown. The system 
is initially in the ground state (gg) and we set eO= -. 

a 61 E2 c3 64 65 

1 + (4 - kg) +(a) - kg) + (eg) 
2 - ke) -kg) +(& - kg) +(eg) 
3 + (eg) - kg) - (ge) - kg) + (eg) 
4 - (ge) - kg) - (ge) - (gg) + (eg) 
5 + (eg) - kg) - (ge) + (ee) + (eg) 
6 - ke) -kg) - (ge) + (ee) -k (ed 
7 + (4 - kg) + (eg) + (ee) + (ed 
8 -(gel - kg) + (ed + (ee) +(ed 
9 i- (eg) + (eel + (eg) - kg) + (es) 

10 -(iv) +(ee) + (eg) - w +(& 
11 + (eg) + (ee) - (ge) -(a) + (eg) 
12 -(gel + (ee) - (gel - kg) -t (eg) 
13 + (es) + (ee) - (ge) + (eel + (ed 
14 -(gel + (eel - ke) + (ee) + (eg) 
15 f (eg) +(ee) + (ed + (eel + (eg) 
16 - b) + (e-2) + (et9 + (ee) + (eg) 

we have Ej = - 1, + 1, + 1, and - 1 respectively. We label 
a combination of Ej by a (i.e., a={ei}). As an example, 
we present the Liouville paths of the fifth order optical 
processes and corresponding sign parameters in Table I. 

For a non-Condon dipole moment Eq. (6.4), the 
2N+ lth order non-Condon response function is given by** 

@N+l)(f),p;N+2 -ti 
( ) 

i 2N+111 c s a 

xexp[Pa(t) +X:(t) 1 +C.G (C2) 

where ea( t ) and XL(t) are the Condon and non-Condon 
parts of the sth mode response functions written as 

N+l N+l N+l N r 1 2j-2 \ 
&(t) = -i& c EZj-Ifij-I- jzl d2j2/-,e2j-2(t2j-1)- j=:+I kz, E.U-le2k--I[&~2~-~( Igk ‘1) 

j=l 

(C3) 

and 

2N+2 2N+2 2N+l 

k=m+l m=l 
(C4) 

where 

k>2m+l 

GSk(t))a=-G c 
m=O 

m=N+l 2m-1 

+ c 
2m>k 

~2m-&,~,-, i )I c 4 * 
l=k 

In the above we set w&=o,+m,D$$/2ti and &=m,D&fi. The correlation function for the sth mode Cs (t) is defined 
by Eq. (4.5) with Eq. (4.8) and C’“(t) is the real part of Ci (t). Using this we defined the auxiliary functions 
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vJt)=g$ dt’ C: (t’), ((33) 

and 

(C7) 

The summations 8, in Eq. (C2) represents sum for possible sign el, eZ, * . . 
necessary 22N Liouville space paths. The other 22N 

eZN= f , and e2N+ t = +, which yields the 

obtained by choosing l 2,,,+ I = - . 
Liouville space paths are simply their complex conjugate and can be 

We can introduce inhomogeneous broadening by the following average: 

pv+‘)(t) ,4.~+* ( $z*~+’ z JdI’S(I’)exp[Q,(t;I’) +X,(b;t;I’)] +c.c., 

where S(r) is the distribution function of the set of parameters f’={~s,wS,yS) and we replaced 

(C8) 

7 O',(t) -e,kn C x",(t) -x,(w). 
s 

(C9) 

As an example, we present the fifth order of Q,(t;f’) and X,(t;I’); 

12,(W) = --iw~~(~lt1+~3t3+~5ts) -+,w) -g,,,p3) -gc5+;n -~3&+l(t2;n --g,,,,(t2+t3;r) 

-ge,~~~tl+t2~r~+~~,6~tl+t2+t3~r~l --EgEl[g~~2El(t2+t3+t4;r)-gEZEl(t2+f3+t4+tS;r) 
-g,,,(tl+t2+t3+t4;r) +g,,,(tl+t2+t3+t4+ts;r) I -E5E3[g,E,(t4;r) -g,,,(t4+t5;r) 

-g,,,,(t3+t4;n +g,,,p3+t4+t5mi, (ClO) 

and 

k=l 

For off-resonance experiments, we can perform the time integrations over odd period [see Eq. (As)] and the result can 
be obtained by setting t 2,+1 =O in the above expression. All contributions of the Condon part Q,(t;r) for different 
Liouville path (r then vanish and we have only non-Condon contribution; 
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X,&I)=6 i (~k(t;r))cr+6b2C’(O;r) +2b2(C,,,(t2;r>+c~~,,(t2;r) +~~l&2+~4~~) +cc2&+w) k=l 
+c~~,(t4;r)3-c~~,,(t4;r)i, (C13) 

where 

I 

(41(t;r)),=(~2(2(f;r))ar=0, 
(q3(tmn= (44w))a= -iklhbap2) -9ha,E2(f2) I (C14) 
(~5(t;r))n=(~~(t;r))or=-i[Elhga,(t2+t4;r)-~lhE,EZ(f2+f4;r)+~3h~~~3(f4;r)-~3he3,(t4;r)l. 

For the Liouville paths which involves ee, the terms in Eq. 
(C14) becomes real functions. For example, for the path 
cr=9 in Table I, we have (~3(f;r))9=(~~(t;r))g= 
- Re(h- ( t2) ). These functions are positive in time and 
thus the contribution of the response function from the 
Liouville paths a = 5-16, which involve the excitation pro- 
cesses ee are smaller than those from CY= l-4. Thus by 
setting e2, e4= -, the phase of the non-Condon response 
function reduces to 

X,(t;l-) =6b2c?‘(O;r)+4b2[C-,,(t,;l?) 

fc,p2+t4m +c,(t,;r)i. (Cl51 

The response function is then given by 

ffi 2 

R(5)(t;r) = -g 1 C ele3exp +yo;rj 
E,=* q=* I 

+c-e3(~22;ni , I (C16) 

where we set a = 2b, 7l = t2, and r2 = t4. The Liouville paths 
are replaced by all possible sets of Ej, and the sum over cz 
is replaced by these sum. The sign factor l le3 arises from 
the time integration Eq. (A5). This result is identical to 
Eq. (4.15). 

APPENDIX D: THE SEVENTH ORDER RESPONSE 
FUNCTION 

From Eq. (2.6), the seventh order response function is 
expressed as 

i=~7’(t)=24~omd~3~omd~2~o~ dT1 E,(t)E~(t-73>E~(t-73-~2)E~(t-~3-~2-~~)e~p(i~=t-z~~r) 

~[2cos(A~~(t-~~)-Ak~r)+1][2cos(A~~(t-~~-~~)-Ahk~r)+l] 

X [2 Cos(Aat(t-rs-r2-rt) -Aklr) + l]R(7)(r3,~2,r1), 

where 

R’7)(~3,.r2,~l)=-$ (~~[~~(~4),~(t3)l,~(t2)l,~(~l)l~g). 

Using the generating function, the response function is written as 

(Dl) 

CD21 

R(7)(7-3,72,71)=lim -j$ C C C E1E2$8&&$.?4F (7)(C~jI;T39~2,T1)9 (D3) 
a-0 El=* EZ’Lt q=* 

where 

(D4) 

Assuming an exponential form for the polarization [Eq. (3.14)], the first two terms in the expansion of the response 
function can be calculated as 
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X[C”(~1)+C”(~1+T*)+C”(T1+T*+T3)][C”(T*)+C”(T*+T3)][C’(T1)+C’(T1+T*) 

+c’(~1+~2+~3)+c’(~2)$c’(~2+~3)+c’(~3)+2c’(o)]+”‘. 

By incorporating inhomogeneous broadening, the lowest order response function becomes 

(D5) 

8 R(‘)(r3,r2,rl) =g aoa6 s dr,S(r,)c”(73;ra)[c”(72;ra)+c”(72+73;ra)l[c”(71;ra) 

+c~~(71+T2;r(r)+c~~(71+72+73;ror)l. CD61 

The seventh order response function has been studied in connection with the Raman echo,13 however, the expression of 
the response function for the present model does not give a simple echo, since the nuclear timescale is finite, and the model 
is not identical to a two-level system with a homogeneous and an inhomogeneous broadening mechanism. 

APPENDIX E: RESPONSE FUNCTIONS FOR A POLYNOMIAL COORDINATE DEPENDENCE OF THE 
POLARIZABILITY 

We assume a non-Condon electronic polarizarility in the form 

a(q) z i. jj ad”. (El) 

Using the generating function Eq. (3.9), the lowest two terms in the third order response function are calculated as 
. 2 

Rt3)(rl) =T C”(q) +? Ctr(q)Cp(~l) +--a . WI 

By using the generating function Eq. (3.12), the fifth order response function are calculated as 

+C”(71+72)c’(71+7*)+(C”(71)+C”(7,+7*))(c’(72)+c’(~))1+~~~~ (E3) 

The expression of the Seventh order response function, calculated from Eq. (D4), is lengthy and hereafter we show each 
term separately, in various orders in aj. 

(2) 
3 

y c”(~~) [c”(71+T&t’(T2) +C”(71+72+73)CN(~2+73)l’ 

(3) 

8iai 
-$- C”(T3) [ (C”(71+7*+73)C”(~2) +c”(71+72)c~(72+73))c’(71) 

+c”(~~)c11(~2+~3)c’(~~+~2)+c)1(~1)c”(~~)~’(~~+~2+~~)]~ 

(4) 
3 

~C”(~,)(c”(~~+~2)C”(r,)+C”(Tl+~2+~3)c’.!’~+~3))c’(0)- 

(E5) 

036) 

(E7) 
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